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ABSTRACT

An augmented complex least mean square (ACLMS) algo-
rithm for complex domain adaptive filtering which utilises the
full second order statistical information is derived for adap-
tive prediction problems. This is achieved based on some re-
cent advances in complex statistics and by using widely lin-
ear modelling inC. This way, both circular and non–circular
complex signals can be processed optimally, using the same
model. Simulations on complex–valued wind field and on a
complex autoregressive process show the effectiveness of this
approach as compared to the standard Complex LMS algo-
rithm.

Index Terms— Adaptive signal processing, Signal repre-
sentations, Statistics, Least mean square methods, Wind fore-
casting

1. INTRODUCTION

The Least Mean Square (LMS) [1] algorithm is a workhorse
of adaptive signal processing inR. For adaptive filtering in
the field of complex numbersC, Widrow et al. introduced
the Complex LMS (CLMS) in 1975 [2]. This algorithm ben-
efits from the robustness and stability of the LMS, and en-
able simultaneous filtering of the real and imaginary parts of
complex–valued data [3]. The need for extending and enhanc-
ing the performance of complex domain algorithms is due to
the fact thatC provides a natural processing platform. For
instance, by processing real domain problems inC, we can
include the phase component and have a multidimensional
solution exhibiting performance benefits over real domain so-
lutions [4].
Unlike the usual assumption, statistics in the complex domain
are not a straightforward extension from real domain statis-
tics, the signal processing literature, however, usually deals
with statistics inC as an extension of those inR. For ex-
ample, the covariance matrix of a zero mean complex vector
z is E{zzH} is seen as an extension of the real covariance
E{xxT }, achieved by replacing the transpose operator(·)T

with the Hermitian operator(·)H [5, 6]. However, strictly

speaking, this is true only for circular data and does not ac-
commodate for all the information contained within the com-
plex data.
Some recent advances in complex domain statistics have en-
abled better modelling of complex data and therefore have
opened the possibility for enhanced adaptive filtering algo-
rithms [5, 7]. The use of so called augmented complex sta-
tistics leads to “widely” linear complex domain modelling [8,
9]. This is performed by considering both the covariance and
pseudo-covariance matrices within the models. Based on this
principle, the Widely Linear LMS was introduced in the com-
munications field for use in a direct–sequence code division
multiple access (DS–CDMA) receiver [10, 11]. It was shown
that the algorithm has a lower complexity, while having an
equally good performance to standard linear algorithms.
In this paper, the derivation of the widely linear LMS al-
gorithm, or augmented CLMS (ACLMS), is provided in an
adaptive prediction context, and illustrate the improvement in
the performance of this algorithm as compared to the standard
CLMS algorithm in an adaptive prediction setting for general
complex signals. Our focus in on the forecasting of the com-
plex wind profile, an important problem in renewable energy.

2. AUGMENTED COMPLEX STATISTICS

For a complex random vector (RV)x ∈ Cm, E{x} = 0, we
can define two covariance matrices

Cxx = E{xxH}, Pxx = E{xxT } (1)

whereCxx andPxx are called respectively thecovariance
matrix andpseudo-covariance matrix [7]. In order to allow
for all the information available within the complex RV to be
used, the augmented2m×1 complex vectorxa can be defined
as

xa =

[
x

x∗

]

(2)

where (·)∗ denotes the complex conjugate operator. Then
the covariance matrixCx

a
x

a of the augmented vectorxa ∈
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C2m×2m, given by

Cx
a
x

a =

[
Cxx Pxx

P∗

xx
C∗

xx

]

(3)

contains information from both the covariance and pseudo-
covariance matrices ofxa [6]. WhenPxx = 0, the RV is
calledcircular (proper) [5, 6]. However in most applications,
it is usually implicitly assumed that the pseudo-covariance
matrixPxx is zero, thus resulting in undermodelling. We next
show that by using the widely linear (WL) model [8], given
by

y = hT x + gT x∗ (4)

it is possible to design adaptive filters suitable for general
complex processes (both circular and non–circular).

3. THE AUGMENTED CLMS ALGORITHM

Using the augmented statistics, the outputy(k) of an FIR filter
can be written as a widely linear process, given by

y(k) = hT (k)x(k) + gT (k)x∗(k) (5)

whereh(k) andg(k) are adaptive weight vectors,x(k) is the
filter input, and the weights are updated by minimising the
cost function

E(k) =
1

2
|e(k)|2 =

1

2
|d(k) − y(k)|2 =

1

2
e(k)e∗(k) (6)

whered(k) is the desired signal. Using the stochastic gradient
based adaptation, we have

h(k + 1) = h(k) − µ∇E(k)
∣
∣
∣
h=h(k)

(7)

g(k + 1) = g(k) − µ∇E(k)
∣
∣
∣
g=g(k)

(8)

and

∇E(k)
∣
∣
∣
h=h(k)

=
∂E(k)

∂hr
n(k)

+ 
∂E(k)

∂hi
n(k)

(9)

∇E(k)
∣
∣
∣
g=g(k)

=
∂E(k)

∂gr
n(k)

+ 
∂E(k)

∂gi
n(k)

(10)

In this setting,µ is the step size,(·)r and(·)i denote respec-
tively the real and imaginary part of a complex number and
n denotes thenth element of the weight vector. Since the in-
put to the filter is complex, the errore(k) is also complex and
therefore the gradients from (9) and (10) should be evaluated
as

∂E(k)

∂hr
n(k)

=

{

e(k)
∂e∗(k)

∂hr
n(k)

+ e∗(k)
∂e(k)

∂hr
n(k)

}

(11)

∂E(k)

∂hi
n(k)

=

{

e(k)
∂e∗(k)

∂hi
n(k)

+ e∗(k)
∂e(k)

∂hi
n(k)

}

(12)

∂E(k)

∂gr
n(k)

=

{

e(k)
∂e∗(k)

∂gr
n(k)

+ e∗(k)
∂e(k)

∂gr
n(k)

}

(13)

∂E(k)

∂gi
n(k)

=

{

e(k)
∂e∗(k)

∂gi
n(k)

+ e∗(k)
∂e(k)

∂gi
n(k)

}

(14)

Rewriting (6) in terms of its real and imaginary parts and sub-
stituting in (11)–(14) yields

∇E(k)
∣
∣
∣
h=h(k)

= −e(k)x∗(k) (15)

∇E(k)
∣
∣
∣
g=g(k)

= −e(k)x(k) (16)

The weight update equations (7) and (8) are now given as

h(k + 1) = h(k) + µe(k)x∗(k) (17)

g(k + 1) = g(k) + µe(k)x(k) (18)

In order to consolidate (17)–(18) into a compact vector form,
we define the augmented weight vectorwa(k) as

wa(k) = [hT (k), gT (k)]T (19)

to give the augmented weight update

wa(k + 1) = wa(k) + µea(k)(xa)∗(k) (20)

where

ea(k) = d(k) − (xa)T (k)wa(k)
︸ ︷︷ ︸

y(k)

, (21)

xa(k) = [xT (k), xH(k)]T (22)

This concludes the derivation of the augmented CLMS (ACLMS)
algorithm.

4. PERFORMANCE OF THE ACLMS

The advantage of the ACLMS algorithm over the standard
CLMS is in the utilisation of the full second order statistical
information available within the signal, achieved throughWL
modelling. For circular signals, where the pseudo-covariance
is zero, it is anticipated that both algorithms will perform
well, while ACLMS is expected to outperform the CLMS
when applied to non–circular (improper) data. To demon-
strate this, we used complex autoregressiveAR(4) process
and real–world complex–valued wind signals. The perfor-
mance was assessed based on the prediction gainRp given
by [12]

Rp , 10 log10

(
σ2

x

σ̂2
e

)

[dB] (23)

whereσ2
x denotes the variance of the input signalx(k), whereas

σ̂2
e denotes the estimated variance of the forward prediction

error{e(k)}.

4.1. Prediction of Complex–Valued Autoregressive Signal

In the first experiment, we used a synthesised stable and cir-
cular complex–valuedAR(4) process used is given by

x(k) = 1.79x(k − 1) − 1.85x(k − 2) + 1.27x(k − 3)

− 0.41x(k − 4) + n(k) (24)
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Fig. 1. The input and predicted signals obtained by using the
CLMS (dash) and ACLMS (dot–dash).

wheren(k) = nr(k) + ni(k) is a complex white Gaussian
noise (CWGN), such that the real and imaginary parts are in-
dependent real WGN sequences∼ N (0, 1) andσ2

n = σ2
nr

+
σ2

ni
.

The adaptive filter withN = 10 was trained using 1000
samples ofx(k), the step–sizeµ = 0.01 was kept constant
for both the algorithms. The obtained prediction gains were
Rp,CLMS = 3.22 dB andRp,ACLMS = 3.99 dB. Figure 1
demonstrates the convergence of the predicted signal to the
original, which has been zoomed in for better clarity. The
quantitative performances of both algorithms were adequate,
with similar values ofRp. This was expected, since theAR(4)
signal is circular and there is no information available in the
pseudo-covariance matrix to facilitate the performance ofthe
ACLMS.

4.2. Prediction of Complex–Valued Wind Using ACLMS

Wind field was measured using an ultrasonic anemometer1

over a period of 24 hours sampled at 50 Hz. A moving av-
erage filter was used to reduce the effects of high frequency
noise; the signal was then resampled at 1 Hz. The window
sizewF of the moving average filter varied according to

wF = {1, 2, 10, 20, 60}, (25)

where the window size is given in seconds.
The wind speed reading were taken in the north–south (VN )
and east–west (VE) direction, which was used to create the
complex wind signalV = v · eiϕ, as

v =
√

V 2
E + V 2

N , ϕ = arctan

(
VN

VE

)

(26)

1Recorded in an urban environment at the Institute of Industrial Science,
University of Tokyo, Japan
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Fig. 2. Complex wind signal magnitude. Three wind speed
regions have been identified as low, medium and high.

Based on the modulus of the complex wind data dynamics,
we identified and labelled changes in the wind intensity as re-
gionshigh, medium and low on Figure 2. To investigate the
advantage of WL modelling for such intermittent and non–
circular complex data, 5000 samples were taken from each
region to train CLMS and ACLMS adaptive predictors for
one step ahead prediction, and simulations results are shown
in Figure 3.

It is evident that the ACLMS algorithm has provided bet-
ter predictions compared to the CLMS algorithm in all the
three considered regions. It is also seen that the best predic-
tion was obtained for thehigh region where the wind speed
had strongest variations, giving a maximum prediction gain
of 16.20 dB. The performances of the two algorithms showed
significant improvement for themedium region. This can also
be seen in Figure 4 where after 5000 iterations, the ACLMS
algorithm outperformed the CLMS algorithm, converged faster,
and was able to track the dynamics of the input better.
Complex–valued wind is a non–circular signal, and clearly
the use of augmented statistics helped to extract the full sec-
ond order statistical information available within the data. The
results of the ACLMS prediction clearly indicate the bene-
fits of using augmented statistics for non–circular complex–
valued data, resulting in faster convergence and better predic-
tion performance.

5. CONCLUSION
A stochastic gradient–based algorithm for complex–valued
adaptive filtering, which utilises some recent advances in com-
plex statistics has been introduced. It has been shown that the
second order statistics of an augmented random complex vec-
tor provides a mathematical model for enhancing the perfor-
mance of adaptive filters. The so called augmented complex
LMS (ACLMS) algorithm has been derived by considering
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Fig. 3. Prediction gain of the ACLMS (thick lines)
and CLMS (thin lines) algorithms in thelow (solid),
medium (dashed) andhigh (dot-dash) regions

both the pseudo-covariance matrix as well as the covariance
matrix of the widely linear model.
Two sets of complex–valued data were used to illustrate the
performance of the ACLMS, the circularAR(4) process and
a non–circular real–world wind. It has been shown that while
the performances of the CLMS and ACLMS were relatively
similar for circular data, the ACLMS outperformed the stan-
dard CLMS on non–circular data.
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