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A robust technique for online estimation of the fundamental frequency of both balanced and unbalanced
three-phase power systems is proposed. This is achieved by introducing a widely linear least mean phase
(WL-LMP) frequency estimator, based on Clarke’s transformation and widely linear complex domain
modelling. The proposed method makes use of the full second-order information within the complex-val-
ued system voltage, making it possible to eliminate otherwise unavoidable oscillations in frequency
estimation. In this way, the WL-LMP inherits the advantages of the phase-only approach, such as its high
angle estimation accuracy and immunity to voltage and harmonics variations, while accounting for the
noncircularity of Clarke’s voltage in unbalanced conditions. Simulations over a range of unbalanced
conditions, including those caused by voltage sags and higher order harmonics, and case studies for
real-world unbalanced power systems support the analysis.
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1. Introduction

Frequency is a key variable in power quality control, as its fluc-
tuations reflect the dynamic balance between power generation
and load consumption [1]. The need for its accurate estimation is
even more highlighted through current trends for distributed gen-
eration, which require perfect system synchrony is needed to con-
nect microgrids and regulate islanding. In those scenarios, some
fluctuating loads, such as electric arc furnaces, adjustable speed
drives (ASDs), and nonlinear electric devices, are sources of harm-
ful voltage fluctuations, higher order harmonics, amplitude and
phase noise, and system frequency deviation [2].

To deal with these issues in a timely and efficient way, fast and
accurate frequency estimation has attracted much research effort.
A variety of linear and nonlinear architectures and the associated
signal processing algorithms have been developed for this purpose,
including zero crossing techniques [3,4], discrete Fourier transform
(DFT) based algorithms [5,6], phase-locked loops (PLL) [7,8], com-
plex least mean square (CLMS) adaptive filters [9,10], recursive
Newton-type algorithms [11], and Kalman filters [12,13]. Among
these, adaptive approaches based on the minimisation of mean
square error have proved very useful, owing to their simple struc-
ture, computational efficiency and stability, and robustness in the
presence of noise and harmonic distortions.

There are a number of applications where the mean square er-
ror (MSE) criterion is not the most intuitive solution, particularly
when the information of interest is contained predominantly in
either the amplitude or phase of a complex signal. Such is the case
with frequency estimation in power systems, where the desired
information is primarily in the complex phasor, therefore phase er-
ror in the estimation is more critical than the amplitude error, and
hence the standard MSE based CLMS is not best equipped to deal
with predominantly phase error. To that cause, the recent least
mean phase (LMP) algorithm employs an optimisation criterion
based on the phase error [14], and has proven beneficial in com-
munications applications (DS-CDMA receivers), where the relevant
information is in the phase of the transmitted signals rather than in
the magnitude. A continuous-time version of this algorithm has re-
cently been applied to estimate the power system frequency [15],
and its superiority over the standard CLMS was justified by the fact
that the instantaneous frequency estimation is derived from the
well-established phase angle evolution.

Although current adaptive filtering based frequency estimation
algorithms are second order optimal under normal ‘balanced’
power system conditions, and also in noisy environments and in
the presence of high order harmonics and frequency deviations,
they suffer from performance degradation under unbalanced
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voltage conditions. These occur in the case of different amplitudes
of the three phase voltages, or under a voltage sag in one or two
phases. Their inadequacy can be explained by the fact that current
adaptive filters employ the standard linear model to carry out the
phase angle estimation, thus accounting only for the ‘positive se-
quence’ (with positive frequency) in the ab transform, however,
the ‘negative sequence’ introduced by the system imbalance re-
sults in an inevitable estimation error oscillating at twice the sys-
tem frequency [16].

To eliminate the bias and steady state oscillations encountered
by the LMP algorithm under unbalanced system conditions, in this
work, we embark upon the analysis in [17–19] and introduce the
widely linear LMP (WL-LMP) algorithm, which caters for the non-
circular nature of the complex-valued system voltage under the
unbalanced system conditions. This allows us to rectify the issue
of phase angle bias exhibited by the strictly linear LMP algorithm
in unbalanced system conditions, while for balanced systems we
show that WL-LMP degenerates into the strictly linear LMP.

This paper is organised as follows. In Section 2, an overview of
widely linear estimation is provided. The modelling of unbalanced
three-phase power system is addressed in Section 3. In Section 4,
an overview of the standard LMP frequency estimator and its sub-
optimality under unbalanced power systems are discussed. The
widely linear model, which is second order optimal for the gener-
ality of complex-valued signals, and the proposed unbiased widely
linear LMP (WL-LMP) frequency estimator are introduced in Sec-
tion 5. Section 6 presents the stability analysis of WL-LMP. In Sec-
tion 7, simulations over a range of unbalanced and distorted
conditions, including voltage sags, higher order harmonics, and
real-world unbalanced power systems are provided to illustrate
the unbiasedness of the proposed WL-LMP frequency estimator
and its advantages over the mean squared error based widely lin-
ear complex least mean square (WL-CLMS) frequency estimator
[17]. Finally, Section 8 concludes the paper.

2. Widely linear modelling

Consider a real-valued conditional mean square error (MSE)
estimator ŷ ¼ E½yjx�, which estimates the signal y in terms of an-
other observation x. For zero mean, jointly normal y and x, the
optimal solution is given by the linear model

ŷ ¼ xT w ð1Þ

where w = [w1, . . ., wL]T is the vector of fixed filter coefficients,
x = [x1, . . ., xL]T the regressor vector, and (�)T the vector transpose
operator.

In the complex domain, since both the real and imaginary parts
of complex variables are real, we have

RðŷÞ ¼ E½RðyÞjRðxÞ;IðxÞ�
IðŷÞ ¼ E½IðyÞjRðxÞ;IðxÞ�

ð2Þ

and ŷ ¼ E½RðŷÞjRðxÞ;IðxÞ� þ |E½IðyÞjRðxÞ;IðxÞ�, where the operators
Rð�Þ and Ið�Þ extract respectively the real and imaginary parts of a
complex variable. Upon substituting RðxÞ ¼ ðxþ x�Þ=2 and
IðxÞ ¼ ðx� x�Þ=2|, we arrive at

ŷ ¼ E½RðyÞjx; x�� þ |E½IðyÞjx;x�� ¼ E½yjx;x�� ð3Þ

leading to the widely linear estimator

ŷ ¼ hT xþ gT x� ¼ xT hþ xHg ð4Þ

where h and g are complex-valued coefficient vectors. Such a
widely linear estimator is optimal for the generality of complex sig-
nals. From (4), it is apparent that the covariance matrix Cxx = E[xxH]
alone does not have sufficient degrees of freedom to describe full
second-order statistics [20], and in order to make use of all the
available statistical information, we also need to consider the pseu-
do-covariance matrix Pxx = E[xxT]. Processes whose second-order
statistics can be accurately described by only the covariance matrix,
that is with Pxx = 0, are termed second-order circular (or proper),
such signals have rotation-invariant distributions P½�� for which
P½z� ¼ P½zejh� for h 2 [0, 2p). However, in order to cater for second
order noncircular (or improper) signals (with rotation dependent
distributions), the widely linear model in (4) should be employed,
whereby the regressor vector is produced by concatenating the in-
put vector x with its conjugate x⁄, to give an augmented (2L � 1)-
dimensional input vector xa = [xT, xH]T, together with the
augmented coefficient vector wa = [hT, gT]T. The corresponding
(2L � 2L)-dimensional augmented covariance matrix then becomes

Ca
xx ¼ E½xaxaH� ¼ E

x
x�

� �
½xHxT � ¼

Cxx Pxx

P�xx C�xx

� �
ð5Þ

and contains the full second order statistical information [21–23].
3. Unbalanced three-phase power systems

The three-phase voltages of a power system in a noise-free
environment can be represented in a discrete time form as

vaðkÞ ¼ Va cosðxkDTþ /Þ

vbðkÞ ¼ Vb cos xkDTþ /� 2p
3

� �

vcðkÞ ¼ Vc cos xkDTþ /þ 2p
3

� � ð6Þ

where Va, Vb, Vc are the peak values of each fundamental voltage
component at time instant k;DT ¼ 1

fs
is the sampling interval where

fs is the sampling frequency, / is the initial phase, and x = 2p f is
angular frequency of the voltage signal, with f being the system fre-
quency. For analysis purpose, the time-dependent three-phase volt-
age in (6) is routinely transformed by the orthogonal ab
transformation matrix [24] into a zero-sequence v0 and the direct
and quadrature-axis components, va and vb, as

v0ðkÞ
vaðkÞ
vbðkÞ

2
64

3
75 ¼

ffiffiffi
2
3

r ffiffi
2
p

2

ffiffi
2
p

2

ffiffi
2
p

2

1 � 1
2 � 1

2

0
ffiffi
3
p

2 �
ffiffi
3
p

2

2
664

3
775

vaðkÞ
vbðkÞ
vcðkÞ

2
64

3
75 ð7Þ

where the factor
ffiffiffiffiffiffiffiffi
2=3

p
ensures that the system power is invariant

under this transformation. In balanced system conditions, Va(k),
Vb(k), Vc(k) are identical, giving v0(k) = 0, va(k) = A cos (xkDT + /)
and vbðkÞ ¼ A cos xkDTþ /þ p

2

� �
. The amplitude, A ¼

ffiffi
6
p
ðVaþVbþVcÞ

6 , is
constant while va(k) and vb(k) represent the orthogonal coordinates
of a point whose position is time variant at a rate proportional to
the system frequency. In practise, normally only the va and vb are
used to form the complex system voltage v(k) (known as Clarke’s
transformation [25]), given by

vðkÞ ¼ vaðkÞ þ |vbðkÞ ¼ Aejðxkþ/Þ ð8Þ

Fig. 2(a) illustrates that for a balanced system state, the probability
density function of v(k) is rotation invariant (circular), since v and
vejh have the same distribution for any real h. Statistically, this
means that v(k) is second order circular (proper) and with equal
powers in va and vb, and thus the covariance matrix, C = E[vvH], is
sufficient to fully describe the second order statistics, while the
pseudocovariance matrix, P = E[vvT] = 0, vanishes as discussed in
Section 2. However, when the three-phase power system deviates
from its nominal condition, such as when the three channel volt-
ages exhibit different levels of dips or transients, Va, Vb, Vc are not
identical and the complex ab voltage becomes
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vðkÞ ¼ vaðkÞ þ |vbðkÞ ¼ AejðxkDTþ/Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
AðkÞ

þBe�jðxkDTþ/Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
BðkÞ

ð9Þ

where

A ¼
ffiffiffi
6
p
ðVa þ Vb þ VcÞ

6

B ¼
ffiffiffi
6
p
ð2Va � Vb � VcÞ

12
� |

ffiffiffi
2
p
ðVb � VcÞ

4

ð10Þ

This expression emerged only recently [17–19] to jointly model
both the balanced and unbalanced systems, and should be used in
time-varying environments. In this way, for balanced system condi-
tions, Va = Vb = Vc and B = 0, for which the standard model with a cir-
cular voltage distribution is adequate, whereas for unbalanced
conditions, B – 0, causing the samples of v(k) generated from (9)
not to be allocated on a circle with a constant radius, and thus a
rotation dependent (noncircular) distribution of v(k). In this case,
the pseudocovariance matrix does not vanish while the covariance
matrix does not have sufficient degrees of freedom to describe full
second-order statistics. Hence, standard, strictly linear, signal pro-
cessing in the complex domain C, based solely on the covariance
matrix is suboptimal for unbalanced systems, and widely linear
modelling based on both the covariance and pseudocovariance ma-
trix should be used in order to make use of all the available second-
order information. Some examples of circular and noncircular (cf.
balanced and unbalanced) system voltages are given in Fig. 2.

4. Least mean phase (LMP) based frequency estimation method
and its suboptimality in unbalanced system conditions

The idea behind the LMP adaptive estimation is to minimise the
cost function based on mean square phase angle error, given by
Ref. [15,14]

J ðkÞ ¼ e2ðkÞ ð11Þ

where the phase error is calculated as

eðkÞ ¼ \vðkþ 1Þ � \v̂ðkþ 1Þ ð12Þ

and the symbol \(�) denotes the phase angle operator. Within the
standard, strictly linear, LMP, the filter output v̂ðkþ 1Þ is estimated
in a strictly linear manner as

v̂ðkþ 1Þ ¼ vðkÞwðkÞ ð13Þ

where w(k) is the filter weight coefficient, and is updated in a sto-
chastic gradient manner as [14]

wðkþ 1Þ ¼ wðkÞ � lrwJ ðkÞ ¼ wðkÞ þ |leðkÞv�ðkÞ
½vðkÞwðkÞ�� ð14Þ

where l is the step-size which controls the convergence speed and
steady state estimation accuracy, and is set to a small constant.

Note that under balanced system conditions, based on (8) the
system voltage v(k) evolves as

vðkþ 1Þ ¼ vðkÞe|xDT ð15Þ

Upon combining with (13), the LMP frequency estimator is derived
from the filter weight coefficient w(k), in order to track the evolu-
tion of the rotational term e|xDT in (15), that is [15]

f̂ ðkÞ ¼ 1
2pDT

tan�1 IðwðkÞÞ
RðwðkÞÞ

� �
ð16Þ

The geometric analysis in [14] verifies that the term |
½vðkÞwðkÞ�� within

the weight update in (14) aims to correct the error in the phase of
the estimated signal by rotating the estimate towards the desired
signal in a perpendicular direction. This allows us to track the
phase/frequency variations in the desired signal in a faster and
more efficient manner than using the conventional CLMS, which
is designed to minimise the mean square magnitude error.

However, in critical cases when the balanced power system
deviates from its nominal condition, the expression in (8) is inad-
equate and the system voltage v(k) is only accurately expressed
by Eq. (9). Then, a direct use of the strictly linear model would lead
to

v̂ðkþ 1Þ ¼ vðkÞwðkÞ ¼ ðAejðxkDTþ/Þ þ Be�jðxkDTþ/ÞÞwðkÞ ð17Þ

Notice that in the steady state, v̂ðkþ 1Þ � vðkþ 1Þ, resulting in

wðkÞ � vðkþ 1Þ
vðkÞ � AejðxkDTþ/Þe|xDT þ Be�jðxkDTþ/Þe�|xDT

AejðxkDTþ/Þ þ Be�jðxkDTþ/Þ

�
A
B e|2ðxkDTþ/Þe|xDT þ e�|xDT

A
B e|2ðxkDTþ/Þ þ 1

� e|xDT þ e�|xDT � e|xDT

A
B e|2ðxkDTþ/Þ þ 1

ð18Þ

where A
B is an unknown but nonzero parameter, indicating that the

second term on the right hand side of (18) is not negligible, and re-
sults in

wðkÞ ¼ w kþ 1
2fDT

� �
ð19Þ

showing that when the strictly linear filter is applied to unbalanced
system conditions, the term w(k) is oscillating at twice of the sys-
tem frequency. From (16), this oscillation further propagates into
the estimated frequency f̂ ðkÞ, due to the monotonicity of tan�1(�).

5. The Widely Linear LMP (WL-LMP) based frequency estimation

To eliminate the inevitable oscillation in system frequency esti-
mation encountered by the standard phase angle calculation used
in the strictly linear LMP, we propose to employ the widely linear
model in (4) in conjunction with the LMP cost function in order to
introduce the WL-LMP algorithm. We start from a general adaptive
filter, and proceed to perform voltage prediction in the context of
power system frequency estimation as a particular (scalar) case.

5.1. The widely linear LMP adaptive filter

Consider the output of a widely linear adaptive filter in the
form,

yðkÞ ¼ xTðkÞhðkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
standard update

þ xHðkÞgðkÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
conjugate update

ð20Þ

where h(k) and g(k) are the L � 1 weight vectors of filter coefficients
for standard and conjugate parts respectively, and x(k) denotes the
(L � 1)-dimensional input vector, defined as x(k) = [x(k), x(k � 1),
. . ., x(k � L + 1)]T. The squared phase angle based cost function that
we wish to minimise is given by

J ðkÞ ¼ j\dðkÞ � \yðkÞj2 ¼ e2ðkÞ ð21Þ

where d(k) is the desired signal, and the update of both the standard
and conjugate weight coefficients can be obtained by using steepest
descent as

hðkþ 1Þ ¼ hðkÞ � lrhJ ðkÞ ð22Þ
gðkþ 1Þ ¼ gðkÞ � lrgJ ðkÞ ð23Þ

where the gradient rgJ ðkÞ can be derived as

rgJ ðkÞ ¼
@jeðkÞj2

@g�ðkÞ ¼ 2eðkÞ @eðkÞ
@g�ðkÞ ð24Þ

since

eðkÞ ¼ \dðkÞ � \yðkÞ ¼ \dðkÞ þ \y�ðkÞ ð25Þ
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and

y�ðkÞ ¼ xHðkÞh�ðkÞ þ xTðkÞg�ðkÞ ð26Þ

Hence

@eðkÞ
@g�ðkÞ ¼

@\y�ðkÞ
@g�ðkÞ ¼

@ arctan Iðy�ðkþ1ÞÞ
Rðy�ðkþ1ÞÞ


 �
� p


 �
@g�ðkÞ

¼ 1

1þ Iðy�ðkÞÞ
Rðy�ðkÞÞ


 �2 �
Rðy�ðkÞÞ @Iðy�ðkÞÞ

@g�ðkÞ � Iðy�ðkÞÞ @Rðy�ðkÞÞ
@g�ðkÞ

R2ðy�ðkÞÞ
ð27Þ

Using the following relations

Rðy�ðkÞÞ ¼ ðy
�ðkÞ þ yðkÞÞ

2
ð28Þ

Iðy�ðkÞÞ ¼ ðy
�ðkÞ � yðkÞÞ

2|
ð29Þ

and substituting (26) into (27), we obtain

@eðkÞ
@g�ðkÞ ¼ �

|xðkÞ
2ðxTðkÞhðkÞ þ xHðkÞgðkÞÞ�

ð30Þ

Finally, the weight update for the conjugate filter coefficient g(k)
becomes

gðkþ 1Þ ¼ gðkÞ þ |leðkÞxðkÞ
ðxTðkÞhðkÞ þ xHðkÞgðkÞÞ� ð31Þ

In a similar way, the weight update of the coefficient vector h(k) can
be obtained as

hðkþ 1Þ ¼ hðkÞ � lrhJ ðkÞ ¼ hðkÞ � 2eðkÞ @eðkÞ
@h�ðkÞ

¼ hðkÞ þ |leðkÞx�ðkÞ
ðxTðkÞhðkÞ þ xHðkÞgðkÞÞ� ð32Þ

The expressions (31) and (32) describe the proposed widely linear
LMP (WL-LMP) algorithm in the vector form, designed for phase an-
gle error based adaptive estimation of the generality of complex
signals.

For instantaneous frequency estimation in power systems, we
need to use a scalar version of WL-LMP, given by

v̂ðkþ 1Þ ¼ vðkÞhðkÞ þ v�ðkÞgðkÞ ð33Þ

where from (31) and (32) the filter coefficient updates become

hðkþ 1Þ ¼ hðkÞ þ |leðkÞv�ðkÞ
ðvðkÞhðkÞ þ v�ðkÞgðkÞÞ�

gðkþ 1Þ ¼ gðkÞ þ |leðkÞvðkÞ
ðvðkÞhðkÞ þ v�ðkÞgðkÞÞ�

ð34Þ

with eðkÞ ¼ \vðkþ 1Þ � \v̂ðkþ 1Þ.

5.2. A WL-LMP based frequency estimator in power systems

Following on the analysis in [17], by substituting (9) into (33),
the estimate of Clarke’s voltage v̂ðkþ 1Þ in (33) can be expressed
as

v̂ðkþ 1Þ ¼ AhðkÞe|ðxkDTþ/Þ þ BhðkÞe�|ðxkDTþ/Þ

þ A�gðkÞe�|ðxkDTþ/Þ þ B�gðkÞe|ðxkDTþ/Þ

¼ ðAhðkÞ þ B�gðkÞÞe|ðxkDTþ/Þ þ ðA�gðkÞ
þ BhðkÞÞe�|ðxkDTþ/Þ ð35Þ

while from (9) the expression for v(k + 1) can be re-written as

vðkþ 1Þ ¼ Ae|xDTe|ðxkDTþ/Þ þ Be�|xDTe�|ðxkDTþ/Þ ð36Þ
At the steady state, the first term on the right hand side (RHS) of
(36) can be estimated approximately by its counterpart in (35),
hence, the term e|xDT containing the frequency information is
governed by

e|x̂DT ¼ AhðkÞ þ B�gðkÞ
A

ð37Þ

Comparing the second terms on the RHS of (35) and (36), the
evolution of e�|xDT can be expressed as

e�|x̂DT ¼ A�gðkÞ þ BhðkÞ
B

ð38Þ

Upon applying the complex conjugation, we obtain

e|x̂DT ¼ Ag�ðkÞ þ B�h�ðkÞ
B�

ð39Þ

which allows us to combine (37) and (39), to yield

e|x̂DT ¼ hðkÞ þ B�

A
gðkÞ ð40Þ

and

e|x̂DT ¼ h�ðkÞ þ A
B�

g�ðkÞ ð41Þ

As shown in (10), the coefficient A is real-valued whereas B is com-
plex-valued, and thus B�

A ¼ B
A

� ��. Since (40) should be equal to (41),
using aðkÞ ¼ B

A

� �� we can find a(k) by solving the following quadratic
equation with complex-valued coefficients

gðkÞa2ðkÞ þ ðhðkÞ � h�ðkÞÞaðkÞ � g�ðkÞ ¼ 0 ð42Þ

The discriminant of this quadratic equation is given by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhðkÞ � h�ðkÞÞ2 þ 4jgðkÞj2

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I2ðhðkÞÞ þ jgðkÞj2

q
ð43Þ

Since a(k) is complex-valued, the discriminant is negative, and the
two roots can be found from

a1ðkÞ ¼
�|IðhðkÞÞ þ |

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2ðhðkÞÞ � jgðkÞj2

q
gðkÞ

a2ðkÞ ¼
�|IðhðkÞÞ � |

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2ðhðkÞÞ � jgðkÞj2

q
gðkÞ

ð44Þ

while based on (40), the phasor e|x̂DT is estimated either by using
h(k) + a1(k)g(k) or h(k) + a2(k)g(k). Since the system frequency is
far smaller than the sampling frequency, the imaginary part of
e|x̂DT is positive, thus excluding the second solution based on
a2(k). The system frequency f̂ ðkÞ is therefore estimated in the form

f̂ ðkÞ ¼ 1
2pDT

tan�1 IðhðkÞ þ a1ðkÞgðkÞÞ
RðhðkÞ þ a1ðkÞgðkÞÞ

� �
ð45Þ

The above equation represents a generic widely linear extension of
the standard, strictly linear, frequency estimation method and sim-
plifies into the strictly linear LMP frequency estimator, given in
(16), when the system is balanced (g(k) = 0).

5.3. Geometric interpretation

Fig. 1 provides a geometric interpretation of the frequency esti-
mation procedure employed by the proposed WL-LMP algorithm.
In unbalanced system conditions, where B – 0, the system voltage
v(k) comprises of two components, as shown in (9). The first term
A(k) rotates anticlockwise at the rate of the angular system fre-
quency x, whereas the second term B(k), rotates clockwise at the
same rate. The original LMP algorithm uses (12) and (13) to track
the phase angle difference /L between v(k) and v(k + 1), resulting
in unavoidable estimation oscillations, as shown in (19). The



Fig. 1. Geometric illustration of the phase angle tracking of the noncircular
complex-valued system voltage v(k) by the strictly linear LMP and the proposed
WL-LMP. The phasor A(k) rotates counterclockwise, whereas the phasor B(k) rotates
clockwise.
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proposed WL-LMP algorithm solves this problem by using (37) and
(39) to track the phase differences between A(k) and A(k + 1) and
between B(k) and B(k + 1), both containing the information about
the exact angular system frequency x, and leading to an unbiased
and minimum variance frequency estimator, proposed in (45), for
both balanced and unbalanced power systems.

6. Stability analysis of the WL-LMP frequency estimator

We next provide convergence and stability analysis of the pro-
posed WL-LMP frequency estimator. Notice that for the LMP class
of filters, the filter output is also contained in the denominator of
the weight update, as shown in (14) and (34), so that the LMP
has an inherent feedback. The stability bound for the step-size is
then obtained following the approaches in [26,27]. To this end,
the weight updates of the proposed algorithm, given in (31) and
(32), are first written in a more compact form as

waðkþ 1Þ ¼ waðkÞ þ |leðkÞva�ðkÞ
ðvaTðkÞwaðkÞÞ� ð46Þ

where wa(k) = [h(k), g(k)]T and va(k) = [v(k), v⁄(k)]T are respectively
the augmented weight and input vectors. We next consider the a
priori and the a posteriori estimation errors, given respectively by

êðkÞ ¼ \vðkþ 1Þ � \vaTðkÞwaðkÞ ð47Þ
�eðkÞ ¼ \vðkþ 1Þ � \vaTðkÞwaðkþ 1Þ ð48Þ

To estimate the range of l which ensures that j�eðkÞj2 < jêðkÞj2 in the
sense of mean square convergence, consider the first order Taylor
series expansion (TSE) of j�eðkÞj2 around jêðkÞj2, given by Ref. [28,26]

j�eðkÞj2 ¼ jêðkÞj2 þ DwaHðkÞ @jêðkÞj
2

@wa�ðkÞ ð49Þ

where

DwaðkÞ ¼ waðkþ 1Þ �waðkÞ ¼ |lêðkÞva�ðkÞ
ðvaTðkÞwaðkÞÞ�

ð50Þ

and the gradient term
@jêðkÞj2

@wa�ðkÞ ¼
�|êðkÞva�ðkÞ
ðvaTðkÞwaðkÞÞ�

ð51Þ

In this way, the TSE in (49) can be rewritten as

j�eðkÞj2 ¼ jêðkÞj2 � ljêðkÞj2kvaðkÞk2
2

jvaTðkÞwaðkÞj2

¼ 1� lkvaðkÞk2
2

jvaTðkÞwaðkÞj2

 !
jêðkÞj2 ð52Þ

To guarantee j�eðkÞj2 < jêðkÞj2, and thus a stable filtering operation,
we need to ensure that

j�eðkÞj2 ¼ 1� lkvaðkÞk2
2

jvaTðkÞwaðkÞj2

 !k

jêð0Þj2 �!k!1
0 ð53Þ

that is, during the weight evolution we must ensure that

1� lkvaðkÞk2
2

jvaTðkÞwaðkÞj2

�����
����� < 1 ð54Þ

thus giving the stability bound on the step-size in the form

0 < l <
2jvaTðkÞwaðkÞj2

kvaðkÞk2
2

ð55Þ
7. Simulations

In the simulations, we considered frequency estimation under
several unbalanced operating conditions (voltage sags), typically
encountered by real world power systems. A voltage sag is referred
to as a short-duration (up to a few seconds) reduction in voltage
magnitude, whereby the the three phase-angles also deviate from
their nominal positions. Voltage sags are mainly triggered by a
short-term increase in load current, and may occur due to motor
starting, transformer inrush, short circuits, or fast reclosing of cir-
cuit breakers [29]. Despite their short duration, such events can
cause serious problems for a wide range of equipment [30] and
also cause difficulties in standard phase angle calculation, resulting
in oscillatory estimation artifacts at twice the system frequency,
experienced by conventional PLL and strictly linear adaptive filters
[16,17].

To quantify the characteristics of voltage sags, we here follow
the phasor representation used in [29], and select two typical sags,
known as Type C and Type D sags, for illustration purpose. A Type C
sag results from a phase-to-phase fault, causing two phase voltages
to move towards each other whereas the third phase voltage re-
mains unchanged. Assuming that the fault occurs between the
phases vb and vc, we have

Va ¼ 1; Vb ¼ �
1
2
� |

ffiffiffi
3
p

c
2

; and Vc ¼ �
1
2
þ |

ffiffiffi
3
p

c
2

ð56Þ

whereas in a Type D voltage sag all the three phases experience a
voltage drop in the following way

Va ¼ c; Vb ¼ �
c
2
� |

ffiffiffi
3
p

2
; and Vc ¼ �

c
2
þ |

ffiffiffi
3
p

2
ð57Þ

For more information on the characterisation of voltage sags and
their detection, we refer to [31,32].

Fig. 2 illustrates the circularity properties corresponding to var-
ious system imbalances. To illustrate the suitability of the pro-
posed WL-LMP frequency estimator for unbalanced system
conditions, a comparative performance analysis was conducted
against the original LMP and the conventional mean square error
based WL-CLMS algorithm [33]. Simulations in the Matlab pro-
gramming environment employed a sampling frequency of
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anticlockwise as the time evolves.
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1000 Hz with the nominal fundamental power system frequency
set to f = 50 Hz1. The step-size was kept at l = 0.01 for all the algo-
rithms considered and the characteristic voltage c was set to be 0.7
for the voltage sag modelling. The degree of noncircularity in differ-
ent unbalanced conditions was quantified using the noncircularity
index g, given by Ref. [22]

g ¼ jq
2
v j

r2
v

ð58Þ

Thus, the values of the noncircularity index g lie in the interval [0,
1], with the value 0 indicating that the complex-valued system volt-
age v(k) is perfectly circular (balanced conditions), otherwise indi-
cating a second-order noncircular v(k) (unbalanced conditions).

7.1. Synthetic benchmark cases

In the first set of simulations, the simulated unbalanced power
system experienced a Type C voltage sag. The noncircularity index
of the complex-valued system voltage v(k) obtained by the ab
transformation of the three-phase voltage was g = 0.3423, and its
noncircular distribution is illustrated by the geometric view of
the distribution given in Fig. 2(b). The frequency estimation using
all the algorithms, whose frequency carrying parameter was ini-
tialised at 50.1 Hz, is illustrated in Fig. 3. The strictly linear LMP
frequency estimator experienced unavoidable oscillation error at
twice the system frequency, which conforms with the analysis in
(19), due to a breakdown of the strictly linear model employed
in the phase angle calculation. Both the WL-LMP and WL-CLMS
algorithms were able to eliminate this problem, leading to unbi-
ased estimation and faster tracking performance achieved by the
WL-LMP over WL-CLMS, a result of the superiority of phase angle
error based cost function in the context of frequency estimation.
1 We have observed that for both LMP and the proposed WL-LMP frequency
estimators, the minimum sampling frequency should be about 4 times the system
frequency we wish to track, and that there is no upper bound on the sampling
frequency.
It is well known in the adaptive filtering literature that the step
size l controls the tradeoff between the convergence speed and
estimation accuracy in the steady state; in this way a smaller step
size l leads to better steady state performance and slower conver-
gence, whereas a larger step-size results in faster convergence but
larger steady-state estimation error [34]. As shown in Fig. 3, with
l = 0.01, the proposed WL-LMP algorithm needs around 0.5 s,
equivalently 500 samples (0.5 s � 1 kHz), to converge. In order to
speed up the convergence and hence to ensure that fewer samples
are required, a larger step-size l can be used at a cost of higher
estimation variance. However, we should note that the upper
bound on the step-size l to ensure the stability of the proposed
WL-LMP is bounded by Eq. (55).

In the next stage, statistical performances of all the considered
algorithms were tested in noisy environments, providing bias and
variance analysis of the LMP frequency estimates. Fig. 4 illustrates
the statistical bias and variance performance of all the considered
algorithms, when applied to frequency estimation under the
unbalanced Type C sag and against different levels of noise. The re-
sult was obtained by averaging 100 independent trails. Observe
that both the bias and estimation variance of the strictly linear
LMP algorithm were high and were not sensitive to the level of
noise. This can be explained by the fact that, compared with noise
contribution to the estimation error, the unavoidable bias and
oscillation resulting from the inadequacy of strictly linear models,
were dominant. The asymptotically unbiased nature of the widely
linear model based WL-CLMS and WL-LMP can be observed in the
high SNR region in Fig. 4(a), where the enhanced immunity to
noise of the proposed WL-LMP as compared with the WL-ACLMS
can also be observed. In Fig. 4(b), an improvement of around
2.5 dB in the estimation variance was achieved for different levels
of noise by employing the phase error based cost function to train
the widely linear adaptive filter.

Next, the performances of the widely linear frequency
estimators under a more dynamically complex Type C voltage
sag was addressed, whereby the unbalanced system experienced
a slow amplitude modulation at 1 Hz, given by Va(k) = 1 + 0.15
sin (2pkDT), Vb(k) = 1 + 0.1 sin (2pkDT), and Vc(k) = 1 + 0.1 sin
(2pkDT), resulting in a noncircular complex-valued system voltage
v(k) with a degree of noncircularity g = 0.3444. Fig. 5 shows that
due to the breakdown of the implicit assumption that exists in
standard frequency estimation methods, that is, the magnitude of
the complex-valued system voltage v(k) is time-invariant, both
WL-CLMS and WL-LMP were subject to an oscillatory estimation
error. However, the proposed WL-LMP tracked the true system
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frequency more accurately exhibiting a maximum 0.03 Hz estima-
tion deviation as compared with 0.25 Hz estimation deviation
experienced by the WL-CLMS.

To examine robustness to contamination by higher order har-
monics, the unbalanced system under Type C voltage sag was next
polluted by 20% 3rd, 10% 5th, and 5% 7th harmonics of the funda-
mental frequency. The voltage waveforms of this highly distorted
three-phase voltage are shown in Fig. 6(a), giving a noncircular sys-
tem voltage v(k), whose distribution is given in Fig. 2(c), with
g = 0.342. The proposed WL-LMP achieved better performance
and with smaller error oscillation as compared with the magni-
tude-phase WL-CLMS algorithm, as shown in Fig. 6(b).

Finally, the performances of all the algorithms were compared
for the cases of frequency decay and rise when an unbalanced
power system experienced a Type D voltage sag. In Fig. 7(a), the
50 Hz fundamental frequency of the system arose and decayed at
a rate of 2 Hz/s. The LMP was biased and with large estimation var-
iance, whereas the proposed WL-LMP showed very fast frequency
tracking ability as compared with WL-CLMS, and its superior esti-
mation accuracy over WL-CLMS is illustrated in Fig. 7(b).
7.2. Real world case study

In the last set of simulations, we considered a real-world prob-
lem, where unbalanced three-phase voltages were recorded at a
110/20/10 kV transformer station. The REL 531 numerical line dis-
tant protection terminal, produced by ABB Ltd., was installed in the
station and was used to monitor changes in the three phase ground
voltages. The measured three phase-ground voltages with a system
frequency of 50 Hz were sampled at 1 kHz and were normalised
with respect to their normal peak voltage values. Two case studies
were conducted. In the first case, as shown in Fig. 8(a), initially, the
three phases were in their normal and balanced condition, lasting
for around 0.03 s, and all three algorithms tracked the system fre-
quency during this period in a similar manner. However, after
0.03 s, phase vb experienced an earth fault, causing a 66.8% voltage
drop and 73.7% and 55.2% voltage swells in phases va and vc respec-
tively. This gave the ab transformed system voltage the degree of
noncircularity of g = 0.109, with a noncircularity diagram shown
in Fig. 2(d). In the second case study, a more critically unbalanced
condition was investigated. As shown in Fig. 9(a), at around 0.05 s,
both phases va and vc experienced 137.1% and 122.8% voltage
swells, respectively, whereas phase vb experienced a 85.5% voltage
drop, giving the system voltage a degree of noncircularity of
g = 0.241. As shown in both Fig. 8(b) and Fig. 9(b), the strictly linear
LMP suffered large frequency estimation oscillations under the
unbalanced conditions, whereas the proposed WL-LMP outper-
formed the WL-CLMS exhibiting both a smoother transient and a
smaller estimation variance in the steady state.
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8. Conclusion

We have introduced a robust widely linear least mean phase
(WL-LMP) technique for real-time estimation of the fundamental
frequency in unbalanced and distorted power systems. This has
been achieved by combining a phase error based cost function with
the widely linear estimation model. We have shown that the con-
jugate part within the widely linear model corrects the phase angle
calculation error exhibited by the strictly linear model, which suf-
fers from unavoidable estimation bias and oscillation issues under
unbalanced system conditions. The proposed unbiased frequency
estimator, based on WL-LMP, has been shown to outperform the
error power based WL-CLMS frequency estimator. Simulations
over a range of unbalanced conditions, including voltage sags,
the presence of higher order harmonics, and for real-world case
studies support the analysis.
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