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Steady-State Behavior of General Complex-Valued
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Sithan Kanna, Student Member, IEEE, and Danilo P. Mandic, Fellow, IEEE

Abstract—A novel methodology to bound the steady-state mean
square performance of the diffusion complex least mean square
(D-CLMS) and the diffusion widely linear (augmented) CLMS
(D-ACLMS) algorithm is proposed. This is achieved by exploiting
the almost identical nature of the steady-state filter weights at all
nodes. The proposed approach allows for the consideration of the
second-order terms in the recursion for the weight error covari-
ance matrix, without compromising the mathematical tractability
of the problem. The closed form expressions for the mean square
deviation (MSD) and excess mean square error (EMSE) for both
the D-CLMS and D-ACLMS allow for the performance of the
algorithms to be quantified as a function of the noncircularity of
the input data.

Index Terms—Augmented statistics, diffusion adaptation, dis-
tributed optimization, least mean square (LMS), widely linear.

I. INTRODUCTION

T HE use of sensor networks for distributed learning tasks
has gained popularity as inexpensive sensors with pro-

cessing and communication technologies are becoming increas-
ingly available. Among the strategies for distributed learning
and optimization, the diffusion strategy has been shown to
provide excellent performance while maintaining the struc-
tural simplicity of standard adaptive filtering algorithms [1].
Moreover, the diffusion strategy was demonstrated to approach
the performance of a centralized implementation, while hav-
ing lower communication requirements and exhibiting greater
robustness to node failures [2].

Although quantifying the performance of diffusion adaptive
networks is not straightforward, as the interactions between
multiple connected adaptive filters add to the complexity of
the analysis, considerable advances have been made in the area
[3], [4]. To make the analysis mathematically tractable, current
approaches assume that the step-sizes are small enough so that
the second-order terms in the analysis can be neglected [4]–[9].
However, this assumption somewhat compromises the steady-
state analysis since important characteristics of the performance
can be influenced by the second-order terms.

To this end, we propose a new method to bound the mean
square performance of an adaptive network while incorporating
the second-order terms in the analyses. The proposed bound is
based on what we refer to as the “similarity conjecture”, which
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states that, upon convergence, the steady-state filter weights in
the network are almost identical. The similarity conjecture is
physically meaningful as it exploits the inherent behavior of
the diffusion scheme in which the individual filters are adapting
toward the same optimal weight, while diffusing their interme-
diate estimates with neighboring nodes. For a fully connected
network, the bound we propose is exact.

The proposed approach is applied to the analysis of the
diffusion complex least mean square (D-CLMS) [3] and its
widely linear counterpart, the diffusion augmented CLMS (D-
ACLMS) [10], [11]. The closed form expressions for the
mean square deviation (MSD) and excess mean square error
(EMSE) allow us to quantify the steady-state performance of
both the D-CLMS and D-ACLMS as a function of the input data
noncircularity; this is not possible with the current methods as
the noncircularity of the input data is a second-order effect that
is neglected if the small step-size theory is used.

Notation: Lowercase letters are used to denote scalars a
boldface letters for column vectors a and boldface uppercase
letters for matrices A. The symbol (·)T is the transpose opera-
tor while (·)H designates the Hermitian transpose operator. The
symbol E [·] represents the statistical expectation operator and
⊗ denotes the Kronecker product. The symbol (·)∗ represents
complex conjugation. An M ×M identity matrix is denoted by
IM while 1N is an N × 1 vector of ones.

II. BACKGROUND

Consider a collaborative estimation task that is carried out
by several nodes in a network of N nodes. A node i is able to
send and receive information from its neighboring nodes in the
neighborhood Ni as shown in Fig. 1.

Each node i receives streaming measurement data
{di,k,xi,k} at every time instant k, where the desired
signal di,k ∈ C and input vector xi,k ∈ C

M×1 are related via a
widely linear model [10]

di,k =hH
optxi,k + gHoptx

∗
i,k + ηi,k, (1)

corrupted with zero-mean white noise ηi,k with variance σ2
η .

Note that the widely linear model in (1) is a generalization of
the standard strictly linear model for which gopt = 0. For the
compactness of the analysis, we shall represent both the strictly
linear and widely linear models using

di,k =wH
optzi,k + ηi,k, (2)

where wopt ∈ C
M×1 and zi,k ∈ C

M×1 with M = M for
strictly linear models and M = 2M for widely linear models;
see Table I for details.

1070-9908 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



KANNA AND MANDIC: STEADY-STATE BEHAVIOR OF GENERAL COMPLEX-VALUED DIFFUSION LMS STRATEGIES 723

Fig. 1. Distributed network with N = 20 nodes.

TABLE I
INPUT AND OPTIMAL WEIGHT VECTORS FOR THE STRICTLY LINEAR

AND WIDELY LINEAR MODELS

For mathematical tractability, we adopt the usual assump-
tions that the data {di,k, zi,k, ηi,k} are zero-mean and that the
following holds [12]:
A1. The input data zi,k are temporally uncorrelated and inde-

pendent over space.
A2. The noise process ηi,k is temporally white and spatially

independent with σ2
η = E

[|ηi,k|2] ∀i.
A3. The input vector zi,k and noise process ηi,k are mutually

independent over time and space.
The task of the network is to estimate the unknown parameter

vector wopt from measurement data {di,k,xi,k}. At each time
instant k, the node i estimateswopt by updatingwi,k via the dif-
fusion augmented complex LMS (D-ACLMS) update scheme
[10]. The D-ACLMS update is a two-step process whereby at
each time instant, the first step is to update the weights using
local measurements, while in the second step, the weights from
the neighboring nodes are combined. This setting of the algo-
rithm is referred to as the adapt-then-combine (ATC) setting
and is given by [12]

Adapt: ψi,k+1 = wi,k + μzi,k(d
∗
i,k − zHi,kwi,k) (3a)

Combine: wi,k+1 =

N∑
�=1

a�iψ�,k+1 (3b)

where the term ψi,k+1 denotes the intermediate update, μ is
the learning rate that is identical throughout the network, and
a�i are the weighting coefficients used by node i to scale the
weights from its neighbors. The weighting coefficients are pos-
itive, a�i ≥ 0, sum up to unity,

∑N
�=1 a�i = 1, and are zero,

a�i = 0, only if the node i is not connected to node � [1]. The
weights a�i can be combined into an N ×N matrix

A =

⎡⎢⎣a11 · · · a1N
...

. . .
...

aN1 · · · aNN

⎤⎥⎦ , A ∈ R
N×N (4)

where the weights that node i assigns to nodes � ∈ Ni are in the
ith column of A. Observe that the matrix A is left-stochastic
since all the columns of the matrix A sum up to unity. The

D-ACLMS algorithm for the network can therefore be
expressed as

Adapt: ψk+1 = wk + μZk

(
d∗k − ZH

kwk

)
(5a)

Combine: wk+1 = ATψk+1 (5b)

where all the filter variables are given by

wk = col{w1,k, . . . ,wN,k}, wk ∈ C
MN×1

ψk = col{ψ1,k, . . . ,ψN,k}, ψk ∈ C
MN×1

dk = col{d1,k, . . . , dN,k}, dk ∈ C
N×1 (6)

Zk =

⎡⎢⎢⎢⎣
z1,k 0 · · · 0
0 z2,k · · · 0

0 0
. . . 0

0 0 · · · zN,k

⎤⎥⎥⎥⎦ , Zk ∈ C
MN×N

A = A⊗ IM , A ∈ R
MN×MN .

The col{·} operator creates a column vector of its arguments.
This setup applies to both the D-CLMS with M = M and
D-ACLMS with M = 2M ; see Table I.

III. MEAN SQUARE ANALYSIS OF THE D-ACLMS

The mean square behavior of the network is analyzed using
the weight error covariance matrix 1

Kk
def
= E

[
w̃kw̃

H
k

]
(7)

where w̃k
def
= w̄opt −wk is the network weight error vector and

the optimal weight vector for the network is w̄opt
def
= 1N ⊗wopt

since all the nodes in the network are estimating the same
optimal weights wopt.

Subtracting w̄opt from both sides of (5a) and (5b), using the
desired signal model in (2) and recognizing that ATw̄opt =
w̄opt enables the network weight error recursion to be formu-
lated as

w̃k+1 = AT
(
w̃k − μR̂kw̃k − μnk

)
(8)

where R̂k
def
= ZkZ

H
k and nk

def
= Zkη

∗
k, while ηk =

col{η1,k, . . . , ηN,k} is the vector containing measurement
noise from all the nodes.

The weight error covariance matrix Kk is obtained by first
post-multiplying both sides of (8) by their Hermitian transpose
to give 2

w̃k+1w̃
H
k+1 = AT

(
w̃kw̃

H
k − μw̃kw̃

H
k R̂k − μR̂kw̃kw̃

H
k

+ μ2 R̂kw̃kw̃
H
k R̂k + μ2nkn

H
k

)
A. (9)

Then, upon applying the statistical expectation operator E [·]
to (9), and employing the assumptions A1– A3, we have

Kk+1 = AT
(
Kk − μKkR− μRKk + μ2RKkR

+ μ2PK̄T
kP + μ2T kR+ μ2σ2

ηR
)
A (10)

where apart from the weight error covariance matrix Kk and
the combination matrix A, all the other matrices are block

1 The weight error covariance matrix is a block matrix in which the ijth

block is given by [Kk ]ij
def
= Kij,k = E

[
w̃i,kw̃

H
j,k

]
.

2 Cross-terms are ignored.
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diagonal. Notice that the network input data statistics are
given by both the covariance and pseudocovariance matrices,
respectively, denoted by R = E

[
ZkZ

H
k

]
and P = E

[
ZkZ

T
k

]
.

It was also necessary to define K̄k and T k, which resulted from

analyzing the block-matrix E

[
R̂kw̃kw̃

H
k R̂k

]
in (9) where the

ijth block is given by

E

[
R̂kw̃kw̃

H
k R̂k

]
ij

= E
[
zi,kz

H
i,kw̃i,kw̃

H
j,kzj,kz

H
j,k

]
. (11)

Using assumption A1, and the well-known Gaussian moment
factorizing theorem, the expression in (11) becomes{

RiKi,kRi +PiK
T
i,kP

∗
i +RiTr{RiKi,k}, i = j

RiKij,kRj , i �= j,

where Ri = E

[
zi,kz

H
i,k

]
and Pi = E

[
zi,kz

T
i,k

]
are,

respectively, the covariance and pseudocovariance matri-
ces of the input vector at node i. This results in
K̄k = bdiag {K1,k, . . . ,KN,k} and the term T k = bdiag
{Tr {R1K1,k} IM , . . . ,Tr {RNKN,k} IM}, where the
operator bdiag{·} creates a block diagonal matrix.

IV. SIMILARITY CONJECTURE

To enable second-order analysis of the MSE, we introduce a
“similarity conjecture,” which uses the fact that at the steady-
state, the weight vectors at each node are almost identical; this
can be formalized as

lim
k→∞

w̃k = 1N ⊗ w̃ss, w̃ss ∈ C
M×1. (12)

The similarity conjecture is realistic as the “combine step”
(5a) reduces the difference between filter weight vectors via
averaging and the “adapt step” in (5b) forces the filter weights
to evolve toward the optimal value wopt, which is identi-
cal throughout the network. A consequence of the similarity
conjecture which will be exploited in the analysis is

lim
k→∞

Kk = 1N1T
N ⊗Kss, Kss ∈ C

M×M . (13)

Remark 1: For a fully connected network (equivalent to a
centralized system), the approximations in (12) and (13) are
exact not only at the steady-state but at every iteration.

Proof: For a fully connected network, the combination
matrix becomes A = 1

N 1N1T
N , [13] therefore from the com-

bine step in (5b)

w̃k = ATψ̃k = 1N ⊗ ψ̃av,k,

where ψ̃av,k = 1
N

∑N
�=1 ψ̃�,k. This implies that Kk =

1N1T
N ⊗ E

[
ψ̃av,kψ̃

H
av,k

]
, thereby completing the proof.

Remark 2: For all other topologies, the similarity assump-
tion in (13) acts as an upper bound for the mean square
performance. This is because (13) can be interpreted as replac-
ing the weight error cross-covariance matrices between the
different nodes Kij,k with the weight error autocovariance
matrix Kii,k, which acts as an upper bound to Kij,k.

A. Single Filter Representation

Finally, incorporating the standard assumption that the net-
work has uniform data statistics, i.e., Ri = R ∀i and Pi =
P ∀j, together with the similarity assumption in (13) enables
the terms in the network weight error covariance recursion
in (10) to be reduced to R = IN ⊗R, P = IN ⊗P, K̄k =
IN ⊗Kk, and T k = Tr {RKk} INM .

Taking the average of the matrices in the block diagonal

entries of (10) as Kk
def
= 1

N

∑N
i=1 [Kk]ii now gives the evo-

lution of the average weight error covariance matrix in the
network in the form

Kk+1 = Kk − μKkR− μRKk + μ2RKkR

+ αμ2
(
PKT

kP
∗ + Tr {RKk}R+ σ2

ηR
)
, (14)

where α = Tr
{
ATA

}
/N is the factor that captures the effect

of the diffusion strategy.
Remark 3: The factor α ≤ 1 acts as a contractive term,

which reduces the mean square error along the iterations.
Proof: Since a�i ≥ 0 and

∑
� a�i = 1, it can be shown that

α =
1

N
Tr
{
ATA

}
=

1

N

∑
i

∑
�

a2�i

≤ 1

N

∑
i

(∑
�

a�i

)2

= 1. (15)

It is important to note that employing the similarity assump-
tion and uniform data statistics transforms the network mean
square performance recursion in (10) into a representation in
(14), which resembles a classical single filter weight error
covariance recursion [14]–[16]. Although the diffusion network
has been analyzed from a single-node perspective in the past
[17], [18], the proposed similarity conjecture simplifies the
analysis by giving a means to deal with cross-nodal weight error
covariance terms as explained in Remark 2.

B. Steady-State Mean Square Analysis

Next, the weight error recursion in (14) can be diagonalized
using the approximate uncorrelating transform (AUT) [19],
which diagonalizes both the covariance and pseudocovariance
matrices with a single eigenvector matrix Q̄.

Pre- and post-multiplying (14) by Q̄H and Q̄, respectively,
gives rise to the recursion for the diagonalized weight error

covariance matrix K̃k
def
= Q̄HKkQ̄ in the form [20]

K̃k+1 = K̃k − μ
(
ΛrK̃k + K̃kΛr

)
+ μ2ΛrK̃kΛr

+ αμ2
(
ΛpK̃

T
kΛp + Tr

{
ΛrK̃k

}
Λr + σ2

ηΛr

)
,

(16)

where Λr ≈ Q̄HRQ̄ and Λp = Q̄HPQ̄. Upon combin-
ing the diagonal terms of K̃k into a vector κk =
[K̃k,11, K̃k,22, . . . , K̃k,MM ]T, we arrive at the recursion

κk+1 =
[
(I− μΛr)

2 + αμ2(Λ2
p + λλT)

]
κk + αμ2σ2

ηλ,

(17)
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where λ = Λr1M
contains the eigenvalues of the covariance

matrix R. In the steady-state, κk+1 = κk = κ∞, yielding

κ∞ =
[
2Λr − μ(Λ2

r + αΛ2
p + αλλT)

]−1
αμσ2

ηλ. (18)

The average MSD and excess mean square error (EMSE) for
the filters in the network are defined as [1], [21]

MSDav
def
= 1Tκ∞, EMSEav

def
= λTκ∞. (19)

Remark 4: The closed form expressions in (19) have much
simpler forms compared to the existing results. As stated in
Remark 2, the so obtained MSD and EMSE expressions are
exact for a fully connected network and represent an upper
bound on the performance for other topologies.

V. SIMULATIONS

In the following simulations, the proposed MSD expression
in (19), denoted by “New” was benchmarked against the current
mean square analysis [1] denoted by “Old” and Monte-Carlo
simulations for MSD values for a system identification task in a
network of 20 nodes. The system was an finite impulse response
(FIR) channel with weight vector hopt = [−0.2, 0.8]T. Unless
stated otherwise, the input xk was a zero-mean Gaussian pro-
cess with covariance matrix R = IM and pseudocovariance
matrix P = 0 and the step-size was μ = 0.1. The Metropolis
rule was chosen as the combination rule where the combination
coefficients were given by

a�i =

⎧⎨⎩
1/max{|N�|, |Ni|}, for � �= i

1−∑� �=i a�i, for � = i.
(20)

Note that the simulations were repeated with other well-
known combination rules like the uniform, Laplacian, relative
degree and maximum degree rules [8], and the relationship
between the MSD and the level of connectivity, step-sizes and
input circularity were identical. We therefore have chosen to
present the results with the Metropolis rule.

Case Study 1: Varying levels of connectivity. In the first set of
simulations, the MSD was evaluated at different levels of con-
nectivity within the network. For each level of connectivity (i.e.,
number of connections in the network), the performance was
averaged over an ensemble of 5000 randomly generated net-
work topologies. A single realization of a 20-node network with
30 connections is shown in Fig. 1. Fig. 2 shows that as discussed
in Remark 2, the theoretical MSD proposed in (19) was closest
to the actual MSDs obtained from the Monte-Carlo simulation
in a fully connected network because it mimics the centralized
implementation where the filter weights in all the nodes are
identical. For networks with only a few connections, the theo-
retical MSD from (19) acts as an upper bound for the algorithm
performance.

Case Study 2: Varying the step-sizes. Fig. 3 shows the
MSD values for a fully connected 20-node network with dif-
ferent step-sizes. For small step-sizes, as expected, the exist-
ing expression for the MSD matches the simulated values.
However, for larger step-sizes, the proposed MSD better models
the simulated values.

Case Study 3: Effects of noncircularity. In the third set
of simulations (as shown in Fig. 4), the input signal was

Fig. 2. MSD values for in a 20-node network with varying levels of connectiv-
ity.

Fig. 3. MSD levels for different step-sizes.

Fig. 4. MSD values for different levels of input noncircularity.

noncircular with varying levels of noncircularity modeled as
P = ρI. Current mean square analyses [1] use a small step-
size assumption to neglect the second-order terms associated
with μ2, and in doing so they do not capture the impact of
noncircularity of the input signal on the performance. The
proposed expression in (19), however, produced the MSD per-
formance that almost identically matches the values obtained
from the Monte-Carlo simulations. As shown in [20], the MSD
is directly proportional to the noncircularity of the input.

VI. CONCLUSION

We have introduced a novel, compact, and physically mean-
ingful mean square analysis for D-CLMS and D-ACLMS
algorithms. This has been achieved based on the so-called
“similarity conjecture” which allows for the incorporation of
the second-order terms, while maintaining the mathematical
tractability of the analysis. The proposed method has then been
applied to study the effect of the noncircularity of the input
signal on the steady state mean square performance of the
D-CLMS and D-ACLMS. Simulations on synthetic data have
verified the proposed analysis.
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