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Augmented Performance Bounds on Strictly Linear
and Widely Linear Estimators With Complex Data
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Abstract—Novel physical insights are provided into the perfor-
mances of strictly linear (SL) and widely linear (WL) estimators
of the generality of complex-valued data, both proper (second or-
der circular) and improper (second-order noncircular). This is
achieved by first performing a novel complementary mean square
error (CMSE) analysis, in order to quantify the degrees of im-
properness (second order noncircularity) of the SL and WL es-
timation errors. The exact bounds on the CMSE difference be-
tween the SL and WL estimators are investigated to show that only
a joint consideration of the standard MSE analysis and the pro-
posed CMSE analysis has enough degrees of freedom for a rigorous
account of the performance of WL and SL estimators. This also
makes it possible to rigourously quantify the contributions to the
WL performance advantage from the individual real and imagi-
nary channels, an important finding not possible to obtain by using
the standard MSE analysis only.

Index Terms—Widely linear model, augmented complex statis-
tics, improperness (second order noncircularity), complementary
mean square error (CMSE), real-imaginary analysis.

I. INTRODUCTION

RANDOM signals in the complex domain C arise in many
areas of science and engineering, and their accurate and

robust estimation is thus of fundamental interest. Standard sta-
tistical signal processing approaches typically impose a restric-
tive assumption on a complex-valued zero-mean random vector,
x ∈ CN ×1 , in the form of properness or second order circular-
ity [1], [2]. In practical terms, a circular random vector has a
rotation-invariant probability distribution, while a proper (sec-
ond order circular) vector x is uncorrelated with its complex
conjugate x∗, or equivalently, its real and imaginary compo-
nents are uncorrelated, and are with equal powers. The above
assumption of properness (second order circularity) is con-
venient in many respects because it simplifies computations
and makes the complex-valued signal processing a straightfor-
ward extension of its real-valued counterpart, in the sense that
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second order statistical properties are described by the covari-
ance matrix only, R = E[xxH ], where E[·] denotes the statis-
tical expectation and (·)H the Hermitian transpose operator.

Consequently, in classical mean square estimation in C, a
scalar random variable (estimandum) y is estimated based on the
random vector regressor, x, and the estimate ŷ that minimises the
mean square error (MSE) is given by the conditional expectation
ŷ = E[y|x]. When the zero-mean pair {y,x} is jointly circularly
distributed Gaussian, the optimal solution is a strictly linear (SL)
estimator, which is directly inherited from the real domain R,
and is given by [3]

ŷSL = wH x, (1)

where w ∈ CN ×1 is a coefficient vector.
However, recent results in the so-called augmented com-

plex statistics [4]–[7] show that the covariance matrix, R, can-
not completely describe the second order behaviour of gen-
eral complex-valued signals, and another second order moment,
called the complementary covariance (pseudo-covariance) ma-
trix, P = E[xxT ], should also be taken into account, especially
when processing second order noncircular (improper) data. The
improperness is characterised by a non-zero P �= 0, and the
complementary covariance matrix P therefore vanishes only
when x is proper. Intuitively speaking, in order for an estima-
tor to utilise all the available second order information in both
proper and improper signals, a general estimation framework in
C should depend on both the signals themselves and their com-
plex conjugates. In the context of mean square error estimation
in C, this leads to the well-known widely linear (WL) estimator,
given by [6]–[8]

ŷWL = hH x + gH x∗, (2)

where h and g are the N × 1 complex-valued coefficient vectors
associated with x and x∗, respectively.

A rigourous MSE analysis of both SL and WL estimators
with complex-valued Gaussian data was conducted in a semi-
nal work in [8], which showed that apart from a special case
for which the WL estimator in (2) reduces to the SL estimator
in (1), both giving identical MSE performance, the WL esti-
mator offers significant performance gains over the SL one.
This finding has spurred extensive use of WL estimation in nu-
merous applications, including signal processing and commu-
nications [9]–[29], where improper signals occur due to their
underlying signal generating physics, so that the traditional SL
processing framework is inadequate due to the inherent under-
modelling. For instance, in radio communications, the received
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baseband signals over fading channels exhibit second order non-
circular (improper) behaviours when the transmission system
adopts noncircular real-valued and complex-valued constella-
tion schemes, e.g., binary phase shift-keying (BPSK), 8 phase
shift-keying (8PSK), and offset quadrature amplitude modula-
tion (OQAM) [18]–[22]. In areas such as radio communications,
spectral sensing, beam-forming, noncircularity also occurs in
the tramsmitted/received signal due to the amplitude and phase
imbalances between its in-phase (I) and quadrature (Q) compo-
nents, even when second order circular modulation schemes are
employed [23]–[29]. In addition, the use of improper signals
and augmented complex statistics has been reported in power
systems [30]–[32], biomedical engineering [33], and renewable
energy [34], [35]. Despite these advances, it is important to note
that, from the perspective of augmented complex statistics, the
current quantification of performance advantages of WL esti-
mators over their SL counterparts still provides limited physical
insights into both estimators, since the existing approaches im-
plicitly omit the complementary second order statistics of the
estimation errors - a key feature of improper data.

To address this issue, we first propose a novel complementary
mean square error (CMSE) analysis of both the SL and WL esti-
mators, in order to quantify the degrees of improperness of their
respective estimation errors, a critical parameter for improper
data. Furthermore, drawing from the physics of impropriety,
which states that the complementary variance of a complex-
valued zero-mean random variable x, that is, σ̃2

x = E[x2 ], is
bounded by the standard variance (power), σ2

x = E[xx∗], that
is |σ̃2

x | ≤ σ2
x [6], [7], [36], the boundedness of the CMSE dif-

ference between the SL and WL estimators is rigourously and
comprehensively examined. In this way, we show that only a
joint consideration of the standard MSE analysis and the pro-
posed CMSE analysis makes it possible to examine the complete
second order performance of both the estimators. This also en-
ables more physical insight into the underlying physics of the
contribution of the real and imaginary channels of both the esti-
mators, and hence, the precise quantification of the advantages
of an WL estimator over its SL counterpart. This important as-
pect is still missing in the literature and, in general, owing to the
insufficient degrees of freedom, cannot be examined by using
the standard MSE analysis in [8].

II. STANDARD MSE ANALYSIS OF WL AND SL ESTIMATORS

This section briefly summarises the standard MSE analysis
of both WL and SL estimators, conducted in [8].

The aim of the WL estimator is to find the optimal weight
vectors h and g in (2) which minimise the MSE, denoted by
E[|eWL|2 ], where

eWL = y − ŷWL (3)

is the estimation error. For this purpose, the first point to note is
that the set of scalar complex random variables z, spanned by
z = aH x + bH x∗, where a and b belong to CN ×1 , constitutes
a linear space. It becomes a Hilbert subspace with the scalar
product 〈z1 , z2〉 = E[z1z

∗
2 ]. As a result, ŷWL represents a pro-

jection of y onto this subspace, while the associated estimation

error eWL is characterised by the orthogonality principle, where

eWL ⊥ x, (4)

and

eWL ⊥ x∗. (5)

The symbol ⊥ indicates that all the components of x and x∗ are
orthogonal to eWL (their scalar product is zero). From (3), the
first orthogonality condition in (4) can be written in terms of the
statistical expectation, to yield1

E[y∗x] = E[ŷ∗
WLx]. (6)

In a similar way, by considering (3) and (5), we have

E[y∗x∗] = E[ŷ∗
WLx

∗]. (7)

Upon replacing ŷWL in (6) and (7) with the expression in (2),
we obtain

Rh + Pg = r, (8)

P∗h + R∗g = s∗, (9)

where

r = E[y∗x], s = E[yx]. (10)

After a few mathematical manipulations and considering that
the covariance matrix R is Hermitian while the complementary
covariance matrix P is symmetric, from (8) and (9) we obtain
the optimal weight vectors, h and g, in the form [8]

h = [R − PR−∗P∗]−1 [r − PR−∗s∗], (11)

g = [R∗ − P∗R−1P]−1 [s∗ − P∗R−1r]. (12)

where the symbol R−∗ designates the operation (R−1)∗. Upon
combining with (3), (8) and (9), the corresponding MSE of the
WL estimator, that is, E[|eWL|2 ], is given by

E[|eWL|2 ] = E[|y|2 ] − (hH r + gH s∗). (13)

The SL estimator in (1) is obviously more restrictive as com-
pared with its WL counterpart, in the sense that its estimate
ŷSL represents a projection of y onto a restricted linear Hilbert
subspace defined by only x. In other words, its MSE, denoted
as E[|eSL|2 ], and given by

eSL = y − ŷSL, (14)

requires only the single orthogonality condition

eSL ⊥ x. (15)

From (14) and (15), we can now write

E[ŷ∗
SLx] = E[y∗x] = r. (16)

Substitution of (1) into (16) yields

Rw = r, (17)

1By definition, the orthogonality condition eWL ⊥ x leads to E [eWLx∗] = 0.
For mathematical elegance, a complex conjugate operation (·)∗ is applied on
both sides, after the E [·] operation, which yields (6).
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so that

w = R−1r, (18)

and hence, the MSE of the SL estimator, that is, E[|eSL|2 ], can
be expressed as

E[|eSL|2 ] = E[|y|2 ] − rH R−1r. (19)

Upon combining (13) and (19), the performance advantage of
the WL estimator over the SL one can be characterised by the
difference of the respective MSEs, given by

	MSE = E[|eSL|2 ] − E[|eWL|2 ], (20)

and after a few mathematical manipulations, we have [8]

	MSE = [s − PR−∗r∗]H [R − PR−∗P∗]−1 [s − PR−∗r∗].
(21)

The value of 	MSE is nonnegative since the matrix [R −
PR−∗P∗] is positive definite, indicating that the WL estima-
tor always yields an MSE that is smaller than that of the SL
estimator when s �= PR−∗r∗, or at the very least equal to that
of the SL estimator when s = PR−∗r∗ [8].

Remark 1: The standard MSE analysis implicitly assumes
that the estimation errors of both estimators, that is, eWL and
eSL, are strictly proper, so that their complementary second order
statistics are omitted in (21), although there is no justification
to support this assumption.

III. PROPOSED CMSE ANALYSIS OF WL AND SL ESTIMATORS

To investigate the degrees of improperness of both the WL
and SL estimation errors, according to the augmented complex
statistics [4]–[7], we next consider the complementary variance
of both the estimation errors, defined as E[e2

WL] and E[e2
SL].

Analogously to the definition of MSE, we refer to these as
complementary MSEs (CMSEs) [37], [38]. Note that unlike the
real-valued MSE, the CMSE is in general complex-valued.

Upon combining (2), (3) and (10), the CMSE of a WL esti-
mator can be expressed as

CMSEWL = E[e2
WL] = E[(y − ŷWL)2 ]

= E[y2 ] + E[ŷ2
WL] − 2E[yŷWL]

= E[y2 ] + E[(hH x + gH x∗)2 ] − 2(hH s + gH r∗)

= E[y2 ] + [hH P + gH R∗ − sT ]h∗

+ [hH R + gH P∗ − rH ]g∗ − (hH s + gH r∗).
(22)

According to (11) and (12), the second and third terms on the
right hand side (RHS) of (22) vanish, to yield

E[e2
WL] = E[y2 ] − (hH s + gH r∗). (23)

For the SL estimator, upon using (1), (10), (14), and (18), its
CMSE becomes

CMSESL = E[e2
SL] = E[(y − ŷSL)2 ]

= E[y2 ] + E[ŷ2
SL] − 2E[yŷSL]

= E[y2 ] + rH R−1PR−∗r∗ − 2rH R−1s. (24)

Now, the difference in the CMSE (or degree of improperness)
of both the estimators can be quantified as

	CMSE = CMSESL − CMSEWL = E[e2
SL] − E[e2

WL], (25)

and based on (23) and (24), we arrive at

	CMSE = rH R−1PR−∗r∗ − 2rH R−1s + hH s + gH r∗.
(26)

Next, from (8)

h = R−1 [r − Pg], (27)

and hence,

hH s = [r − Pg]H R−1s = rH R−1s − gH P∗R−1s. (28)

Upon substituting (28) and (12) into (26), the term 	CMSE can
be further expressed as

	CMSE = rH R−1PR−∗r∗ − rH R−1s + gH [r∗ − P∗R−1s]

= rH R−1 [PR−∗r∗ − s] + [rH − sT R−∗P∗]g∗

= {−rH R−1 + [rH − sT R−∗P∗][R − PR−∗P∗]−1}
· [s − PR−∗r∗]. (29)

Remark 2: The 	CMSE in (29) is expressed in terms of the
augmented complex statistics of the regressor x (both R and P)
and the joint augmented complex statistics of the estimandum
y and the regressor x (both r and s in (10)). It serves as a
complementary measure to the 	MSE in (21), to express a full
second order performance advantage of the WL estimator.

IV. ADVANTAGES OF A JOINT CONSIDERATION OF MSE
ANALYSIS AND CMSE ANALYSIS

In general, the complementary second order statistics offers
enhanced degree of freedom to describe the second order statis-
tics in real and imaginary data channels. To illustrate this ad-
vantage, first consider a scalar complex-valued random variable
x = xr + ıxı . Then, its variance and complementary variance
are respectively given by

σ2
x = E[xx∗] = σ2

r + σ2
ı , (30)

σ̃2
x = E[x2 ] = σ2

r − σ2
ı + 2ıσrı , (31)

where σ2
r = E[x2

r ], σ2
ı = E[x2

ı ], and σrı = E[xrxı ]. Observe
that the complementary variance σ̃2

x in (31) is complex-valued
and has two degrees of freedom to describe the second order
statistics in real and imaginary channels. On the other hand, the
variance σ2

x in (30) contains information about the overall power
in data, but it cannot tell us how the power is distributed across
the real and imaginary channels due to its real-valued nature; a
problem resulting from a single degree of freedom.

In a similar way, the proposed CMSE analysis enables us
to quantify the degrees of improperness of the WL and SL
estimation errors, eSL and eWL, as well as the difference in
their degrees of improperness. Notice that the complex-valued
nature of the complementary second order statistics provides the
necessary two degrees of freedom to describe the improperness.
This becomes clear when 	CMSE is expressed in terms of the
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real and imaginary parts of the respective estimation errors, to
give

	CMSE = E[e2
SL] − E[e2

WL]

= E[(eSL,r + ıeSL,ı)2 ] − E[(eWL,r + ıeWL,ı)2 ]

= E[e2
SL,r ] − E[e2

SL,ı ] + 2ıE[eSL,r eSL,ı ]

− E[e2
WL,r ] + E[e2

WL,ı ] − 2ıE[eWL,r eWL,ı ]

= E[e2
SL,r ] − E[e2

WL,r ]
︸ ︷︷ ︸

	MSEr

−(E[e2
SL,ı ] − E[e2

WL,ı ]
︸ ︷︷ ︸

	MSEı

)

+ 2ı(E[eSL,r eSL,ı ] − E[eWL,r eWL,ı ]). (32)

The real part, denoted by 
[	CMSE], is of particular interest,
since it contains information on the differences in MSE between
the SL and WL estimators in the individual real and imaginary
channels, denoted by 	MSEr and 	MSEı , respectively; for
more detail, see (34) and (35).

In a similar way, we can factorise 	MSE in (20) to yield

	MSE = E[|eSL|2 ] − E[|eWL|2 ]
= E[e2

SL,r ] + E[e2
SL,ı ] − E[e2

WL,r ] − E[e2
WL,ı ]

= E[e2
SL,r ] − E[e2

WL,r ]
︸ ︷︷ ︸

	MSEr

+E[e2
SL,ı ] − E[e2

WL,ı ]
︸ ︷︷ ︸

	MSEı

. (33)

Upon inspection of both sides of (32) and (33), we obtain

	MSEr =
	MSE + 
[	CMSE]

2
, (34)

	MSEı =
	MSE −
[	CMSE]

2
. (35)

Remark 3: From (21), (29), (34) and (35), observe that only
a joint consideration of the standard MSE and the proposed
CMSE analyses provides enough degrees of freedom to move
beyond just error power analysis, and to precisely quantify the
MSE performance differences between the SL and WL estima-
tors in both the real and imaginary channels, that is, 	MSEr

and 	MSEı . In general, the standard MSE analysis [8] reflects
only error power difference, and is not sufficient to model its
distribution across data channels.

V. JOINT CONSIDERATION OF MSE ANALYSIS AND CMSE
ANALYSIS BY CASE STUDIES

After establishing the advantages of CMSE analysis, it is
natural to ask whether a WL estimator offers individual MSE
performance advantages in both the real and imaginary channels
over its SL counterpart. The analysis in Section IV indicates that
this can be achieved by investigating the relationship between
	MSE and its associated CMSE difference, 	CMSE, of both
WL and SL estimators. For rigour, we next consider three case
studies, covering all the characteristic situations in the complex
domain C.

A. Case #1: Strictly Linear Estimation, Where s = PR−∗r∗

From (21) and (29), this condition immediately results in

	MSE = 	CMSE = 0, (36)

and consequently, from (34) and (35), we have

	MSEr = 	MSEı = 0. (37)

This is as expected, because the optimal weight vector g in
(12), obtained by the WL estimator, vanishes, subject to this
condition, and after a few mathematical manipulations, it can be
shown that h in (11) is equal to h = R−1r, which is consistent
with (17), obtained by the SL estimator. Therefore, the WL
estimator in (2) reduces to the SL one in (1), with identical
MSE performances in both the real and imaginary channels
and the same degree of improperness in the estimation error. A
special case of this condition is the so called jointly circular case
[8], characterised by s = 0 and P = 0, which is precisely the
statistical convenience which is explicitly or implicitly adopted
in traditional estimation problems in the complex domain C.

B. Case #2: A Jointly Improper Pair {y,x} with a Proper
Regressor x, where s �= PR−∗r∗ and P = 0

The above conditions can be simplified to s �= 0 and P = 0,
indicating that the properness is only valid for the regressor x,
characterised by P = 0, and with no assumption imposed on the
estimandum y. The expressions for the optimal weight vectors
h and g in (11) and (12) can now be respectively simplified into

h = R−1r, g = R−∗s∗. (38)

Note that the term h = R−1r remains the same as that in (17),
obtained by using the SL estimator. This stems from the proper-
ness assumption on the regressor x, which implies that x and x∗

are uncorrelated, i.e., E[x(x∗)H ] = E[xxT ] = P = 0. There-
fore, within the WL estimator in (2), the Hilbert subspaces gen-
erated by x and x∗, expressed in (4)–(7), are orthogonal, since
x∗ does not affect the term arising from x, and vice versa. This
leads to the vanishing of the vector a in (29), and explains the
simplifications of (21) and (29), given by

	MSE = sH R−1s, 	CMSE = 0. (39)

Consequently, from (34) and (35), we obtain

	MSEr = 	MSEı =
	MSE

2
=

1
2
sH R−1s. (40)

Therefore, a nonzero vector s necessarily implies that there
still exists an MSE performance advantage when using the WL
estimator instead of the SL one, quantified by sH R−1s, and the
corresponding identical degrees of improperness in both SL
and WL estimators further indicate that this advantage is
equally carried in the real and imaginary channels.

C. Case #3: A Jointly Improper Pair {y,x} with an Improper
Regressor x, where s �= PR−∗r∗ and P �= 0

For this most general case, in order to develop the relation
between	MSE and	CMSE of both the SL and WL estimators,
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we consider a more explicit expression of 	CMSE in (29) by
first evaluating the vector within the {·} operator as

−rH R−1 + [rH − sT R−∗P∗][R − PR−∗P∗]−1

= −rH R−1 [R − PR−∗P∗][R − PR−∗P∗]−1

+ [rH − sT R−∗P∗][R − PR−∗P∗]−1

= −[sT − rH R−1P]R−∗P∗[R − PR−∗P∗]−1

= −[s − PR−∗r∗]T R−∗P∗[R − PR−∗P∗]−1 .
(41)

Now, a substitution of (41) into (29) yields

	CMSE

= −[s − PR−∗r∗]T R−∗P∗[R − PR−∗P∗]−1[s − PR−∗r∗].
(42)

This expression is now much more similar to that for 	MSE in
(21), in the sense that both are a quadratic form of the non-zero
vector s − PR−∗r∗.

Theorem 1: The |	CMSE| < 	MSE, subject to the condi-
tions s �= PR−∗r∗ and P �= 0.

Proof: First, consider a joint diagonalisation of R and P by
using the strong uncorrelating transform (SUT) [39]–[41], given
by

R = CICH , P = CΛCT , (43)

where C is an N × N nonsingular square matrix, the inverse
of which, C−1 , exists and is known as the SUT matrix, I is the
identity matrix and Λ = diag{λ1 , λ2 , . . . , λN } is a diagonal
matrix of the circularity coefficients, whose values satisfy 1 ≥
λ1 ≥ · · · ≥ λN ≥ 0.

By using SUT in (43), the non-zero vector s − PR−∗r∗ in
both (21) and (42) can be expressed as

s − PR−∗r∗ = s − CΛC−∗r∗, (44)

and according to the analysis provided in Appendix A, upon
such joint diagonalisation, the 	MSE in (21) and 	CMSE in
(42) can be expressed as

	MSE = [C−1s − ΛC−∗r∗]H
I

I − Λ2 [C−1s − ΛC−∗r∗],

(45)

	CMSE = [C−1s − ΛC−∗r∗]T
−Λ

I − Λ2 [C−1s − ΛC−∗r∗].

(46)

Remark 4: Note that in (43), the condition λ1 = λ2 = · · · =
λN = 1 holds only when x is real-valued, i.e., maximum noncir-
cular with R = P [39], [42]. In other words, for any complex-
valued random vector x discussed above, the matrix I − Λ2

above is always nonsingular.
Now, by defining a non-zero N × 1 vector e as

e = C−1s − ΛC−∗r∗, (47)

where e = [e1 , e2 , . . . , eN ]T , and by considering (45) and (46),
we have

|	CMSE| =
∣

∣

∣

∣

eT Λ
I − Λ2 e

∣

∣

∣

∣

=
N

∑

n=1

λn

∣

∣e2
n

∣

∣

1 − λ2
n

<

N
∑

n=1

∣

∣e2
n

∣

∣

1 − λ2
n

≤
N

∑

n=1

|en |2
1 − λ2

n

= eH I
I − Λ2 e = 	MSE. (48)

This completes the proof of Theorem 1. �
Corollary 1: Subject to the conditions s �= PR−∗r∗ and

P �= 0, the bound |
[	CMSE]| < 	MSE holds.
Proof: The proof follows directly from Theorem 1, since

|
[	CMSE]| ≤ |	CMSE|. �
Corollary 2: Subject to the conditions s �= PR−∗r∗ and

P �= 0, it follows that 	MSEr > 0 and 	MSEı > 0.
Proof: The proof follows directly from Corollary 1, and (34)

and (35). �

D. Numerical Evaluation

Numerical experiments in a widely linear system identi-
fication setting, as described in (2), were conducted in the
MATLAB programming environment to evaluate theoretical
findings in the above case studies. The widely linear system co-
efficients to be identified were those typically used to describe
frequency-dependent inphase/quadrature (I/Q) imbalance in the
direct-conversion transceivers for wideband wireless systems,
given by [24], [25]

ho =
a + γe−jθb

2
, go =

a − γejθb
2

, (49)

where a = [0.01, 1, 0.01]T and b = [0.01, 1, 0.2]T are respec-
tively the low-pass filter coefficients for the I (real) and Q (imag-
inary) branches of the transceiver, and the gain mismatch and
phase mismatch between the two branches were respectively
γ = 1.05 and θ = 8◦. The desired signal (estimandum) y at
time index k, that is, y(k), was generated as

y(k) = hH
o x(k) + gH

o x∗(k) + q(k), (50)

where the system input x(k) was initially an improper Gaussian
autoregressive AR(1) process, given by

x(k) = 0.9x(k − 1) + n(k), (51)

while the driving noise n(k) was a zero-mean doubly white
improper Gaussian process with variance σ2

n = 1 and comple-
mentary variance σ̃2

n = 0.9. The system noise q(k) in (50) was a
zero-mean doubly white proper Gaussian process, whose vari-
ance σ2

q was chosen so as to give the signal-to-noise ratio at
20 dB. All the simulation results were obtained by averaging
over 10,000 independent trials.

This particular system setting satisfied the conditions of Case
#3 in Section V-C in the sense that {y(k), x(k)} were a jointly
improper pair with an improper regressor x(k). The theoretical
MSE and complementary MSE (CMSE) differences between
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TABLE I
THEORETICAL AND SIMULATED MSE AND CMSE DIFFERENCES BETWEEN THE SL AND WL ESTIMATORS IN DIFFERENT CASE STUDIES

the SL and WL estimators, that is, 	MSE and 	CMSE, were
respectively evaluated by using (21) and (29) and are given
in Table I, while their MSE differences in the real and imagi-
nary channels, that is, 	MSEr and 	MSEı , were subsequently
obtained by using (34) and (35), respectively. It has been jus-
tified by both the theoretical and simulated evaluations that
the inequality |	CMSE| < 	MSE does hold, as proved in
Theorem 1. Consequently, according to Corollary 2, we can
draw the conclusion that the WL estimator has performance
advantages in terms of MSE over its SL counterpart in both
I (real) and Q (imaginary) channels, since 	MSEr > 0 and
	MSEı > 0, as evidenced by both the theoretical and simu-
lated results in Table I.

We next considered a more constrained Case #2 in
Section V-B, whose conditions were satisfied by making the
Gaussian input x(k) to the widely linear system in (50) proper.
In the experiment, this was achieved by using a proper driving
noise q(k) with a vanishing complementary variance σ̃2

n in (51).
As discussed in Section V-B, this further constraint led to the de-
grees of the improperness of both estimators being identical, as
indicated by 	CMSE = 0, and hence, the I and Q channels car-
ried a half of the total MSE advantages of the WL estimator over
the SL one, evidenced by 	MSEr = 	MSEı = 	MSE/2.

In the final stage, we investigated the most stringent condi-
tions, as stated in Case #1 in Section V-A. These conditions were
achieved by further setting b = a = [0.01, 1, 0.01]T , γ = 1 and
θ = 0◦ alongside the proper regressor x(k). In this way, the
WL system identification task in (50) reduced to an SL one.
As expected, in this situation the WL estimator could not offer
any performance advantage as compared with the SL estimator,
evidenced by 	MSE = 	CMSE = 	MSEr = 	MSEı = 0.
Table I shows that in all the case studies considered above, the
simulated results closely matched their theoretical counterparts.

VI. DISCUSSION AND CONCLUSION

Through a joint analysis of the standard MSE and the pro-
posed complementary MSE (CMSE), we have provided new
important and useful interpretations of full second order be-
haviours of the SL and WL estimators, which have been miss-
ing in the open literature. The proposed complementary MSE
(CMSE) analysis has illustrated that the CMSE (or improper-
ness) difference, characterised by 	CMSE, between the SL and
WL estimators, is bounded by its associated MSE difference,
in the sense that |	CMSE| ≤ 	MSE. The equality holds only
when s = PR−∗r∗, a subcategory of which is the so-called
jointly circular case, characterised by s = 0 and P = 0. Sec-
ondly, a joint consideration of the standard MSE analysis and the
proposed CMSE analysis has illustrated that the WL estimator

always yields performance advantages over its SL counterpart
in both the real and imaginary channels, since 	MSEr > 0 and
	MSEı > 0, except for the special condition s = PR−∗r∗ for
which 	MSEr = 	MSEı = 0. Note that this rigourous char-
acterisation cannot be achieved by using the standard MSE anal-
ysis only, due to its insufficient degrees of freedom to describe
both the full second order statistics of data and the parameters
of both SL and WL estimators. Thirdly, since the concept of
improperness is a second order statistical property of random
vectors in division algebras beyond the real domain R, the phys-
ical intuition behind WL and SL estimators, as illustrated by the
proposed analysis, is not limited to the complex domain C and
can be generalised to other hyper-complex domains, e.g., the
quaternion domain H and the octonion domain O. For exam-
ple, the overall MSE performance advantage, along all the four
dimensions in H, of the quaternion WL estimator over its SL
counterpart, has been currently rigourously quantified for the
generality of quaternion-valued Gaussian data, only in the stan-
dard way [43]–[46]. Simulations in the system identification
setting support the analysis.

APPENDIX A
DETAILED DERIVATION OF 	MSE IN (21) AND 	CMSE IN

(42) BY USING SUT

Consider the covariance matrix of the augmented input vector
xa = [xT ,xH ]T , defined as [4], [6], [7]

Ra = E[xaxaH ]

=

[

E[xxH ] E[xxT ]

E[x∗xH ] E[x∗xT ]

]

=
[

R P
P∗ R∗

]

. (52)

Note that its inverse R−a can be expressed as [20]

R−a =
[

A D
D∗ A∗

]

, (53)

where the N × N Hermitian matrix A and the symmetric matrix
D are given by [20]

A = [R − PR−∗P∗]−1 , D = −APR−∗. (54)

Now, by using the Hermitian nature of A and R, as well as the
symmetric nature of D and P, from (54), we further have

D = DT = −R−1PA∗ = −R−1P[R − PR−∗P∗]−∗. (55)
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Therefore, based on (44), (54) and (55), from (21) and (42), we
have

	MSE = [s − CΛC−∗r∗]H A[s − CΛC−∗r∗], (56)

	CMSE = [s − CΛC−∗r∗]T D∗[s − CΛC−∗r∗]. (57)

We can now use the SUT diagonalised covariance and comple-
mentary matrices in (43) to represent Ra in (52), so that

Ra =

[

CICH CΛCT

C∗ΛCH C∗ICT

]

=
[

C 0
0 C∗

]

︸ ︷︷ ︸

Q

[

I Λ
Λ I

] [

CH 0
0 CT

]

︸ ︷︷ ︸

QH

. (58)

In the same spirit, after a few mathematical manipulations, we
have

R−a

=
[

C−H 0
0 C−T

]

︸ ︷︷ ︸

Q−H

[

I −Λ
−Λ I

]

I − Λ2

[

C−1 0
0 C−∗

]

︸ ︷︷ ︸

Q−1

=

[

C−HIC−1 −C−H ΛC−∗

−C−T ΛC−1 C−T IC−∗

]

I − Λ2 , (59)

where C−H and C−T respective denote (C−1)H and (C−1)T .
By comparing (53) and (59), we obtain

A = C−H I
I − Λ2 C−1 , D∗ = C−T −Λ

I − Λ2 C−1 , (60)

and upon substituting these back into (56) and (57), this yields
(45) and (46).
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