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ABSTRACT speaking, this is true only for circular data and does not ac-

An augmented complex least mean square (ACLMS) algocommodate for all the information contained within the com-
rithm for complex domain adaptive filtering which utiliséet ~ Plex data.

full second order statistical information is derived fompd ~ Some recent advances in complex domain statistics have en-
tive prediction problems. This is achieved based on some ré@bled better modelling of complex data and therefore have
cent advances in complex statistics and by using widely linoPened the possibility for enhanced adaptive filtering algo
ear modelling inC. This way, both circular and non—circular fithms [5, 7]. The use of so called augmented complex sta-
complex signals can be processed optimally, using the saniistics leads to “widely” linear complex domain modellirgg [
model. Simulations on complex—valued wind field and on a2 This is performed by considering both the covariance and
complex autoregressive process show the effectivenebssof t pseudo-covariance matrices within the models. Based en thi

rithm. munications field for use in a direct-sequence code division

multiple access (DS—CDMA) receiver [10, 11]. It was shown
that the algorithm has a lower complexity, while having an
: equally good performance to standard linear algorithms.
casting In this paper, the derivation of the widely linear LMS al-
gorithm, or augmented CLMS (ACLMS), is provided in an
1. INTRODUCTION adaptive prediction context, and illustrate the improvenie
the performance of this algorithm as compared to the standar
The Least Mean Square (LMS) [1] algorithm is a workhorsec| Ms algorithm in an adaptive prediction setting for getera
of adaptive signal processing IR. For adaptive filtering in  complex signals. Our focus in on the forecasting of the com-

the field of complex number€&, Widrow et al. introduced plex wind profile, an important problem in renewable energy.
the Complex LMS (CLMS) in 1975 [2]. This algorithm ben-

efits from the robustness and stability of the LMS, and en-

able simultaneous filtering of the real and imaginary pafrts o 2. AUGMENTED COMPLEX STATISTICS
complex—valued data [3]. The need for extending and enhanc-

ing the performance of complex domain algorithms is due td ©F & complex random vector (R € C™, E{x} = 0, we
the fact thatC provides a natural processing platform. For¢an define two covariance matrices

instance, by processing real domain problemg&’inwe can
include the phase component and have a multidimensional
solution exhibiting performance benefits over real domain s

lutions [4]. . . .
Unlike the usual assumption, statistics in the complex doma matrix and pseudo-covariance matrix [7]. In order to allow
pon, P for all the information available within the complex RV to be

are not a straightforward extension from real domain statis a ,
. ; - used, the augment@ah x 1 complex vectok® can be defined
tics, the signal processing literature, however, usuadigls

with statistics inC as an extension of those R. For ex- as X
<=

Index Terms— Adaptive signal processing, Signal repre-
sentations, Statistics, Least mean square methods, Wied fo

Cux = E{xx"}, Py = B{xx’} 1)

whereCxx and Py, are called respectively theovariance

ample, the covariance matrix of a zero mean complex vector (2)
z is E{zz'"} is seen as an extension of the real covariance
E{xxT}, achieved by replacing the transpose operé&tgr  where (-)* denotes the complex conjugate operator. Then

with the Hermitian operato(-)” [5, 6]. However, strictly the covariance matri€,.,. of the augmented vector® €

X*
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C?mx2m given by Rewriting (6) in terms of its real and imaginary parts and-sub
c D } stituting in (11)—(14) yields

Cx“ xa = |: * *
Pxx Cxx

contains information from both the covariance and pseudo-
covariance matrices of” [6]. WhenPyx = 0, the RV is VE(/f)‘ = —e(k)x(k) (16)
calledcircular (proper) [5, 6]. However in most applications, -
it is usually implicitly assumed that the pseudo-covareanc The weight update equations (7) and (8) are now given as
matrix Pxy IS zero, thus resulting in undermodelling. We next N

& g 9 h(k + 1) = h(k) + pe(k)x* (k) (17)

show that by using the widely linear (WL) model [8], given
by g(k+1) = g(k) + pe(k)x(k) (18)

y=h"x+g'x" ) In order to consolidate (17)—(18) into a compact vector form
it is possible to design adaptive filters suitable for geherawe define the augmented weight vectet (k) as
complex processes (both circular and non—circular). . r -
3. THE AUGMENTED CLMS ALGORITHM w(k) = [b" (k), g" (k)] (19)

to give the augmented weight update

)
VE(k:)‘ = —e(k)x* (k) (15)

Using the augmented statistics, the outpidt) of an FIR filter

can be written as a widely linear process, given by w(k+1) =w(k) + pe(k)(x*)* (k) (20)
y(k) =h" (k)x(k) +g" (k)x" (k) (5)  where

whereh(k) andg(k) are adaptive weight vectorg(k) is the (k) = d(k) — (x9)T (k)yw(k), (1)
filter input, and the weights are updated by minimising the —_——
cost function y(k)

1 1 1. x(k) = [x"(k), x" (k)] (22)

E(k) = 5le(k)” = ld(k) = y(k)* = Se(ke’ (k) (6) -
This concludes the derivation of the augmented CLMS (ACLMS)

whered(k) is the desired signal. Using the stochastic gradienalgorithm.
based adaptation, we have

4. PERFORMANCE OF THE ACLMS
h(k +1) = h(k) - uVE(k)’h:h(k) (7)
The advantage of the ACLMS algorithm over the standard
gk +1) = g(k) — “VE(k)’g:g(k) (8)  CLMS is in the utilisation of the full second order statistic

information available within the signal, achieved throgh

and modelling. For circular signals, where the pseudo-covaea
VE(k)’ _ OE(k) +5 OE(k) (9) s zero, it is anticipated that both algorithms will perform
h=h(k)  ORT (k) oht (k) well, while ACLMS is expected to outperform the CLMS
OE(k) OE(k) when applied to non—circular (improper) data. To demon-
VE(k) g=g(k) agr (k) jag;(k) (10)  strate this, we used complex autoregressiie(4) process

and real-world complex—valued wind signals. The perfor-

In this setting . is the step size(-)"” and(-)* denote respec- mance was assessed based on the predictiongaigiven
tively the real and imaginary part of a complex number ancby [12]

n denotes the:' element of the weight vector. Since the in- N o2
put to the filter is complex, the erretk) is also complex and Ry = 10log, (02) [dB] (23)
therefore the gradients from (9) and (10) should be evaluate _ °r _
as wheres? denotes the variance of the input sigrét), whereas
9 : : -
OB (k) e de* (k) e de(k) a g?rc()jre{r:()ge)?the estimated variance of the forward prediction
Ohs, (k) Ohs, (k) Oh;, (k)
OE(k) _ de*(k) .\ Oe(k) 4.1. Prediction of Complex—Valued Autoregressive Signal
T W@t W) 62 o | |
OE(k) de* (k) de(k) In the first experiment, we used a synthesised stable and cir-
=<e(k +e*(k } 13 cular complex—valuedi R(4) process used is given by
70 Ot W) 0
OB(k) (k) oe* (k) e de(k) (14) x(k) = 1.792(k — 1) — 1.85x(k — 2) + 1.27x(k — 3)
ogi (k) dgi (k) dgi (k) —0.41z(k — 4) + n(k) (24)
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Fig. 1. The input and predicted signals obtained by using thé&ig. 2. Complex wind signal magnitude. Three wind speed
CLMS (dash) and ACLMS (dot—dash). regions have been identified as low, medium and high.

wheren(k) = n,.(k) + jn;(k) is a complex white Gaussian Based on the modulus of the complex wind data dynamics,
noise (CWGN), such that the real and imaginary parts are inwe identified and labelled changes in the wind intensity as re
dependent real WGN sequencesV(0,1) ando;. = o2 +  gionshigh, medium andlow on Figure 2. To investigate the
072“ advantage of WL modelling for such intermittent and non—
The adaptive filter withV = 10 was trained using 1000 circular complex data, 5000 samples were taken from each
samples ofx(k), the step—size. = 0.01 was kept constant region to train CLMS and ACLMS adaptive predictors for
for both the algorithms. The obtained prediction gains wer@ne step ahead prediction, and simulations results arershow
R, crms = 3.22 dB andR, acrms = 3.99 dB. Figure 1 in Figure 3.
demonstrates the convergence of the predicted signal to thdt is evident that the ACLMS algorithm has provided bet-
original, which has been zoomed in for better clarity. Theter predictions compared to the CLMS algorithm in all the
guantitative performances of both algorithms were adequatthree considered regions. It is also seen that the bestcpredi
with similar values ofR,,. This was expected, since tig?(4)  tion was obtained for thaigh region where the wind speed
signal is circular and there is no information availablelie t had strongest variations, giving a maximum prediction gain
pseudo-covariance matrix to facilitate the performancinef of 16.20 dB. The performances of the two algorithms showed
ACLMS. significant improvement for theediumregion. This can also
4.2. Prediction of Complex—Valued Wind Using ACLMS be seen in Figure 4 where after 5000 iterations, the ACLMS
algorithm outperformed the CLMS algorithm, convergeddgst
Wind field was measured using an ultrasonic anemorheteand was able to track the dynamics of the input better.
over a period of 24 hours sampled at 50 Hz. A moving av-Complex—valued wind is a non—circular signal, and clearly
erage filter was used to reduce the effects of high frequendahe use of augmented statistics helped to extract the fail se
noise; the signal was then resampled at 1 Hz. The windownd order statistical information available within thealathe

sizewr of the moving average filter varied according to results of the ACLMS prediction clearly indicate the bene-
fits of using augmented statistics for non—circular complex
wp = {1,2,10,20,60}, (25)  valued data, resulting in faster convergence and betteigre

tion performance.
where the window size is given in seconds.
The wind speed reading were taken in the north—souit) ( 5. CONCLUSION
and east—westi{z) direction, which was used to create the

. . i A stochastic gradient—based algorithm for complex—valued
complex wind signal/ = v - e'?, as

adaptive filtering, which utilises some recent advancesin-c
Vi plex statistics has been introduced. It has been shownhbat t
=4/VE+ VR, ¢=arctan (V) (26)  second order statistics of an augmented random complex vec-
B tor provides a mathematical model for enhancing the perfor-
1Recorded in an urban environment at the Institute of Incalsgsience, Mmance of adaptive filters. The so called augmented complex
University of Tokyo, Japan LMS (ACLMS) algorithm has been derived by considering
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both the pseudo-covariance matrix as well as the covariancd6] P.J. Schreier and L.L. Scharf, “Second-order analysis o
matrix of the widely linear model.
Two sets of complex—valued data were used to illustrate the
performance of the ACLMS, the circulatR(4) process and

a non-—circular real-world wind. It has been shown that while

the performances of the CLMS and ACLMS were relatively [7]

similar for circular data, the ACLMS outperformed the stan-

dard CLMS on non—circular data.

6. ACKNOWLEDGEMENT

We would like to thank Prof. Kazuyuki Aihara, Institute of
Industrial Science, University of Tokyo, Japan for prowigli
the wind data.

(1]
(2]

(3]

(4]

(5]

7. REFERENCES

S Haykin, Adaptive Filter Theory, Prentice Hall, 1996.

B. Widrow, J. McCool, and M. Ball, “The complex LMS
algorithm,” Proceedings of the |IEEE, vol. 63, no. 4, pp.
719-720, 1975.

D. Mandic, P. Vayanos, C. Boukis, B. Jelfs, S.L. Goh,

[

(8]

9]

0]

T. Gautama, and T. Rutkowski, “Collaborative adaptive[11]

learning using hybrid filters,” iHCASSP 2007, 2007,
vol. 3, pp. 921-924.

D.P. Mandic, S. Javidi, G. Souretis, and S.L. Goh, “Why
a complex valued solution for a real domain problem,”
in Proceedings of the 17th IEEE Signal Processing Soci-

ety Workshop on Machine Learning for Sgnal Process-
ing, 2007.

B. Picinbono, “On circularity,” IEEE Transactions on
Sgnal Processing, vol. 42, no. 12, pp. 3473-3482, 1994,

57

(12]

improper complex random vectors and procesd&EE
Transactions on Sgnal Processing, vol. 51, no. 3, pp.
714-725, 2003.

F.D. Neeser and J.L. Massey, “Proper complex ran-
dom processes with applications to information theory,”
|EEE Transactions on Information Theory, vol. 39, no.

4, pp. 1293-1302, 1993.

B. Picinbono and P. Bondon, “Second-order statis-
tics of complex signals,’|EEE Transactions on Sgnal
Processing, vol. 45, no. 2, pp. 411-420, 1997.

B. Picinbono and P. Chevalier, “Widely linear estima-
tion with complex data,”|EEE Transactions on Sgnal
Processing, vol. 43, no. 8, pp. 2030-2033, 1995.

R. Schober, W.H. Gerstacker, and L.H.-J. Lampe, “A
widely linear LMS algorithm for MAI suppression for
DS-CDMA," |EEE International Conference on Com-
munications, 2003. ICC '03, vol. 4, pp. 2520-2525,
2003.

R. Schober, W.H. Gerstacker, and L.H.-J. Lampe,
“Data-aided and blind stochastic gradient algorithms for
widely linear MMSE MAI suppression for DS-CDMA,"
|EEE Transactions on Sgnal Processing, vol. 52, no. 3,
pp. 746-756, 2004.

S. Haykin and Liang Li, “Nonlinear adaptive prediction
of nonstationary signals/EEE Transactions on Sgnal
Processing, vol. 43, no. 2, pp. 526535, 1995.



