
A Real Time Tracker of Complex Circularity
Sithan Kanna #1, Scott C. Douglas ∗2, Danilo P. Mandic #3

# Department of EEE, Imperial College London, Exhibition Rd., London, SW7 2BT, U.K.
1 ssk08@ic.ac.uk 3 d.mandic@imperial.ac.uk

∗ Department of EE, Southern Methodist University, TX 75275-0338, U.S.A.
2 douglas@engr.smu.edu

Abstract—A new insight into the relationship between the com-
plex circularity quotient and the coefficient of a linear minimum
mean square estimator (LMMSE) which estimates a complex
random variable from its complex conjugate is established. An
adaptive version of this estimator, suitable for real time tracking
of the degree of complex circularity is proposed based on the
complex least mean square (CLMS) algorithm. For Gaussian
data, the mean and mean square analyses show the effect of data
non-circularity on the stability bounds of the real time circularity
tracker. The concept is verified over simulations on both synthetic
single- and multi-channel data and on real world wind signals
with varying degrees of circularity.

Index Terms—Complex random variables, complex circularity,
circularity coefficient, complex least mean square (CLMS), multi-
channel signals.

I. INTRODUCTION

Complex-valued signals are common in communications,
signal and array processing and can also be used as a more
convenient way to represent bivariate real-valued signals [1],
[2]. Although statistical tools for complex random variables
are traditionally treated as generic extensions of their real-
valued counterparts [3], this approach is valid only for second
order circular (proper) random variables which are uncorre-
lated with their complex conjugates [2]. For example, the
covariance, c = E

{
|z|2
}

, of a complex random variable (r.v.),
z = x + jy ∈ C, is obtained by replacing the operator,
(·)2, in R with the magnitude squared, | · |2, in C but it
only reflects the total power in the x and y channels. To
ensure a sufficient number of degrees of freedom in the
processing of general improper data, the pseudocovariance
p = E

{
z2
}

, which measures the correlation between the r.v.
z and its conjugate, z∗, needs also to be considered. Signals
with vanishing pseudocovariance (i.e. p = 0) are proper.

Early methods to test the impropriety of a signal have
been based on hypothesis tests that use block estimates of
the covariance and the pseudocovariance. The authors in [4]
developed a hypothesis test for the impropriety of Gaussian
signals using a generalized likelihood ratio (GLR) test which
was further studied in [5], [6]. This method was extended for
signals from a general class of complex elliptically symmetric
(CES) distributions in [7]. To deal with measurement errors,
a robust circularity coefficient estimator was developed in
[8] based on solving M-estimation equations with a novel
weighting scheme.

Impropriety can be measured using the circularity quotient,

ρ, given by

ρ ,
p

c
∈ C (1)

which is the ratio between the pseudocovariance and the
covariance [9]. The magnitude of the circularity quotient is
referred to as the the circularity coefficient, |ρ| , |p|

c ∈ R.
A real time algorithm for tracking the impropriety of a

signal was introduced in [10] based on a convex combination
of a strictly and widely linear estimators. The impropriety
of a signal is then tracked by observing the evolution of the
adaptive convex mixing parameter which indicates which sub-
filter (strictly or widely linear) is a better match to the nature
of the data.

The limitations of current approaches in identifying the
second order circularity are:
(a) Block-based estimators are accurate, but are not suitable

for real time applications, or for non-stationary data;
(b) Hypothesis tests are limited since they are only able to

reveal whether the signal is proper or improper, however,
they cannot assess the degree of impropriety;

(c) The value of the convex mixing parameter in [10] de-
pends also on the filter settings and its relationship to the
circularity quotient is yet to be established rigorously.

We provide a solution for real-time circularity tracking by
firstly establishing that the circularity quotient is effectively
the optimal coefficient of an LMMSE estimator that estimates
the complex conjugate of a signal from the original signal
itself. The proposed algorithm then utilises an adaptive filter
weight to track the circularity quotient of a signal in real time
and overcomes the issues mentioned in (a) – (c) above.

II. RELATIONSHIP BETWEEN A COMPLEX VARIABLE AND
ITS CONJUGATE

Deterministic case. Consider the problem of finding a linear
mapping that relates a deterministic variable, z̃ = |z̃|ej∠z̃ ∈ C,
with magnitude |z̃| and phase ∠z̃, and its complex conjugate,
z̃∗ = |z̃|e−∠z̃ . This mapping has the form

z̃∗ = w∗z̃ (2)

The solution for the coefficient w is thus

w =
z̃

z̃∗
=

z̃2

|z̃|2
= ej2∠z̃ (3)
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Physically, the coefficient w in (2) rotates the complex
variable z̃ by an angle of −2∠z̃.

Stochastic case. Now, consider the problem of using a zero-
mean r.v. z ∈ C to estimate its complex conjugate, that is

ẑ∗ = w∗z (4)

where ẑ∗ denotes the estimate of the complex conjugate of z
and w is the coefficient that relates the two variables. Unlike
(3), every realization of the r.v. in the data stream has a
different phase and we require a stochastic solution.

Our aim is therefore, to find an estimate of w that minimizes
the estimation error, e = ẑ∗ − z∗, across all realizations of z.
To this end, we propose to employ minimum mean square
error (MMSE) estimation whereby the optimal value of w is
found by minimising the cost function

JMSE = E
{
|e|2
}

= E
{
|z∗ − ẑ∗|2

}
(5)

The optimal value of w, denoted by wopt, that minimizes the
cost function JMSE is given by the Wiener solution

wopt = c−1r (6)

where c = E {zz∗} is the covariance of the input data and
r = E {z(z∗)∗} is the cross-covariance between the desired
signal z∗ and the input z. Thus, the Wiener solution becomes

wopt = c−1r =
E
{
z2
}

E {|z|2}
(7)

Given that for our single-tap case, p = E
{
z2
}

and c =
E
{
|z|2
}

, we finally have

wopt =
p

c
= ρ (8)

Remark #1: From (1) and (8), the circularity quotient can
be interpreted as the LMMSE solution for estimating the
complex conjugate of a random variable from the original
random variable itself.

Finding the Wiener solution requires the knowledge of the
true statistics of the data (in our case, c and p) which is
typically not available. As block based estimators for the
Wiener solution are inadequate for non-stationary signals, we
next develop an adaptive estimator.

III. PROPOSED ALGORITHM

Interpreting the circularity quotient as the optimal Wiener
solution for estimating the complex conjugate of a r.v. from
the original r.v. enables us to configure an adaptive filter, in
our case, the complex least mean square (CLMS), to track
the circularity quotient in real time. The proposed circularity
tracking algorithm is

ẑ∗k = w∗kzk (9a)
ek = z∗k − ẑ∗k (9b)

wk+1 = wk + µe∗kzk (9c)

where the parameter µ in (9c) is the step-size which governs
the convergence of the algorithm [11], while the degree of
second order circularity is represented by the weight wk.

As CLMS only uses instantaneous estimates of the data
statistics, the weights can only asymptotically approach their
optimal value, and we need to analyse the contributions of
the bias and variance of parameter estimates to the total mean
square error.

Mean behaviour. By substituting the error ek = z∗k − w∗kzk
into the CLMS recursion in (9c), we have

wk+1 = wk + µ(z2k − wk|zk|2) (10)

so that the weight error, vk , p
c − wk, becomes

vk+1 = vk − µvk|zk|2 − µz2k + µ
p

c
|zk|2 (11)

Given that E
{
z2k
}

= p and E
{
|zk|2

}
= c, taking the

expectation of (11) and using the independence assumption
[12] yields

E {vk+1} = (1− µc)E {vk} (12)

so that the convergence condition |1 − µc| < 1, leads to the
stability bound

0 < µ <
2

c
(13)

where c is the covariance (power) of the input signal zk. Thus,
the algorithm is asymptotically unbiased and its stability in
the mean is identical to that of the CLMS algorithm.

Remark #2: The mean behaviour of the proposed circularity
tracker is not affected by the degree of circularity of the input
signal.

Mean square behaviour. The covariance of the weight error
of our circularity tracker is given by

Kk+1 , E
{
|vk+1|2

}
= E

{∣∣∣vk − µvk|zk|2 − µz2k + µ
p

c
|zk|2

∣∣∣2} (14)

Assuming Gaussian data, the fourth order moments in (14)
can be decomposed into a combination of second order mo-
ments as E

{
|zk|4

}
= 2c2 + |p|2, E

{
z2k|zk|2

}
= 3pc and

E
{
z∗2k |zk|2

}
= 3p∗c. After some algebraic manipulations, the

weight error covariance becomes

Kk+1 = θKk + βRe {p∗v̄k}+ α (15)

where the non-recursive terms are θ = (2c2+|p|2)µ2−2cµ+1,
β = 2µ2c[1− |p|

2

c2 ] and α = µ2c2[ |p|
4

c4 − 3 |p|
2

c2 + 2]. The term
v̄k , E {vk} refers to the mean of the weight error at time
instant k, while the operator Re {·} denotes the real part of a
complex number.

The recursion for the weight error covariance, Kk, involves
an additional time varying term, Re {p∗v̄k}, and its evolution
can be analysed by multiplying Equation (12) by p∗ to give

Re {p∗v̄k+1} = (1− µc)Re {p∗v̄k} (16)
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This allows us to formulate the following vector recursion
involving (15) and (16)[

Kk+1

Re {p∗v̄k+1}

]
=

[
θ β
0 γ

]
︸ ︷︷ ︸

,A

[
Kk

Re {p∗v̄k}

]
+

[
α
0

]
(17)

where γ = (1−µc). For the mapping in (17) to be contractive,
all the eigenvalues of A should lie within the unit circle. Since
A is an upper triangular matrix, its eigenvalues are θ and γ.
The convergence condition |γ| = |1 − µc| < 1 was already
addressed in the analysis of the convergence in the mean in
(13). The second stability condition, θ < 1, is satisfied when

(2c2 + |p|2)µ2 − 2cµ < 0 (18)

which leads to the bound on the learning rate µ

0 < µ <
2

c(2 + |p|2
c2 )

=
2

c(2 + |ρ|2)
(19)

Remark #3: Unlike the condition for stability in the mean,
the mean square stability depends on the degree of circularity
of the signal. For proper data, ρ = 0, and the condition in (19)
becomes µ ≤ 1/c. Since |p| ≤ c [9], for highly non-circular
data we have µ ≤ 2

3c .

Steady state mean square behaviour. Assuming that the step-
size µ satisfies the condition in (19), the covariance of the
weight error, Kk = E

{
|vk|2

}
, then converges to a steady-state

value of

lim
k→∞

Kk =
α

1− θ
= µc

(
1− |p|

2

c2

)(
2− |p|

2

c2

)
2− µc

(
2 + |p|2

c2

) (20)

Thus, the estimate of the circularity quotient has a steady-state
error power that is approximately proportional to µ for small
step-sizes. The weight error covariance depends on the degree
of impropriety of the signal and is lower for signals that are
less proper. Moreover, we can see that for small µ

lim
k→∞

Kk ≤ µc+O(µ2) (21)

where equality holds when zk is proper.

IV. SIMULATIONS

For all the simulations, the CLMS was configured with
a filter length L = 1, step-size µ = 0.01, input data zk
and desired signal z∗k . The filter weight was initialized as
w0 = 0.5 + 0.5j.
Single-channel data. In the first set of simulations, we demon-
strate the circularity tracking ability of the proposed algorithm
on a synthetically generated signal that was constructed by
concatenating three segments of zero-mean white Gaussian
signals, zi,k, with different properties, where

zi,k = xi,k + jyi,k zi ∼ N (0, c, pi), i = {1, 2, 3} (22)

These segments had the same covariance, c = 1, but different
pseudocovariances, pi, and thus different degrees of circularity,
|ρi| (see Table I).

Sample, k 1− 1000 1001− 2000 2001− 3000
pi 0.8j 0.6 + 0.4j 0

TABLE I: Pseudocovariances, pi, of the Gaussian signals.
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Fig. 1: The real and imaginary parts of the evolution of the
CLMS weights when tracking circularity.

Figure 1 shows the evolution of the weight estimates within
the proposed algorithm. Observe that the algorithm was able
to converge to the accurate circularity quotients within 300
samples.

Next, we evaluated our algorithm on complex wind data
which was sampled at 50 Hz and measured as a bivariate
signal of wind speeds in the East-West and North-South
directions, denoted respectively by sE and sN. The complex
wind representation is therefore given by s = sE + jsN [13].

We considered three wind regimes of different dynamics:
the “low”, “medium” and “high” regimes. Figure 2 shows
the circularity diagram of empirical distributions of the real
and imaginary parts of the wind signal for these regimes,
where 98.8% (2.5 standard deviations) of the samples are
contained within the ellipses. The circularity diagram suggests
that the higher the wind speeds, the higher the degree of non-
circularity. This is physically meaningful, as high winds are
highly directional, with dominant power in a narrow direction,
resulting in a greater degree of non-circularity.

Figure 3 shows the estimates of the circularity coefficient,
|ρ|, under low, medium and high wind regimes. The circularity
tracker verifies the observation that the higher the wind speed,
the greater its degree of non-circularity. Moreover, the
advantage of the proposed algorithm compared to existing
block based algorithms is obvious – it is able to track the
degree of impropriety in a non-stationary environment.

Multi-channel data. Consider a multiple input single
output (MISO) channel with two transmitters and one
receiver. The transmitters transmit the same binary sequence
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Fig. 2: The circularity diagram of wind speeds in the low,
medium and high dynamic regimes.
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Fig. 3: The estimate of circularity coefficient for wind signals
in the low, medium and high dynamic regimes using the
proposed algorithm.

bk ∈ {±1} and the channel gain from a transmitter ` to the
receiver is given by h`,k = |h`,k|ejφ`,k for ` ∈ {1, 2}. The
received signal rk is corrupted by zero mean circular white
Gaussian noise ηk, and is given by

rk = bk|h1,k|ejφ1,k + bk|h2,k|ejφ2,k + ηk (23)

The objective is to identify whether the received signal rk
is circular or non-circular, which in turn can be used deduce
if any phase information can be extracted from rk [4]. To
assess the performance of the circularity tracker in detecting
a change in the rotation invariance property of the signal,
we constructed two rotationally invariant channels (φ1,k and
φ2,k are drawn from a uniform distribution U(0, 2π)) for
samples k = 1, . . . , 1500. For samples k = 1501, . . . , 3000,
while φ1,k ∈ U(0, 2π), the phase of channel two, φ2,k, was
drawn from a zero mean Gaussian distribution with variance
σ2
φ = 0.04, thus making the channel (and the received signal)

non-circular. Figure 4 shows that the proposed circularity
tracker indeed converges to a new steady state value from
time instant 1501, thus correctly indicating a change in the
properties of the channel. For this application, only the change
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Fig. 4: The circularity coefficient estimate of the received
statistic indicates a change in the channel properties.

point and not the actual values of the circularity coefficient is
of interest.

V. CONCLUSION

A novel algorithm for the estimation of the degree of
circularity of a complex-valued signal has been proposed. This
has been achieved by tracking the evolution of the CLMS
weight that estimates the complex conjugate of a signal from
the original signal itself. The conditions for the stability in the
mean and mean square have been derived, and their relation-
ship with the degree of circularity has been established. The
proposed circularity estimator has been verified on complex-
valued wind data, synthetically generated Gaussian data, and
a multi-channel communication example.
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