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Abstract—Motivated by the need for decentralized estima-
tion in the electricity grid, we apply the diffusion augmented
complex least mean square (D-ACLMS) algorithm to estimate
the frequency of a three-phase power system under balanced
and unbalanced voltage conditions in a distributed setting. In
addition to using local measurements, the diffusion adaptation
strategy allows nodes to share their frequency estimates with
neighbouring nodes which enables the network to exploit multiple
measurements of the voltage signal. The analysis provides con-
vergence conditions of the D-ACLMS and also gives the bounds
on parameter values which guarantee that the diffusion type
of adaptation stabilizes the network. Simulations under both
balanced and unbalanced conditions support the analysis.

Index Terms—Complex least mean square (CLMS), widely lin-
ear modelling, augmented statistics, diffusion adaptation, three-
phase power system.

I. INTRODUCTION

The rapid growth in the penetration of intermittent power

sources, distributed generation and the abundance of data from

sensor networks call for the decentralization of parameter

estimation algorithms [1]. Decentralized estimation algorithms

also have the benefit of requiring less power for communica-

tion (since there is no fusion centre to send the data to) and are

more robust to sensor failures and changes in network topology

[2]. An important parameter that is routinely estimated in the

electricity grid is the system or mains frequency.

Utility companies and electricity grid operators rely on the

estimate of the mains frequency as it indicates the balance

between generation and load. If demand is greater than genera-

tion, the frequency drops, whereas if generation is greater than

demand, the frequency rises. The need for fast and accurate

frequency estimates for the control of the grid is also important

because grid operators have a legal requirement to keep the

nominal frequency between a certain range; in the U.K., for

example, the range is between 49.5 Hz and 50.5 Hz.

The system frequency can be estimated using one of the

three-phase voltage signals or a projection of the three-phase

voltage onto two orthogonal axes (known as α-β axes) [3]. The

latter method is preferred as it utilizes the information present

in all three phases [4]. Therefore, we shall restrict our discus-

sion to α-β voltages. Under balanced operating conditions, the

α-β voltage can be represented as a strictly linear complex-

valued autoregressive (AR) process and standard strictly linear

estimators like the complex least mean square (CLMS) [5],

recursive least squares (RLS) [6], [7] and complex Kalman

filter [8] can be used to estimate the system frequency.

The estimators mentioned thus far assume a balanced op-

erating condition and consequently form a biased estimate

of the frequency when there is an imbalance (e.g. voltage

sag). Our previous work in employing widely linear modelling

to estimate the system frequency resulted in the augmented

CLMS (ACLMS) [9], augmented complex Kalman filter [10],

and augmented minimum variance distortionless response

(AMVDR) spectrum [11] algorithms. These widely linear

algorithms are able to estimate the system frequency under

balanced and unbalanced voltage conditions by using the input

vector and its conjugate.

In this work, we extend the ACLMS based frequency

estimation method in [9] to a distributed setting where nodes

in a network (each using the ACLMS locally) collaborate to

estimate the system frequency using a diffusion adaptation

strategy [12], [13]. The distributed version of the ACLMS,

referred to the diffusion ACLMS (D-ACLMS) [14], is suitable

for exploiting the diversity in having multiple measurements

of the system voltage. In the diffusion adaptation setting, each

node uses an adaptive algorithm (in this case, the ACLMS)

to estimate a parameter of interest and combines it with the

estimates it receives from neighbouring nodes. The application

of the D-ACLMS for a frequency estimation task is desirable

because of its

1) adaptivity, making it suitable for real-time estimation of

the system frequency;

2) ability to estimate the frequency under balanced and

unbalanced operating conditions;

3) implementation in a distributed manner, which elimi-

nates the need for a fusion centre [15].

The rest of this paper is organized as follows: in Section

II, the D-ACLMS is reviewed for a general setting. In Section

III, we show how the D-ACLMS is applied to estimate the

frequency. Section IV presents the convergence analysis for

the algorithm and finally Section V contains simulations of

the D-ACLMS performing a frequency estimation task in a

distributed sensor network.
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NOTATION

a,a,A Scalar, column vector, matrix;

(·)T , (·)H Transpose, Hermitian transpose
⊗ Kronecker product;
IM M ×M identity Matrix;
1N N × 1 vector of ones;
yi,k Local output of node i at time k;
{di,k, zi,k} Local desired signal and input vector of node i at time

k;

j Complex number,
√

−1;
(·)∗ Complex conjugation;
E {·} Statistical expectation operator;
ρ(A) Spectral radius (maximum eigenvalue) of a matrix A;
Re {·} , Im {·} Real, Imaginary parts of a complex number;

II. BACKGROUND: DIFFUSION AUGMENTED COMPLEX

LEAST MEAN SQUARE

We consider a collaborative estimation task that is carried

out by several nodes in a network of N nodes. As shown in

Figure 1, a node i has communication links with other nodes in

its neighbourhood, Ni. The cardinality of the neighbourhood,

denoted by |Ni|, is the number of nodes the node i is

connected to, including itself.

neighborhood of Node i

node i

connection

Fig. 1. A general distributed network showing a node i and its neighbour-
hood.

Each node receives measurement data {di,k, xi,k} at every

time instant k, where di,k and xi,k are respectively the desired

signal and input vector at node i. The desired signal di,k ∈ C

and input vector xi,k ∈ C
M are assumed to be related through

a widely linear model, given by

di,k = hH
o xi,k + gH

o x∗

i,k + ηi,k. (1)

The measurement noise, represented by ηi,k, is assumed to be

zero-mean, and temporally and spatially uncorrelated, so that

E
{
ηi,kη

∗

j,m

}
= σ2

ηδ(i− j)δ(k −m) (2)

where σ2
η denotes the variance of ηi,k and δ(·) is the Kronecker

delta function. For convenience, the weight vectors ho, go and

input vectors xi,k, x∗

i,k shall be represented using the compact

augmented notation as

wo =

[
ho

go

]
zi,k =

[
xi,k

x∗

i,k

]

so that the signal model in (1) can be written as

di,k = wH
o zi,k + ηi,k. (3)

where zi,k = At node i, the estimate of the local desired

signal, di,k, is therefore given by a widely linear model

yi,k = wH
i,kzi,k (4)

where the augmented weight vector wi,k and augmented input

vector zi,k are complex-valued vectors of length 2M . The

error ei,k between the desired signal and the estimate is given

by

ei,k = di,k − yi,k. (5)

At each node, the diffusion augmented complex least mean

square (D-ACLMS) algorithm performs a stochastic gradient

descent minimization procedure on two cost functions in

succession. Firstly, all the nodes minimize the squared error

(SE) cost function

J (SE)
i,k = |ei,k|2 = |di,k − yi,k|2 (6)

using their local measurements di,k and input vectors zi,k.

Note that the squared error cost function is used to approxi-

mate the mean square error (MSE), E
{|ei,k|2

}
, at each node.

The SE cost function is minimized using a stochastic gradient

descent framework [14]

ψi,k+1 = wi,k − μ
∂J (SE)

i,k

∂w∗

∣∣∣∣
w=wi,k

(7)

where the step-size μ controls the speed of convergence along

the error performance surface. The term ψi,k+1 is used instead

of wi,k+1 to indicate that the estimate in the iteration in (7)

is an intermediate one and will be succeeded by another step.

The partial derivative of J (SE)
i,k is then found [16], [17]

∂J (SE)
i,k

∂w∗
=

∂[ei,ke
∗

i,k]

∂w∗
= e∗i,k

∂ei,k
∂w∗

+ ei,k
∂e∗i,k
∂w∗

(8)

Since ei,k = di,k −wH
i,kzi,k,

∂ei,k
∂w∗

= − zi,k (9)

which makes the adaptation step

ψi,k+1 = wi,k + μe∗i,kzi,k. (10)

The nodes then transmit their local estimates ψi,k+1 to neigh-

bouring nodes so that each local node performs the second

step of the adaptation process, whereby every node minimizes

the difference between its own weight estimate in (10) and

the weights in its neighbourhood Ni, by minimizing the cost

function

J (AV)
i,k =

∑

�∈Ni

b�i‖ψ�,k+1 −ψi,k+1‖2 (11)

which is the weighted norm (using weights b�i) of the dif-

ference between the estimates in the neighbourhood. The
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minimization of this cost function is also carried out using

the stochastic gradient descent method where

wi,k+1 = ψi,k+1 − μ
∂J (AV)

i,k

∂ψ∗

∣∣∣∣
ψ=ψi,k+1

(12)

= ψi,k+1 +

N∑

�=1

μb�i(ψ�,k+1 −ψi,k+1) (13)

Rearranging the equation gives us

wi,k+1 = (1−
∑

� �=i

μb�i)ψi,k+1 +
∑

��=i

μb�iψ�,k+1 (14)

Defining a�i = μb�i we can see that aii = 1−∑��=i a�i, which

gives us

wi,k+1 =

N∑

�=1

a�iψ�,k+1 (15)

The weighting coefficients (sometimes referred to as the “trust

coefficients”) are zero, a�i = 0, if the node i and � are not

connected to each other. For sufficiently small step-sizes, the

combiners are also positive, a�i ≥ 0, and are chosen so that

they sum up to one [18], that is

N∑

�=1

a�i = 1 =⇒ aii = 1−
∑

��=i

a�i (16)

Although the determination of the optimal weights for an

arbitrary network of nodes is challenging without accurate

knowledge of the data statistics for every node [19], it is

possible to set combination rules based on information like the

cardinality of the neighbourhood. An example of combination

methodology is the Metropolis rule, where [18]

a�i =

⎧
⎨

⎩

1/max{|Ni|, |N�|} if i �= � are connected

1−∑
i�=� a�i if i = �

0 otherwise.
(17)

A discussion about the choice of combiners is out of the scope

of this paper and we refer the reader to [18].

III. D-ACLMS FOR DISTRIBUTED FREQUENCY

ESTIMATION

A. Modelling a Three Phase System

The three-phase voltages of a power system measured at a

single node (in a noise-less environment) can be represented

with a vector⎡

⎣
va,k
vb,k
vc,k

⎤

⎦ =

⎡

⎣
Va,k cos(ωkΔT + φa)

Vb,k cos(ωkΔT + φb − 2π/3)
Vc,k cos(ωkΔT + φc + 2π/3)

⎤

⎦ (18)

where the magnitudes Va,k, Vb,k, and Vc,k are the peak values

of these sinusoids, ΔT = 1
fsamp

is the sampling interval, φ is

the phase shift, k is the time index and ω = 2πf0, where f0 is

the system frequency we are interested in. A power system is

said to be in a balanced operating condition when: (a) All the

three signals have the same peak voltage, i.e. Va,k = Vb,k =

Vc,k = V . (b) The three voltages have a phase shift of exactly

120 degrees, i.e. φa = φb = φc = φ.

The three-phase signal can be projected onto two orthogonal

axes, forming vα and vβ with the Clarke’s Transform (also

known as the αβ-transform)

⎡
⎣
v0,k
vα,k
vβ,k

⎤
⎦ =

√
2

3

⎡
⎢⎣

√

2
2

√

2
2

√

2
2

1 − 1
2 − 1

2

0
√

3
2 −

√

3
2

⎤
⎥⎦

︸ ︷︷ ︸
C=Clarke’s Matrix

⎡
⎣
va,k
vb,k
vc,k

⎤
⎦ (19)

A third component, known as the zero-sequence voltage, v0,k,

is needed to make the transformation invertible. Under a

balanced condition, the transformation is designed to make

the third component zero.

The α and β components can be conveniently represented

as a complex number by setting

vk = vα,k + jvβ,k (20)

Under balanced conditions, the zero-sequence voltage v0,k is

equal to zero and the complex voltage is a complex exponential

vk = Aej(ωkΔT+φ) (21)

When the system is in a temporary imbalance, like the ones

classified by [20], the complex-valued representation in (21)

is incorrect. The general form of the complex-valued voltage

that arises from the Clarke’s Transform is

vk = Ake
j(ωkΔT+φ) +Bke

−j(ωkΔT+φ) (22)

where

Ak =

√
6(Va,k + Vb,k + Vc,k)

6
(23)

Bk =

√
6(2Va,k − Vb,k − Vc,k)

12
− j

√
2(Vb,k − Vc,k)

4
. (24)

The coefficient Bk becomes zero when the system is balanced

and this model collapses into the one shown in (21).

B. Adaptive Estimation of Frequency

When there is an imbalance in the system, the coefficient

Bk is non-zero and the complex signal is non-circular [21].

We will assume that at a node i, the complex-valued voltage

shown in (22) is corrupted by measurement noise ηi,k, so that

vi,k = Ai,ke
j(ωkΔT+φ) +Bi,ke

−j(ωkΔT+φ) + ηi,k. (25)

We re-introduce the subscript i to indicate that we are moving

from a single node setting to a distributed setting. Under a

balanced operating condition (when the term Bi,k = 0), the

complex voltage in (25) can be represented by a strictly linear

Auto-Regressive (AR) model of order one,

vi,k+1 = w∗

ovi,k + ηi,k (26)

where wo = e−jωΔT . Any strictly linear adaptive filter can be

used to estimate e−jωΔT where the system frequency can then

be obtained from the phase of the coefficient [5]. When there

is an imbalance in the system, the term Bk in equation (22)
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is non-zero and this makes the strictly linear AR(1) model in

(26) inadequate to describe the relationship between vk and

vk+1.

The widely linear AR(1) model for the complex voltage,

however, can be used to model the data for balanced and

unbalanced operating conditions and is given by

vi,k+1 = h∗

ovi,k + g∗ov
∗

i,k + ηi,k. (27)

Assuming that Ai,k+1 ≈ Ai,k and Bi,k+1 ≈ Bi,k for a high

sampling frequency [9]

ejωΔT = h∗

o + g∗o
B∗

i,k

Ai,k

, e−jωΔT = h∗

o + g∗o
Ai,k

Bi,k

. (28)

Using a widely linear estimator for the signal model (27),

v̂i,k+1 = h∗

kvi,k + g∗kv
∗

i,k, the frequency can then be estimated

as

fi,k =
1

2πΔT
tan−1

⎛
⎝
−Im

{
hi,k + u∗

i,kgi,k

}

Re

{
hi,k + u∗

i,kgi,k

}

⎞
⎠

ui,k =
j

g∗k

(
Im {hi,k}+

√
[Im {hi,k}]2 − |gi,k|2

)
(29)

For the full derivation, we refer to [9], [22]. The frequency

estimation given by expressions (29) can be accomplished with

any widely linear estimator. We use the D-ACLMS to track

this frequency due to the benefits it provides as described

in Section I. The D-ACLMS algorithm is summarized in

Algorithm 1.

Algorithm 1 Diffusion Augmented Complex Least Mean

Square (D-ACLMS) for Frequency Estimation

Input data: vi,k = [vi,k, v
∗

i,k]
T

Desired sequence: vi,k+1

1: for Nodes i = {1, . . . , N} do
2: v̂i,k+1 = wH

i,kvi,k where wi,k = [hi,k, gi,k]
T

3: ei,k = vi,k+1 − v̂i,k+1

4: ψi,k+1 = wi,k + μe∗i,kvi,k

5: wi,k+1 =
∑N

�=1 a�iψi,k+1

6: fi,k = 1
2πΔT

tan−1

(
−Im{hi,k+u∗

i,kgi,k}
Re{hi,k+u∗

i,k
gi,k}

)

where ui,k = j
g∗

k

(
Im {hi,k}+

√
[Im {hi,k}]2 − |gi,k|2

)

7: end for

IV. CONVERGENCE OF THE D-ACLMS

Consider a network with N adaptive filters, each with a

filter length of 2M . The factor of two is present due to the

use of augmented input and weight vectors. Consider a block-

diagonal input matrix where each augmented input vector is

placed in a separate column

Zk =

⎡
⎢⎢⎢⎣

z1,k 0 · · · 0

0 z2,k · · · 0

0 0
. . . 0

0 0 · · · zN,k

⎤
⎥⎥⎥⎦ , Zk ∈ C

2NM×N (30)

and 0 is a 2M × 1 column of zeros. The other variables in

the network are

yk =
[
y1,k, . . . , yN,k

]T
, yk ∈ C

N×1 (31)

dk =
[
d1,k, . . . , dN,k

]T
, dk ∈ C

N×1 (32)

wk =
[
wT

1,k, . . . ,wT
N,k

]T
, wk ∈ C

2NM×1 (33)

ψk =
[
ψT

1,k, . . . ,ψT
N,k

]T
, ψk ∈ C

2NM×1 (34)

The weights a�i are placed in an N × N matrix, where the

weights that node i assigns to nodes � ∈ Ni are placed in the

i-th column of A

A =

⎡
⎢⎢⎢⎣

a11 · · · a1i · · · a1N
a21 · · · a2i · · · a2N

... · · · ...
. . .

...

aN1 · · · aNi · · · aNN

⎤
⎥⎥⎥⎦ , A ∈ R

N×N . (35)

For convenience we also assume that the matrix A is sym-

metric AT = A. This condition makes A a doubly stochastic

matrix for which the rows and columns add up to one, that is

1T
NA = 1T

N , A1N = 1N (36)

Finally, we construct a matrix A

A = A⊗ I2M A ∈ R
2NM×2NM (37)

where I2M is a 2M -by-2M identity matrix. Consequently,

the D-ACLMS algorithm for the whole network can be repre-

sented by

yk = ZT
kw

∗

k (38)

ek = dk − yk (39)

ψk+1 = wk + μZke
∗

k (40)

wk+1 = Aψk+1 (41)

assuming all the nodes have the same step-size μ. The weight

update from (40) and (41) can be combined into a single step

as

wk+1 = Awk + μAZke
∗

k (42)

Assuming that all the nodes are estimating the same optimal

weight vector wo,ind ∈ C2M×1, we are able to construct the

optimal weight vector for the network by stacking N copies of

wo,ind on top of each other to form wo ∈ C2NM×1. Defining

the weight error vector w̃k � wo −wk and recognizing that

Awo = wo allows us to formulate the weight error recursion

as

w̃k+1 = Aw̃k − μAZk

(
ZH

k w̃k + η∗

k

)
(43)

where ηk is the vector containing measurement noise for all

the nodes. Applying the statistical expectation operator and

assuming that the measurement noise is independent of the

input

E {w̃k+1} = A
[
I2MN − μE

{
ZkZ

H
k

}]
︸ ︷︷ ︸

�B

E {w̃k} (44)
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The matrix E
{
ZkZ

H
k

}
is a block-diagonal matrix with the

augmented covariance matrices of the input at each node in

the diagonal

E
{
ZkZ

H
k

}
=

⎡
⎢⎢⎢⎣

R1 02M · · · 02M

02M R2 · · · 02M

...
...

. . .
...

02M 02M · · · RN

⎤
⎥⎥⎥⎦ (45)

where Ri = E

{
zi,kz

H
i,k

}
is the augmented covariance matrix

of the input at node i and 02M is a 2M -by-2M matrix of

zeros. Therefore, the weight error recursion can be written as

E {w̃k+1} = ABE {w̃k} (46)

For this recursion to be a contraction, the spectral radius of

the matrix AB has to be less than unity. The spectral radius

of a matrix, is bounded by any induced matrix norm [23]

ρ(AB) ≤ ‖AB‖ ≤ ‖A‖‖B‖ (47)

Since the norm of a doubly stochastic matrix is unity,

ρ(AB) ≤ ‖B‖. As B is a Hermitian block-diagonal matrix,

its block maximum norm is equal to its spectral radius

‖B‖b,∞ = ρ(B) which implies that

ρ(AB) ≤ ρ(B) (48)

for any doubly stochastic matrix A [18].

Remark: The diffusion strategy enhances the stability range

of the network by reducing the spectral radius of AB.

V. SIMULATIONS

The simulations for the D-ACLMS was based on a network

of N = 6 nodes. Figure 2(a) shows a sparsely connected

network, where each node only has access to a maximum of

two other nodes, whereas Figure 2(b) shows a network with a

larger number of connections between the nodes. Unless stated

otherwise, the network with the least number of connections

is chosen (Figure 2(a)) because it serves as a worst-case

scenario for the performance gain as increasing the number

of connections only improves the diffusion algorithm.

(a) Sparsely connected (b) Densely connected

Fig. 2. A six-node network with two different levels of connectivity.

Each node in the network has access to noisy measurements

of a common complex-valued α-β voltage.

vi,k = vα,k + jvβ,k + ηi,k ηi ∼ N (0, σ2
η) (49)

where the measurement noise, ηi,k, is modelled as complex-

valued circular white Gaussian noise with the same variance,

σ2
η , at each node. The complex-valued α-β voltage is generated

by applying the Clarke’s transformation on a three-phase

voltage signal that oscillates at a constant 50 Hz.

[
vα,k
vβ,k

]
=

√
2

3

[
1 − 1

2 − 1
2

0
√

3
2 −

√

3
2

]
Re

⎧
⎨

⎩

⎡
⎣
V̄a

V̄b

V̄c

⎤
⎦ ejωkΔT

⎫
⎬

⎭ (50)

where V̄a, V̄b and V̄c are phasor representations of the three-

phase voltage. The sampling frequency fsamp = 1/ΔT is

chosen to be 2 kHz. Under a balanced operating condition,

V̄a = 1, V̄b = − 1
2 − j

√

3
2 and V̄c = − 1

2 + j
√

3
2 . An imbalance

in the system causes voltage sags that can be represented by

changing the phasors as shown in Table I [20].

Voltage Sag V̄a V̄b V̄c

Type A γ −
γ

2
− j

√

3γ

2
−

γ

2
+ j

√

3γ

2

Type B γ −
1

2
− j

√

3

2
−

1

2
+ j

√

3

2

Type C 1 −
1

2
− j

√

3γ

2
−

1

2
+ j

√

3γ

2

Type D γ −
γ

2
− j

√

3

2
−

γ

2
+ j

√

3

2

TABLE I
VOLTAGE SAGS AND THEIR PHASOR REPRESNTATIONS.

The D-ACLMS was benchmarked against the diffusion-

CLMS (D-CLMS) which uses a strictly linear model for the

data under a distributed setting. Both the D-CLMS and D-

ACLMS were used with the same input and desired signals

and were configured for the same network topology. The signal

was generated under a Type D voltage sag, with γ = 0.9.

(a) Circularity Plot (b) Phasor Representation

Fig. 3. Geometric and phasor diagrams of the voltage under a Type D
imbalance.

The D-CLMS and D-ACLMS weights were initialized ran-

domly and the same learning rate, μ = 0.2 was used for each

filter across the network. Although having different learning

rates introduces some diversity in the network, we restrict

ourselves to the basic case of using the same learning rate.
The top panel of Figure 4 shows the average mean square

error (MSE) of the frequency estimate of across the nodes

using the D-CLMS and D-ACLMS at different levels of mea-

surement noise power. The average MSE value was calculated
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by averaging the MSE of the frequency estimate from all the

nodes obtained using 100 independent trials. The formula is

given by

MSEav = 10 log10

[
1

100 · 6
100∑

m=1

6∑

i=1

(f
(m)
i,k − f0)

2

]
(51)

where f0 = 50. The top panel of Figure 4 shows that the D-

CLMS has a higher average MSE level than the D-ACLMS

when there is an imbalance in the system. This is expected as

the D-CLMS lacks the modelling capability of D-ACLMS to

model voltage imbalances in the system.

To observe the performance of each node in the six node

network, the individual MSEs of the nodes (at SNR = 60 dB)

are plotted on the bottom panel of Figure 4. The MSE values

at the nodes with and without the diffusion strategy shows that

sharing the frequency estimates reduces the steady state MSE

for all the nodes in the network.

Fig. 4. Top panel: The average MSE of the frequency estimate of
D-ACLMS is lower than that of the D-CLMS under a Type D sag.
Bottom panel: MSE for each node in the network with and without cooperation
at SNR = 60 dB shows that the diffusion strategy reduces the steady state
error for all the nodes.

Figure 5 shows the average MSE across the nodes for

various levels of connectivity in the network. As the connec-

tivity between the nodes increases from a sparse to a dense

level (where all the nodes are allowed to communicate with

each other), the average steady-state MSE decreases. This is

because as the number of connections between the nodes are

increased, the network behaves like a centralized one where

the data from the nodes are aggregated and processed at a

fusion center.

Figure 6 shows the frequency estimate given by the the

D-ACLMS and D-CLMS at a randomly selected node in the

network. The system was simulated with an SNR level of 60

dB and with a balanced set of three-phase voltages with a

Fig. 5. MSE for the D-ACLMS decreases with increasing connectivity at an
SNR level of 60 dB.

temporary Type D imbalance between 1 s and 2 s. The D-

CLMS oscillates during the Type D imbalance at twice the

nominal frequency due to under-modelling errors [22]. The

D-ACLMS is able to estimate the 50 Hz frequency accurately

except during the transition period between the operating

conditions (1 s to 1.08 s and 2 s to 2.08 s).

Fig. 6. Frequency estimate at a randomly selected node with a temporary
Type D imbalance between 1 s and 2 s.

VI. CONCLUSION

We have applied the diffusion augmented complex least

mean square (D-ACLMS) algorithm for a frequency estima-

tion task in a distributed sensor network. The D-ACLMS

algorithm benefits from the widely linear modelling from the

ACLMS and has the ability to reduce steady-state MSE by

exploiting multiple measurements in a distributed setting. The

convergence analysis shows that the doubly stochastic matrix

used in the diffusion strategy is able to stabilize the network.

Simulations show that the D-ACLMS has a lower steady-state

MSE compared to the D-CLMS for different levels of SNRs.

The diffusion strategy also is shown to reduce the steady-state

MSE of all the nodes in a network.
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