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Abstract. Although the emergence of multivariate signals in natural sciences and engineering has emphasised the problem of
signal representation, that is, whether signals are by their nature a set of independent observations or multidimensional vectorial
quantities, little research has been conducted on detecting the true nature of such signals. It remains unclear, therefore, when the
complex-valued approach is to be preferred over the bivariate one, thus, clearly indicating the need for a criterion that addresses
this issue. To this cause, we propose a nonparametric statistical test, based on the local predictability in the complex-valued
phase space, which discriminates between the bivariate and complex-valued nature of time series. This is achieved in the
well-established surrogate data framework. Results on both benchmark and real-world IPIX radar data support the approach.

1. Introduction

Recently, the potential of the use of complex-valued
signals, as compared to their real-valued bivariate coun-
terparts, has been highlighted in several branches of
physics and digital signal processing (DSP). Conse-
quently, considerable research effort has been directed
toward extensions of nonlinear modelling and filter-
ing approaches to cater for complex-valued signals [1–
3], the applicability of which has been demonstrated,
among others in radar, sonar and phase-only DSP. In
practice, the two-dimensional case is frequently en-
countered and the problem boils down to whether the
signals are bivariate scalars or they have full complex-
valued (vectorial) representations. In the latter case,
a complex-valued approach is likely to exhibit perfor-
mance advantages over the real-valued bivariate one.

In the field of nonparametric data analysis, the sur-
rogate data method, as originally proposed by Theiler
et al. [4], has evolved into a standard technique to test
for the presence of nonlinearity in a real-valued time
series. In disciplines dealing with nonlinear phenom-
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ena, such tests are indispensable, since, in principle,
signal nonlinearity should be assessed prior to the util-
isation of nonlinear models, the parameters of which
are more mathematically involved to determine than
those of linear models. Similar reasoning holds for the
use of complex-valued signals and models, which re-
quire more intricate mathematical description, against
the real-valued bivariate ones, as the latter effectively
require processing on two separate channels. How-
ever, although complex-valued signals are widely used
in communications, physics, and biomedical and envi-
ronmental signal processing, little is known on how to
assess the bivariate real-valued versus fully complex-
valued nature of such signals, and the common line of
thought is based on rather empirical observations. A re-
liable, statistical test for assessing the complex-valued
nature of a signal is still lacking. We therefore aim at
providing a deeper insight into how to detect whether an
optimal representation of a two-dimensional signal is
via its complex-valued representation or as a bivariate
scalar.

To that cause, we first extend the surrogate data
methodology [4–6] from the nonlinearity analysis of
scalar time series toward complex-valued signals (Sec-
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tion 2). Within this context, a null hypothesis of a
complex-valued linear system underlying the time se-
ries under study is utilised. Next, based upon the con-
cept of the recently introduced Delay Vector Variance
(DVV) technique for quantifying nonlinearity in a sig-
nal [7,8], a novel methodology is proposed for charac-
terising (Section 3), and statistically testing (Section 4)
the complex-valued nature of a time series. Simula-
tions, which support the analysis, are performed on
both benchmark and real-world complex-valued data.

2. Surrogate data

The surrogate data method computes test statistics
on the ‘original’ time series (i.e., the time series under
study) and a number of so-called ‘surrogates’, which
are realisations of a certain null hypothesis,H0. These
are further used for estimating the distribution of the test
statistic under the assumption ofH0. In this section, a
surrogate data generation procedureknown as the (real-
valued) iterative Amplitude Adjusted Fourier Trans-
form (iAAFT) method [5,6] is shortly introduced, after
which an extension of this method toward complex-
valued signals is proposed.

2.1. Real-Valued iAAFT

The iAAFT method generates a surrogate for a real-
valued (univariate) time series under the null hypothe-
sis that the original time series is generated by a Gaus-
sian linear process, followed by a possibly nonlinear,
static (memoryless) observation function,h(·). The
surrogates have empirical signal distributions identical
to that of the original signal, and amplitude spectra that
are approximately identical, or vice versa. Let{|Sk|}
be the Fourier amplitude spectrum of the original time
series,s, and{ck} the (signal value) sorted version of
the original time series. Note thatk denotes the fre-
quency index for the amplitude spectrum, whereas for
a time series, it denotes the time index. At every itera-
tion j of the algorithm, two time series are calculated,
namelyr(j), which has a signal distribution identical
to that of the original, ands(j), which has an amplitude
spectrum identical to that of the original. The iAAFT
iteration starts withr(0) a random permutation of the
time samples of the original time series, and can be
described by:
Repeat:

1. compute the phase spectrum ofr (j−1) → {φk}

2. computes(j) as the inverse transform of{|Sk|
exp(iφk)}

3. computer(j) by rank-orderings(j) to match{ck},

i.e., sort{s(j)
k } in ascending order and setr

(j)
k =

c
rank(s

(j)
k

)

Until error convergence.
The modelling error can be quantified as the mean-

square-error (MSE) between{|Sk|} and the amplitude
spectrum ofr(j). The algorithm was extended toward
the multivariate case in [6], yielding surrogates that re-
tain not only the amplitude spectra of the variates sep-
arately, but also the cross-correlation spectrum. This
was achieved by modifying the phase adjustment step
(step 1): the cross-correlation between the variates can
be retained if the relative phases between the frequency
components remains intact. For further details, we
refer to [6]. Figure 1(B) shows a real-valued bivari-
ate iAAFT realisation of the Ikeda Map. The chaotic,
complex-valued Ikeda Maps in this study are generated
from:

zk+1 = a + b zk exp
(

i

(
φ − c

1 + |zk|2
))

, (1)

with a = 1, b = 0.9, φ = 0.4 andc = 6 (Fig. 1(A)
shows an example realisation).

2.2. Complex-Valued iAAFT

A straightforward extension of the univariate iAAFT-
method toward complex-valued signals would be to re-
place the desired amplitude spectrum by the amplitude
spectrum of the original complex-valued signal (step 2
in the iAAFT-iteration). In the next step, the desired
signal distribution needs to be imposed on the surro-
gate in the time domain (step 3 in the iAAFT-iteration).
This can be achieved by applying the rank-ordering
procedure to the real and imaginary parts of the signal
separately. However, in practise, for complex-valued
signals, it is more important to impose equal empirical
distributions on the moduli of the complex-valuedsam-
ples, rather than on the real and imaginary parts sep-
arately. Therefore, we subsequently perform a rank-
ordering procedure on the moduli, so as to match the
moduli of the original time series. The underlying null
hypothesis is that the time series is generated by a lin-
ear complex-valued process, driven by Gaussian white
noise, followed by a (possibly nonlinear) static obser-
vation function,h(·), which operates on the moduli of
the complex-valued time samples. We propose the fol-
lowing complex-valued iAAFT (CiAAFT) procedure,
using the same conventions as in the iAAFT case:
Repeat:
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1. compute the phase spectrum ofr (j−1) → {φk}
2. computes(j) as the inverse transform of{|Sk|

exp(iφk)}
3. rank-order the real and imaginary parts ofr (j) to

match the real and imaginary parts of{ck}
4. rank-order the moduli ofr (j) to match the mod-

ulus distribution of{ck}
Until error convergence.

The iteration is started withr(0) a random permuta-
tion of the complex-valued time samples. Convergence
can be monitored as the MSE computed between{|Sk|}
and the amplitude spectrum ofr(j). Simulations sug-
gest that the iteration can be terminated when the MSE
decrement is smaller than10−5, which typically occurs
after fewer than 100 iterations. Figure 1(C) shows a
CiAAFT realisation of the Ikeda Map, for which the er-
ror curve is shown in Fig. 1(D) (the iterative procedure
in this case would terminate after 95 iterations).

3. Delay Vector Variance

We have used a complex-valued variant of the De-
lay Vector Variance (DVV) method [8] for character-
ising the time series based on its local predictability
in phase space over different scales. The advantage
of the DVV method is that it yields a representation
which captures several aspects of a time series simulta-
neously (deterministic/stochastic nature, nonlinearity,
geometric structure in phase space), and that it can be
easily extended toward the complex-valued case. For a
given embedding dimensionm and resulting time delay
embedding representation (i.e., a set of delay vectors
(DV), x(k) = [xk−m, . . . , xk−1]T ), a measure of un-
predictability,σ∗2(rd), is computed for a standardised
range of degrees of locality,rd:

– The mean,µd, and standard deviation,σd, are
computed over all pairwise Euclidean distances
between DVs, ‖x(i) − x(j)‖ =√∑m

n=1 |xi−n − xj−n|2 (i �= j).
– The setsΩk(rd) are generated such thatΩk(rd) =
{x(i)| ‖x(k)−x(i)‖ � rd}. The rangerd is taken
from the interval[max{0, µd−ndσd}; µd+ndσd],
e.g., uniformly spaced, wherend is a parameter
controlling the span over which to perform the
DVV analysis.

– For every setΩk(rd), the variance of the corre-
sponding targets,σ2

k(rd), is computed as the sum
of the variances of the real and imaginary parts.
The average over all setsΩk(rd), normalised by
the variance of the time series,σ2

x, yields the ‘tar-
get variance’,σ∗2(rd):

σ∗2(rd) =
1
N

∑N
k=1 σ2

k(rd)
σ2

x

. (2)

For a more detailed description of the method, we
refer to [8]. Note that the computation of the Euclidean
distance between complex-valued DVs is equivalent to
considering real and imaginary parts as separate dimen-
sions. Since for bivariate time series, a delay vector is
generated by concatenating time delay embedded ver-
sions of the two dimensions, the complex-valued and
bivariate versions of the DVV method are equivalent,
and can be conveniently compared, provided that the
variance of a bivariate variable is computed as the sum
of the variances of each variate.

A DVV plot, D, is obtained by plotting the target
variance,σ∗2(rd), as a function of the ‘standardised’
distance,rd−µd

σd
, i.e., standardised to the distribution

of pairwise distances between DVs. It is due to this
standardisation that DVV plots of different time series
can be conveniently compared. The DVV plots for a
1000 sample realisation of the Ikeda Map,D (thick
solid curve), and for the two types of surrogates,D b

(thin dashed) andDc (thin solid), generated using the
iAAFT and CiAAFT method, respectively, are shown
in Fig. 2(A), usingm = 3 andnd = 3.

4. Statistical testing

In the framework of surrogate data testing, as intro-
duced by Theiler et al. [4], a time series is characterised
by a certain test statistic, which is compared to an em-
pirical distribution of test statistics generated under the
assumption of a null hypothesis. This empirical distri-
bution is generated by computing the test statistics for a
number of ‘surrogates’, which are different realisations
of the original time series, under the assumption of the
null. The actual statistical test then evaluates the proba-
bility that the test statistic for the original time series is
drawn from the empirical null distribution. If this prob-
ability is lower than a significance threshold, the null
hypothesis is rejected. In the CiAAFT case, a rejection
of the null hypothesis that the signal is complex-valued
and linear, could be due to a deviation from either of
the two properties. Therefore, we propose a different
approach: rather than comparing the original time se-
ries to the surrogates, we compare surrogates generated
under different null hypotheses, namely that of a lin-
ear and bivariate time series,Hb

0 , and that of a linear
and complex-valued time series,H c

0 . The respective
surrogates for this test are generated using the bivariate
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Fig. 1. Realisation of the Ikeda Map (A), iAAFT (B) and CiAAFT (C) surrogates; D) Mean-square-error convergence of the CiAAFT method.

A B C

Fig. 2. A) DVV plots for the Ikeda Map (thick solid), for an iAAFT (thin dashed) and a CiAAFT surrogate (thin solid); B) Ratio of (correct)
rejections of the null hypothesis for the Ikeda Map, as a function of the noise levelγn; C) Example of a noisy Ikeda Map withγn = 0.5 (dotted
line in Fig. B).

iAAFT [6] and the proposedCiAAFT method. All time
series are characterised using the DVV method, and a
significant difference between the two empirical distri-
butions of test statistics is an indication that the original
signal is complex-valued. The proposed methodology
is the following.

1. GenerateNs,ref CiAAFT surrogates and the av-
erage DVV plot→D0;

2. GenerateNs iAAFT surrogates and correspond-
ing DVV plots→ {Db};

3. GenerateNs CiAAFT surrogates and correspond-
ing DVV plots→ {Dc};

4. Compare(D0 − {Db}) and(D0 − {Dc}).
Ns,ref andNs are the number of surrogates generated

for generating, respectively, the ‘reference’ DVV plot
and the empirical distributions of test statistics. To per-
form the final step (4) in a statistical manner, the (cu-
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mulative) empirical distributions of root-mean-square
distances between{Db} andD0, and between{Dc}
andD0, are compared using a Kolmogorov-Smirnoff
(K-S) test. This way, the different types oflineari-
sations (bivariate,{Db}, and complex-valued,{Dc})
are compared to the ‘reference’ linearisation given a
complex-valued nature of the time series,D0. If the
two distributions of test statistics are significantly dif-
ferent at a certain levelα, the original time series is
complex-valued. Note that assumptions regarding the
possible nonlinearity of the signal are avoided.

5. Simulations

5.1. Synthetic time series

The proposed algorithm was tested on five sets of
synthetically generated benchmark signals containing
N = 1000 time samples. The two linear sets contained
time series 1) consisting of time samples that are drawn
from a bivariate Gaussian distribution,N ([0, 0], [1, 2]),
rotated over an angle ofπ3 (linear bivariate, “LB”),
and 2) generated by considering a Gaussian ‘amplitude
spectrum’, adding random phase and computing the in-
verse FFT (linear complex, “LC”). The two nonlinear
sets were generated by a nonlinear system described
in [9]:

yk = γ
xk−1 xk−2 (xk−1 + 2.5)

1 + x2
k−1 + x2

k−2

+ xk, (3)

whereγ is a parameter controlling the prevalence of
the nonlinear over the linear part of the signal, which
was set toγ = 0.6, unless stated otherwise. In the
first nonlinear set (nonlinear bivariate, “NLB”), both
dimensions of “LB” were separately passed through
the nonlinear system, and in the second set (nonlinear
complex, “NLC”), x represents the complex-valued
time series “LC”. The final set contained realisations
of the Ikeda Map (Eq. (1); an example is shown in
Fig. 1(A)).

For each of the five sets, 100 realisations of the time
series are generated, to each of which the proposed
test is applied. For the bivariate sets (LB and NLB),
the number of (erroneous) rejections is of the order
expected from theα = 0.05 level (5/100 and 1/100).
The proposed test does not perform well on the LC
set: only 16/100 the time series are correctly judged
to be complex-valued. However, this is not surprising,
since any linear complex-valued system has a bivariate
equivalent, though not vice versa. Consequently, the

iAAFT method can represent these time series equally
well as the CiAAFT method. For the NLC set, the
proposed test correctly judges the time series to be
complex-valued in 62/100 cases (the performance in-
creased to 79/100 withγ = 1.0), and in each of the
Ikeda Map realisations.

Furthermore, the robustness of the statistical test with
respect to additive noise is analysed. We have con-
sidered the Ikeda Map Eq. (1), and have added Gaus-
sian white noise to the real and imaginary parts sepa-
rately. The standard deviation is set proportional to the
standard deviations of the separate components, with a
scaling factor ofγn. For each scaling factor, 100 re-
alisations ofN = 1000 samples have been generated.
Figure 2(B) shows that the ratio of correct rejections
remains 100% forγn < 0.5 (dotted line), and decreases
for higher levels of noise. The noisy Ikeda signal corre-
sponding toγn = 0.5 is shown in Fig. 2(C), illustrating
that the structure of the Ikeda Map can no longer be
visually observed at this noise level.

5.2. Radar data

We have further considered real-world data taken
from in-phase and quadrature components from the
Dartmouth 1993 IPIX radar data, which is publicly
available. We have selected data sets where the radar
operates in stare mode, and there is a target present,
namely a spherical block of styrofoam with a diame-
ter of one meter, wrapped with wire mesh. For more
details, we refer to http://soma.crl.mcmaster.ca/ipix.
Each data set consisted of 14 rangebins containing sig-
nal of 131,072 complex-valued time samples. The
rangebins in which there is no target present, contained
only so-called ‘sea clutter’, i.e., radar backscatter from
the ocean surface. The data sets are the following:

25,26 recorded during a higher sea state, with the
waves moving toward the radar. Target was
present in rangebin 7 (to a lesser degree in 6
and 8);

30,40 recorded during a lower sea state, with the
waves moving toward the radar. Target was
present in rangebin 7 (6,8) and 7 (5,6,8),
resp.;

17,18 recorded during a higher sea state, with the
waves moving away from the radar. Target
was present in rangebin 9 (8,10,11);

54,310 recorded during a lower sea state, with the
waves moving away from the radar. Tar-
get was present in rangebin 8 (7,9,10) and 7
(6,8,9), resp.
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Fig. 3. Fully-complexversus split-complex bivariate prediction for radar data.

From every bin, we have considered time segments
of N = 1000 samples (one second), and have gen-
erated 100 non-overlapping time segments (uniformly
spaced). The proposed test has been applied on each
of these segments.

To gain a first insight into the nature of these data, we
performed nonlinear prediction, using a split-complex
bivariate and a fully-complex approach [3]. The filter
was a simple dynamical perceptron (nonlinear finite im-
pulse response filter of the order of ten), with a sigmoid
activation function. The performance criterion was the
averaged squared instantaneous prediction error. The
results of simulations are shown in Fig. 3 for one range-
bin of data set54. Clearly, using the fully-complex ap-
proach provided significantly better performance, than
using the bivariate one. The average prediction error
for the fully-complex approach was− 40 dB whereas
for the bivariate approach it was−8 dB.

However, although useful, the approach based upon
adaptive prediction can give only a general idea about
the complex-valued nature of the signal. To obtain
further insight into the nature of the data and provide
statistical criteria, we employ the approach based upon
surrogate data and DVV analysis, as proposed above.

The number of time series that were judged to be
complex-valued, are shown in Fig. 4 for each data set

and rangebin. Overall, there were stronger indications
of a complex-valued nature in those bins in which a
target was present. There seemed to be only weak
evidence of a complex-valued nature for data from the
lower sea state with waves moving away from the radar
(bottom right panel). The difference between the other
sea states and wave directions was not consistent over
the data sets under consideration.

6. Conclusions

We have introduced a novel methodology for sta-
tistically testing whether or not the processing of a
bivariate time series could benefit from a complex-
valued representation. A novel algorithm, the Com-
plex iterative Amplitude Adjusted Fourier Transform
(CiAAFT) method, has been proposed for generating
surrogate time series under the null hypothesis of a
linear and complex-valued system underlying the time
series. Consequently, surrogates generated using the
traditional iAAFT method for bivariate time series can
be compared to those generated using the CiAAFT
method. Both types of surrogates have been charac-
terised using a complex-valued extension of the Delay
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Fig. 4. Number of time series that were judged complex-valued by the proposed method, for every rangebin in the IPIX radar data sets. The
results are grouped per sea state andwavedirection.

Vector Variance (DVV) method, allowing for a statis-
tical comparison between the two types of surrogates.
If the difference is significant, the time series is judged
complex-valued, and it is judged bivariate otherwise.

The methodology was validated on synthetically
generated time series, and applied to real-world data
obtained from the IPIX radar. This type of data has
been frequently addressed in the open literature (for
an overview, see [10]), and it has been shown that
short time segments can be modelled adequately by
a complex-valued autoregressive (AR) model. It has
been demonstrated using the proposed methodology
that there were indications of a complex-valued nature
in most radar data sets, and that this proportion in-
creased in the presence of a target. The data sets cor-
responding to a lower sea state with the waves moving

away from the radar showed only weak indications of
a complex-valued nature in the absence of a target.
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