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Abstract—Motivated by the growing need for robust and
accurate frequency estimators at the low- and medium-voltage dis-
tribution levels and the emergence of ubiquitous sensors networks
for the smart grid, we introduce a distributed Kalman filtering
scheme for frequency estimation. This is achieved by using widely
linear state space models, which are capable of estimating the
frequency under both balanced and unbalanced operating con-
ditions. The proposed distributed augmented extended Kalman
filter (D-ACEKF) exploits multiple measurements without impos-
ing any constraints on the operating conditions at different parts of
the network, while also accounting for the correlated and noncir-
cular natures of real-world nodal disturbances. Case studies over
a range of power system conditions illustrate the theoretical and
practical advantages of the proposed methodology.

Index Terms—Adaptive networks, frequency estimation,
Kalman filters, sensor fusion, smart grid.

I. INTRODUCTION

T HE MODERN power network, commonly known as the
“smart grid,” aims to be more reliable by incorporating

distributed generation, typically from renewable sources (wind)
and often in a local fashion (solar, micro-wind turbines). The
rapid growth in renewable energy sources in the smart grid also
gives rise to challenges in maintaining the stability of the net-
work, as these renewable sources are connected to low-voltage
distribution networks through grid-interfaced power electronics
inverters.

The balance between power generation and consumption is
a pre-requisite for stable operation of the power network. An
imbalance between generation and load causes a frequency
deviation and grid operators require fast and accurate estimates
of the frequency to control the stability of the network [1],
[2]. In addition, power inverters themselves require accurate
frequency estimates for stable grid-interfacing under noisy con-
ditions. As inverters are switching circuits, they themselves
introduce impulsive noise to the voltage signal [3], which, in
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turn, requires frequency estimation algorithms with enhanced
robustness against noise and voltage spikes.

Currently used frequency estimation techniques include:
i) Fourier transform approaches [4]–[7], ii) gradient decent and
least squares adaptive estimation [8], and iii) state space meth-
ods and Kalman filters [9]–[12]. However, these are typically
designed for single-phase systems and often assume balanced
operating conditions (equal voltage amplitudes and equally
spaced phases) and are therefore inadequate for the demands of
modern three–phase and dynamically optimised power systems.

To avoid the loss of information and the compromise in
accuracy by estimating the frequency from only one of the
three phases, the Clarke transform is used to jointly represent a
three-phase voltage signal as a complex-valued scalar variable
known as the αβ voltage [13]–[15]. Our earlier work showed
that this αβ voltage admits a widely linear autoregressive
model under both balanced and unbalanced system conditions
[16]. It was also shown that standard, strictly linear, complex-
valued estimators applied to the complex αβ voltage introduce
biased estimates for unbalanced system conditions, widely lin-
ear estimators (also known as “augmented” estimators) are
able to provide optimal and consistent estimates of the system
frequency over a range of operating conditions [16]–[19].

The aim of this work is to extend the single-node widely lin-
ear state space frequency estimator in [18] to the distributed
scenario to suit the requirements of the smart grid. Distributed
estimation has already found application in both military and
civilian scenarios [20]–[24], as cooperation between the nodes
(sensors) provides more accurate and robust estimation over the
independent nodes, while approaching the performance of cen-
tralised systems at much reduced communication overheads.
Recent distributed approaches include diffusion least-mean-
square estimation [25]–[27] and Kalman filtering [22], [24],
[28], however, these consider circular measurement noise with-
out cross-nodal correlations, which is not realistic in real-world
power systems.

To this end, we propose the diffusion augmented (widely
linear) complex Kalman filter (D-ACKF) and the diffusion aug-
mented extended Kalman filter (D-ACEKF) by adapting the
diffusion scheme in [29] and the Kalman filtering models in
[18], [30] to suit our problem where the system frequency is
identical over a certain geographical area at the distribution
level while the voltage imbalances and cross-nodal correlations
can be different. In particular, extending the widely linear fre-
quency estimator to the distributed case is non-trivial as the
states that are to be estimated are not-identical in the network,
as required by the classical diffusion scheme [29].
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The proposed D-ACEKF is able improve the frequency esti-
mates at the low- and medium-voltage distribution levels of
the electricity grid by exploiting a diversity of measurements
without imposing any constrains on the operating conditions.
Moreover, the proposed D-ACEKF accounts for the correla-
tion between the observation noises at neighbouring nodes,
typically encountered when node signals are exposed to com-
mon sources of interference (harmonics, fluctuations of reactive
power), which is not catered for in current estimation algo-
rithms. Case studies using synthetic and real world signals
support the claims.

II. BACKGROUND ON WIDELY LINEAR MODELLING

Statistical signal processing in the complex-domain under-
pins a number of disciplines, including wireless communica-
tions [31], [32] and power systems [16]. Although it may be
convenient to process complex-valued data by representing the
real and imaginary parts as a bivariate signal in the real domain,
any intuition and physical meaning inherent in processing in the
complex domain would be obscured. However, the statistical
tools for complex random variables were derived by assum-
ing (often implicitly) that these complex random variables were
second order circular (proper)1 [33]–[35].

Consider the problem of estimating a real-valued vector
x ∈ R

L from the data vector y ∈ R
K . According the linear

minimum mean square error (LMMSE) estimation theory, the
optimal estimate (in terms of second order statistics) is2

x̂ = E {x|y} = RxyR
−1
y y (1)

where Rxy = E
{
xyT

}
is the cross-covariance matrix, Ry =

E
{
yyT

}
is the autocovariance matrix, and (·)T denotes the

transpose operator. When the vectors x and y are complex-
valued, the so-called strictly linear estimation assumes the
same model in (1) with complex valued correlation matrices
Rxy = E

{
xyH

}
and Ry = E

{
yyH

}
where the transpose

operator is replaced with the Hermitian operator (·)H [30], [36].
It has been shown that the strictly linear model in (1) is

sub-optimal for a general class of complex-valued signals.
The widely linear minimum mean square error (WLMMSE)
solution exploits the full second order statistics of the signal
contained within the augmented autocovariance matrix

Ra
y = E

[
y
y∗

] [
yH yT

]
=

[
Ry Py

P∗
y R∗

y

]
(2)

and augmented cross-covariance matrix

Ra
xy = E

[
xyH xyT

]
=
[
Rxy Pxy

]
(3)

1Proper signals have real and imaginary parts with equal variance and are
uncorrelated. Circular signals have rotationally invariant probability density
functions (pdf). We use the terms “circular” and “proper” interchangeably for
Gaussian signals, as they have pdfs that can be fully characterised by the first
and second order statistics.

2This problem is sometimes posed as that of estimating vector y from obser-
vations x. To be consistent with the Kalman filtering literature, however, we
chose to represent the state with variable x and observation with y.

Fig. 1. An example of a distributed network topology.

which not only contain the autocovariance and cross-covariance
matrices Ryy and Rxy but also the pseudocovariance matri-
ces Pxy = E

{
xyT

}
and Py = E

{
yyT

}
. The WLMMSE

solution is given by

x̂ = E {x|y,y∗} = By +Cy∗ (4)

where the B =
[
Rxy −PxyR

−∗
y P∗

y

]
D−1

y , C = [Pxy −
RxyR

−1
y Py

]
D−∗

y and Dy =
[
Ry −PyR

−∗
y P∗

y

]
is the

Schur’s complement of the augmented auto-covariance matrix
Ra

y in (2). The WLMMSE solution in (4) is equivalent to the
LMMSE estimator derived from treating the real and imagi-
nary parts of the signals as bivariate real-valued vectors [37]
but provides much more physical insight in the analysis. For
jointly-circular signals that have vanishing pseudocovariance
matrices Pxy = 0 and Py = 0 (referred to as circular or proper
signals), the widely linear model in (4) degenerates to the
strictly linear model in (1).

III. DIFFUSION KALMAN FILTERING

For a standard linear state space model, every node i in a
distributed system (see Fig. 1) is given by [38]

xn = Fn−1xn−1 +wn

yi,n = Hi,nxn + vi,n

(5)

where xn ∈ C
L and yi,n ∈ C

K are respectively the state vector
at time instant n and observation (measurement) vector at node
i. The symbol Fn−1 denotes the state transition matrix, wn ∈
C

L white state noise, Hi,n the observation matrix, and vi,n ∈
C

K white measurement measurement noise (both at node i).
Standard state space models assume the noises wn and vi,n

to be uncorrelated and zero-mean, with their covariance and
pseudocovariance matrices described by

E

[
wn

vi,n

] [
wH

k vH
i,k

]
=

[
Qn 0
0 Ri,n

]
δnk

E

[
wn

vi,n

] [
wT

k vT
i,k

]
=

[
Pn 0
0 Ui,n

]
δnk

(6)

where δnk is the standard Kronecker delta function.

A. Distributed Complex Kalman Filter

The distinguishing feature of the proposed class of dis-
tributed Kalman filters is that we generalise the diffusion
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strategy in [22] by equipping it with state and noise mod-
els that do not impose any restrictions on: i) the correlation
properties of the cross-nodal observation noises, or ii) the sig-
nal and noise circularity at different nodes. This also allows
distributed Kalman filtering algorithms [22], [24], [39] to be
used in wider application scenarios. Fig. 1 illustrates the dis-
tributed estimation scenario; the highlighted neighbourhood of
node i compromises the set of nodes, denoted by Ni, that com-
municate with the node i (including Node i itself). The state
estimate at node i with a complex Kalman filter (CKF) is then
based on all the data from the neighbourhood Ni consisting of
M = |Ni| nodes, and is denoted by x̂i,n|n, where the symbol
|Ni| denotes the number of nodes in the neighbourhood Ni.
Finally, the collective neighbourhood observation equation at
node i is given by

y
i,n

= Hi,nxn + vi,n (7)

while the collective (neighbourhood) variables are defined as

y
i,n

=
[
yT
i1,n

,yT
i2,n

, . . . ,yT
iM ,n

]T
Hi,n =

[
HT

i1,n
,HT

i2,n
, . . . ,HT

iM ,n

]T
vi,n =

[
vT
i1,n

,vT
i2,n

, . . . ,vT
iM ,n

]T
where {i1, i2, . . . , iM} are the nodes in the neighbourhood Ni.
The covariance and pseudocovariance matrices of the collective
observation noise vector are given by

Ri,n = E
{
vi,nv

H
i,n

}
=

⎡⎢⎢⎢⎣
Ri1,n Ri1i2,n · · · Ri1iM ,n

Ri2i1,n Ri2,n · · · Ri2iM ,n

...
...

. . .
...

RiM i1,n RiM i2,n · · · RiM ,n

⎤⎥⎥⎥⎦

Ui,n = E
{
vi,nv

T
i,n

}
=

⎡⎢⎢⎢⎣
Ui1,n Ui1i2,n · · · Ui1iM ,n

Ui2i1,n Ui2,n · · · Ui2iM ,n

...
...

. . .
...

UiM i1,n UiM i2,n · · · UiM ,n

⎤⎥⎥⎥⎦
where Ria,n = E

{
via,nv

H
ia,n

}
, Riaib,n = E

{
via,nv

H
ib,n

}
,

Uia,n = E
{
via,nv

T
ia,n

}
and Uiaib,n = E

{
via,nv

T
ib,n

}
, for

a, b ∈ {1, 2, . . . ,M}.
Diffusion step. The local neighbourhood state estimates are

followed by the diffusion (combination) step, given by

x̂i,n|n =
∑

�∈Ni

c�ix̂�,n|n (8)

which produces the diffused state estimates x̂i,n|n as a weighted
sum of the estimates from the neighbourhood Ni, where c�i ≥ 0
are the weighting coefficients satisfying

∑
�∈Ni

c�i = 1. The
combination weights c�i used by the diffusion step in (8)
can obey a number of rules, including the Metropolis [25],
Laplacian [40] or the nearest neighbour [22] rules, however,
finding the set of optimal weights remains an open issue though
progress has been made in important cases[29], [41], [42].

The distributed complex Kalman filter (D-CKF) aims to
approach the performance of a centralised Kalman filter (access
to data from all the nodes) via neighbourhood collaborations

and diffusion, and is summarised in Algorithm 1. Each node
within D-CKF forms a collective observation, as in (7), using
information from its neighbours; thereafter, each node com-
putes a neighbourhood state estimate which is again shared with
neighbours in order to be used for the diffusion step.

Algorithm 1. Diffusion Complex Kalman Filter (D-CKF)

Initialisation: for Nodes i = {1, 2, . . . , N}
1: x̂i,0|0 = E

{
xT
0

}
2: Mi,0|0 = E

(
x0 − x̂i,0|0

) (
x0 − x̂i,0|0

)H
At each time instant n > 0:

1: for Nodes i = {1, 2, . . . , N} do
2: x̂i,n|n−1 = Fn−1x̂i,n−1|n−1

3: Mi,n|n−1 = Fn−1Mi,n−1|n−1F
H
n−1 +Qn

4: Gi,n=Mi,n|n−1H
H
i,n

(
Hi,nMi,n|n−1H

aH
i,n +Ra

i,n

)−1

5. x̂i,n|n = x̂i,n|n−1 +Gi,n

(
y
i,n

−Hi,nx̂i,n|n−1

)
6: Mi,n|n = (I−Gi,nHi,n)Mi,n|n−1

7: Diffuse the states from the network:
x̂i,n|n =

∑
�∈Ni

c�ix̂�,n|n
8: end for

Remark 1: The D-CKF algorithm3 given in Algorithm 1 is a
variant of that proposed in [22]. It employs the standard (strictly
linear) state space model (5), and thus does not cater for widely
linear complex state space models or noncircular state and
observation noises (Pn �= 0 and Ui,n �= 0 for i = 1, . . . , N ).
Unlike existing distributed complex Kalman filters, the D-CKF
presented in Algorithm 1 caters for the correlations between the
neighbourhood observation noises. When no such correlations
exits, the D-CKF is identical to Kalman filter given in [22].

B. Distributed Augmented Complex Kalman Filter

We next employ the widely linear model in (4) in conjunc-
tion with D-CKF in Algorithm 1 to cater for widely linear
state and observation models, and for improper measurements,
states, and state and observation noises. The widely linear ver-
sion of the distributed state space model in (5) (see also [30],
[43]) is given by

xn = Fn−1xn−1 +An−1x
∗
n−1 +wn

yi,n = Hi,nxn +Bi,nx
∗
n + vi,n.

(9)

The compact, “augmented” representation, of this model is

xa
n = Fa

n−1x
a
n−1 +wa

n

ya
i,n = Ha

i,nx
a
n + va

i,n

(10)

where xa
n = [xT

n ,x
H
n ]T and ya

n = [yT
n ,y

H
n ]T , while

Fa
n =

[
Fn An

A∗
n F∗

n

]
and Ha

i,n =

[
Hi,n Bi,n

B∗
i,n H∗

i,n

]
.

For strictly linear systems, An = 0 and Bi,n = 0, so that
the widely linear (augmented) state space model degenerates

3The matrices Mi,n|n and Mi,n|n−1 do not represent the covariances of
x̂i,n|n and x̂i,n|n−1, as is the case for the standard Kalman filter operating on
linear Gaussian systems. This is due to the use of the suboptimal diffusion step,
which updates the state estimate and not the covariance matrix Mi,n|n.
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into a strictly linear one. However, the augmented state space
representation is still preferred in order to account for the pseu-
docovariances of the noise vectors which reflect the impropriety
of the noise.

The augmented covariance matrices of the process noise
vector wa

n = [wT
n ,w

H
n ]T and observation noise vector va

i,n =

[vT
i,n,v

H
i,n]

T are then given by

Qa
n = E

{
wa

n w
aH
n

}
=

[
Qn Pn

P∗
n Q∗

n

]
Ra

i,n = E
{
va
i,nv

aH
i,n

}
=

[
Ri,n Ui,n

U∗
i,n R∗

i,n

]
.

(11)

Neighbourhood variables. To perform collaborative estimation
of the state within distributed networks, neighbourhood obser-
vation equations use all available neighbourhood observation
data, to give

y
i,n

= Hi,nxn +Bi,nx
∗
n + vi,n (12)

where the symbol Bi,n =
[
BT

i1,n
,BT

i2,n
, . . . ,BT

iM ,n

]T
denotes

the conjugate observation matrix, and {i1, i2, . . . , iM} ∈ Ni.
The augmented neighbourhood observation equations now
become

ya
i,n

= Ha
i,nx

a
n + va

i,n (13)

with the augmented neighbourhood variables defined as

ya
i,n

=

[
y
i,n

y∗
i,n

]
, Ha

i,n =

[
Hi,n Bi,n

B∗
i,n H∗

i,n

]
, va

i,n =

[
vi,n

v∗
i,n

]
.

(14)

Consequently, the covariance of the augmented neighbourhood
observation noise va

i,n takes the form

Ra
i,n = E

{
va
i,nv

aH
i,n

}
=

[
Ri,n Ui,n

U∗
i,n R∗

i,n

]
. (15)

Remark 2: The augmented second order statistics in (15)
caters for both the covariances E

{
vi,nv

H
i,n

}
and cross-

covariances E{vi,nv
H
�,n}, i �= � between the nodal observation

noises. This is achieved through the standard covariance matrix
Ri,n and the pseudocovariances E

{
vi,nv

T
i,n

}
, while the cross-

pseudocovariances E{vi,nv
T
�,n} are accounted for through the

pseudocovariance matrix Ui,n. Finally, the augmented diffused
state estimate becomes

x̂a
i,n|n =

∑
�∈Ni

c�ix̂
a
�,n|n (16)

and represents a weighted average of the augmented (neigh-
bourhood) state estimates. The proposed distributed augmented
complex Kalman filter (D-ACKF), employs the widely linear
state space model in (9), and is given in Algorithm 2.

For strictly linear systems (An = 0, Bi,n = 0, ∀ n, i) with
circular state and observation noises (Pn = 0, Ui,n = 0, ∀
n, i), the D-ACKF and D-CKF algorithms yield identical state
estimates for all time instants n. Notice that the D-ACKF is

more general than the D-CKF, since it also caters for the non-
circular natures of data and noise, together with correlated state
and observation noises.

Algorithm 2. Diffusion Augmented Complex Kalman Filter
(D-ACKF)

Initialisation: for Nodes i = {1, 2, . . . , N}
1: x̂a

i,0|0 = E
[
xT
0 , xH

0

]T
2: Ma

i,0|0 = E
(
xa
0 − x̂a

i,0|0
)(

xa
0 − x̂a

i,0|0
)H

At each time instant n > 0 :
1: for Nodes i = {1, 2, . . . , N} do
2: x̂a

i,n|n−1 = Fa
n−1x̂

a
i,n−1|n−1

3: Ma
i,n|n−1 = Fa

n−1M
a
i,n−1|n−1F

aH
n−1 +Qa

n

4: Ga
i,n=M

a
i,n|n−1H

aH
i,n

(
Ha

i,nM
a
i,n|n−1H

aH
i,n+R

a
i,n

)−1

5: x̂a
i,n|n = x̂a

i,n|n−1 +Ga
i,n

(
ya
i,n

−Ha
i,nx̂

a
i,n|n−1

)
6: Ma

i,n|n = (I−Ga
i,nH

a
i,n)M

a
i,n|n−1

7: Diffuse the states from the network:
x̂a
i,n|n =

∑
�∈Ni

c�ix̂
a
�,n|n

8: end for

IV. DISTRIBUTED AUGMENTED COMPLEX EXTENDED

KALMAN FILTER

Consider a nonlinear state space model of the form

xn = f [xn−1] +wn

yi,n = hi [xn] + vi,n

(17)

where the nonlinear functions f [·] and hi[·] are respectively the
(possibly time varying) process model and observation model
at node i, the remaining variables are as defined above. Within
the extended Kalman filter (EKF) framework, the nonlinear
state and observation functions are approximated by their first
order Taylor series expansions (TSE) about the state estimates
x̂i,n−1|n−1 and x̂i,n|n−1 for each node i, so that [44]

xn ≈ Fi,n−1xn−1 +Ai,n−1x
∗
n−1 + ri,n−1 +wn

yi,n ≈ Hi,nxn +Bi,nx
∗
n + ui,n + vi,n

(18)

where the Jacobians of functions f [·] and hi[·] are defined as

Fi,n =
∂f [x]

∂x
|x=x̂i,n|n , Ai,n =

∂f [x]

∂x∗ |x∗=x̂∗
i,n|n

,

Hi,n =
∂hi[x]

∂x
|x=x̂i,n|n−1

and Bi,n =
∂hi[x]

∂x∗ |x∗=x̂∗
i,n|n−1

and the vectors

ri,n = f [x̂i,n−1|n−1]− Fi,n−1x̂i,n−1|n−1 −Ai,n−1x̂
∗
i,n−1|n−1

ui,n = hi[x̂i,n|n−1]−Hi,nx̂i,n|n−1 −Bi,nx̂
∗
i,n|n−1

are deterministic inputs calculated from the state space model
and state estimate. The full second order statistics in the lin-
earised state space in (18) is accounted for by its widely linear
version, for which the augmented form is given by

xa
n ≈ Fa

i,n−1x
a
n−1 + rai,n−1 +wa

n

ya
i,n ≈ Ha

i,nx
a
n + ua

i,n + va
i,n

(19)



KANNA et al.: DISTRIBUTED WIDELY LINEAR KALMAN FILTERING FOR FREQUENCY ESTIMATION IN POWER NETWORKS 49

where rai,n = [rTi,n, r
H
i,n]

T , ua
i,n = [uT

i,n,u
H
i,n]

T , while

Fa
i,n =

[
Fi,n Ai,n

A∗
i,n F∗

i,n

]
and Ha

i,n =

[
Hi,n Bi,n

B∗
i,n H∗

i,n

]
.

The collective neighbourhood augmented observation equation
for node i now takes the form

ya
i,n

= ha
i [xn] + va

i,n (20)

while the collective observation function is defined as

ha
i [xn] =

[
hT
i [xn],h

H
i [xn]

]T
hi[xn] =

[
hT
i1 [xn],h

T
i2 [xn], . . . ,h

T
iM [xn]

]T
where i ∈ {i1, i2, . . . , iM} spans all the nodes in the neighbour-
hood Ni. The first order approximation of (20) is then

ya
i,n

≈ Ha
i,nx

a
n + ua

i,n + va
i,n (21)

while the Jacobian of the collective observation becomes

Ha
i,n =

[
Hi,n Bi,n

B∗
i,n H∗

i,n

]
with Hi,n = [HT

i1,n
,HT

i2,n
, . . . ,HT

iM ,n]
T and Bi,n = [BT

i1,n
,

BT
i2,n

, . . . ,BT
iM ,n]

T , calculated as

Hik,n=
∂hik [x]

∂x

∣∣∣∣
x=x̂i,n|n−1

and Bik,n =
∂hik [x]

∂x∗ |x∗=x̂∗
i,n|n−1

.

Algorithm 3 summarises the proposed distributed augmented
complex extended Kalman filter, where each node i shares its
(nonlinear) observation model hi[·] with its neighbours. The
function Jacobian (f ,x) for steps 3 and 5 in Algorithm 3 com-
putes the Jacobian matrix of the function f evaluated at the
point x.

Algorithm 3. Diffusion Augmented Complex Extended
Kalman Filter (D-ACEKF)

Initialisation: for Nodes i = {1, 2, . . . , N}
1: x̂a

i,0|0 = E
[
xT
0 , xH

0

]T
2: Ma

i,0|0 = E
(
xa
0 − x̂a

i,0|0
)(

xa
0 − x̂a

i,0|0
)H

At each time instant n > 0 :
1: for Nodes i = {1, 2, . . . , N} do

2: x̂a
i,n|n−1 =

[
fT
[
x̂i,n−1|n−1

]
, fH

[
x̂i,n−1|n−1

]]T
3: Fa

i,n−1 = Jacobian
(
fa, x̂a

i,n−1|n−1

)
4: Ma

i,n|n−1 = Fa
i,n−1M

a
i,n−1|n−1F

aH
i,n−1 +Qa

n

5: Ha
i,n = Jacobian

(
ha
i , x̂a

i,n|n−1

)
6: Ga

i,n=Ma
i,n|n−1H

aH
i,n

(
Ha

i,nM
a
i,n|n−1H

aH
i,n+R

a
i,n

)−1

7: x̂a
i,n|n = x̂a

i,n|n−1 +Ga
i,n

(
ya
i,n

− ha
i

[
x̂i,n|n−1

])
8: Ma

i,n|n = (I−Ga
i,nH

a
i,n)M

a
i,n|n−1

9: Diffuse the states from the network:
x̂a
i,n|n =

∑
�∈Ni

c�ix̂
a
�,n|n

10: end for

Remark 3: The D-ACEKF algorithm in Algorithm 3 extends
the Distributed Extended Kalman filter in [45] to widely linear
state spaces, and caters for the improper second order statistical
moments of the state and noise models, together with the cor-
relations present between the nodal observation noises. This is
a perfect match for distributed estimation in unbalanced smart
grids.

V. DISTRIBUTED WIDELY LINEAR FREQUENCY

ESTIMATION

The proposed augmented state space models are particularly
suited for frequency estimation in power grid, as due to sys-
tem inertia, the frequency can be assumed identical over the
network of measurement nodes, while unbalanced systems and
distributed nodes generate noncircular and noisy measurements
[17], [19]. For a three phase system, the instantaneous voltages
at a node i are given by⎡⎣va,i,nvb,i,n

vc,i,n

⎤⎦
︸ ︷︷ ︸

vi,n

=

⎡⎣ Va,i,n cos(ωnT + φa,i)
Vb,i,n cos(ωnT + φb,i − 2π

3 )
Vc,i,n cos(ωnT + φc,i +

2π
3 )

⎤⎦
︸ ︷︷ ︸

si,n

+

⎡⎣za,i,nzb,i,n
zc,i,n

⎤⎦
︸ ︷︷ ︸

zi,n

(22)

where Va,i,n, Vb,i,n, and Vc,i,n are the amplitudes of the
three-phase voltages at time instant n, ω = 2πf the angular
frequency, f the system frequency, T the sampling interval,
while za,i,n, za,i,n, and za,i,n are zero-mean observation noise
processes. The term φa,i is used to denote the phase of the
fundamental component, while φb,i = φa,i +Δb,i and φc,i =
φa,i +Δc,i are used to indicate the phase distortions relative to
a balanced three-phase system. Notice that the only common
parameter for all the nodes in the neighbourhood of node i is
the digital frequency 2πfT .

A. Clarke Transform for Dimensionality Reduction

Although, the frequency of the system can be estimated
directly from any one of the three-phases, utilising the infor-
mation from all three phases to estimate the frequency is more
robust to noise [46]. We would like to estimate the frequency of
the signal in (22) by first reducing the dimensionality of the sig-
nal from R

3 to C. Instead of using any single-phase voltage, we
jointly-represent the three phases by firstly projecting the signal
on to an orthogonal basis using the Clarke (or αβ) transform[

vα,i,n
vβ,i,n

]
=

√
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
︸ ︷︷ ︸

ClarkeMatrix

⎡⎣va,i,nvb,i,n
vc,i,n

⎤⎦ (23)

thus converting the αβ voltage vector on the left side of (23)
into a complex-valued scalar vi,n = vα,i,n + jvβ,i,n. The trans-
formation of the three-phase voltage vector vi,n in (22) into a
complex-valued scalar can be summarized as

vi,n = eHvi,n = eHsi,n + eHzi,n

= si,n + zi,n
(24)
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where eH =
√

2
3

[
1 ej

2π
3 e−j 2π

3

]
and si,n and zi,n are

complex-valued scalars corresponding to the signal and the
noise respectively. Using Euler’s formula, the noise-free signal
si,n in (22) can be expressed as

si,n =
1

2

⎡⎣V̄a,i,n V̄ ∗
a,i,n

V̄b,i,n V̄ ∗
b,i,n

V̄c,i,n V̄ ∗
c,i,n

⎤⎦[ ejωnT

e−jωnT

]
(25)

where the phasors are given by V̄a,i,n = Va,i,ne
jφa,i ,

V̄b,i,n = Vb,i,ne
j(φb,i− 2π

3 ), and V̄c,i,n = Vc,i,ne
j(φc,i+

2π
3 ).

Substituting (25) into (24) gives

si,n =eHsi,n = Ai,ne
jωnT +Bi,ne

−jωnT (26)

where the scalar phasors Ai,n and Bi,n are

Ai,n =

√
6

6

[
Va,i,ne

jφa,i + Vb,i,ne
jφb,i + Vc,i,ne

jφc,i
]

Bi,n =

√
6

6

[
Va,i,ne

−jφa,i + Vb,i,ne
−j(φb,i+

2π
3 )

+ Vc,i,ne
−j(φc,i− 2π

3 )
] (27)

and the complex-valued observation noise is

zi,n =eHzi,n =

√
2

3

[
za,i,n + ej

2π
3 zb,i,n + e−j 2π

3 zc,i,n

]
.

Therefore, under general operating conditions, the complex-
valued voltage in (24) takes the form

vi,n =Ai,ne
jωnT +Bi,ne

−jωnT + zi,n. (28)

For a balanced system under nominal conditions, Va,i,n =
Vb,i,n = Vc,i,n and φa,i = φb,i = φc,i, so that the coefficient
Bi,n vanishes, see (27), and the complex-valued voltage is

vi,n =si,n + zi,n = Ai,ne
jωnT + zi,n. (29)

Moreover, the signal si,n in (29) can be expressed as an
autoregressive (AR) model4 sn = ejωT sn−1 such that at each
node i, the voltage measurement is

vi,n = ejωT si,n−1 + zi,n. (30)

Fig. 2 illustrates that for a balanced system, for which Va,i,n =
Vb,i,n = Vc,i,n and φa,i = φb,i = φc,i, the Clarke’s voltage vi,n
in (30) has a circular trajectory, thus making the signal circular.
The system in (30) that generates the circular signal is strictly
linear because the output of the system is only a function of the
input si,n−1 and not its conjugate s∗i,n−1.

Strictly Linear State Space Model 1. It is based on the AR(1)
voltage evolution model in (30) whose strictly linear state space
model for the balanced system system at a node i is given in

(32a) and (32b), where the state variables are hn
def
= ejωT and

4The usual assumption in this type of estimation is that for a sampling
frequency >> 50Hz, we have An ≈ An−1.

Fig. 2. For a balanced system, characterised by Va,i,n = Vb,i,n = Vc,i,n and
Δb,i = Δc,i = 0, the trajectory of Clarke’s voltage vi,n is circular (blue line).
For unbalanced systems, the voltage trajectories are noncircular (red and green
lines).

the noise-free signal si,n, while wn and zi,n are respectively
the state and observation noises. The system frequency is then
derived from the state variable hn as

f̂n =
1

2πT
arctan

(
Im {hn}
Re {hn}

)
(31)

where Re {·} and Im {·} are respectively the real and imaginary
parts of a complex variable.

State Space Model 1. Strictly Linear State Space (StSp-SL)

1: State Equation[
hn

si,n

]
=

[
hn−1

si,n−1hn−1

]
+wn (32a)

2: Observation Equation

vi,n =
[
0 1

] [ hn

si,n

]
+ zi,n (32b)

The strictly linear system model in (30) is inaccurate when
the system is operating under unbalanced conditions, such as
when the voltage amplitudes Va,i,n, Vb,i,n and Vc,i,n are no
longer equal or if the condition Δb,i = Δc,i = 0 is not satis-
fied. In these cases, Bi,n in (27) is not zero and the signal
becomes noncircular (ellipse in Fig. 2). Therefore, this stan-
dard strictly linear estimator introduces biased estimates that
oscillate at twice the system frequency for unbalanced system
conditions [17].

Strictly Linear AR(2) based State Space Model. Without
assuming a balanced operating condition, the αβ voltage in (26)
can be expressed as a strictly linear AR(2) model [47]–[50]

si,n = 2 cos(ωT )si,n−1 − si,n−2 (33)

The system frequency can be derived by defining the state
as 2 cos(ωT ) and estimating it using a complex Kalman fil-
ter. This strictly linear AR(2) model is referred to as the
strictly linear “three-point” (SL3PT) model and serves as a
benchmark for our proposed method, as it can be applied
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to both any single-phase voltage and the complex-valued αβ
voltage. A major disadvantage to the three-point model in
(33) is that it produces biased estimates in the presence of
noise [51].

Widely Linear AR(1) based State Space Model 2. Observe
that the αβ voltage in (26) can be interpreted as the sum of two
phasors, one rotating clockwise and the other rotating counter
clockwise at the same frequency.

If we were to express the signal (26) in an autoregressive
form, it is only natural and intuitive to consider the previous
value si,n−1 and its conjugate s∗i,n−1, where the conjugate rep-
resents the phasor rotating in the opposite direction. The widely
linear model for the complex-valued αβ voltage at any node i
is therefore given by [16]–[18]

si,n =hi,n−1si,n−1 + gi,n−1s
∗
i,n−1. (34)

This is a first-order widely linear autoregressive model with
coefficients hi,n and gi,n. By substituting the values of si,n−1

and s∗i,n−1 from (26) into (34) and some algebraic manipula-
tion, we obtain [17]

hi,n = ejωT − B∗
i,n

Ai,n
gi,n, gi,n =

Bi,n

A∗
i,n

(
e−jωT − hi,n

)
.

(35)

Solving the two equations in (35) for the system frequency
yields

f̂n =
1

2πT
arctan

⎛⎝
√

Im2{hi,n} − |gi,n|2
Re {hi,n}

⎞⎠ . (36)

From (35), notice that when the system is balanced (Bi,n =
0), the coefficient gi,n = 0, and the widely linear frequency
estimate in (36) is identical to its strictly linear counterpart in
(31). While the strictly linear AR(2) model in (33) is iden-
tical for both balanced and unbalanced voltages, the widely
linear model provides an intuitive advantage as the coefficient
gi,n represents the negative sequence which characterises the
imbalance of the system voltage.

The state space model in (37a) and (37b) provides a real-
istic and robust characterisation of real world power systems,
as it represents both balanced and unbalanced systems, while
its nonlinear state equation also models the coupling between
state variables. State Space Model 2 can be implemented using
the proposed distributed augmented complex extended Kalman
filter in Section IV.

State Space Model 2 Widely Linear State Space (StSp-WL)

1: State Equation⎡⎢⎢⎢⎢⎢⎢⎢⎣

hi,n

gi,n
si,n
h∗
i,n

g∗i,n
s∗i,n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

hi,n−1

gi,n−1

si,n−1hi,n−1 + s∗i,n−1gi,n−1

h∗
i,n−1

g∗i,n−1

s∗i,n−1h
∗
i,n−1 + si,n−1g

∗
i,n−1

⎤⎥⎥⎥⎥⎥⎥⎦+wn (37a)

2: Observation Equation

[
vi,n
v∗i,n

]
=

[
0 0 1 0 0 0
0 0 0 0 0 1

]
⎡⎢⎢⎢⎢⎢⎢⎣

hi,n

gi,n
si,n
h∗
i,n

g∗i,n
s∗i,n

⎤⎥⎥⎥⎥⎥⎥⎦+

[
zi,n
z∗i,n

]
(37b)

B. Diffusion-step

The classical diffusion scheme in (16) obtains the weighted
average of the estimated states x̂a

i,n|n in the neighbourhood Ni

under the assumption that each node is estimating the same
optimal state. However, the state estimate of the State Space
Model 2, which is given by

x̂a
i,n|n =

[
ĥi,n|n, ĝi,n|n, ŝi,n|n, ĥ∗

i,n|n, ĝ
∗
i,n|n, ŝ

∗
i,n|n

]T
(38)

is unique at each node since the coefficients hi,n and gi,n are
functions of both system frequency ω (which is identical in
the network) and the level of imbalance, Bi,n

Ai,n
(which is not

necessarily identical in the network) – see (35). Applying the
diffusion scheme without considering this phenomenon will
therefore result in spurious frequency estimates when the level
of system imbalance is different at each node.

This problem is circumvented by the fact that the state x̂a
i,n|n

also includes the noise-free signal estimate ŝi,n|n. When all the
nodes are connected and weighed equally, each node effectively
estimates the frequency from the diffused signal estimate ŝi,n|n
formed by diffusing the signal estimates ŝ�,n|n from each node

ŝi,n|n =
1

|Ni|
∑
�∈Ni

ŝ�,n|n = Âi,ne
jω̂nT + B̂i,ne

−jω̂nT (39)

where Âi,n = 1
|Ni|

∑
�∈Ni

Â�,n and B̂i,n = 1
|Ni|

∑
�∈Ni

B̂�,n

are the diffused phasors in the neighbourhood Ni.
Remark 4: Since the frequency is derived from the diffused

signal estimate in (39), which is now identical throughout the
network, our proposed D-ACEKF yields the correct frequency
estimate even with different levels of imbalance at different
nodes.

VI. FREQUENCY ESTIMATION EXAMPLES

A. Experiment (Synthetic Data) Set-Up

The simulations were based on a network of 5 substations
(nodes) where each substation has access to three-phase volt-
age measurements via transformers with metering capabilities.
Without loss in generality, we used the distributed network
topology shown in Fig. 3. The power system under consid-
eration had a nominal frequency of 50Hz, and was sampled
at a rate of 5kHz while the signal to noise ratio (SNR) was
determined by the metering accuracy class of the potential
transformer. The BS EN 61869-1:2009 standard for the meter-
ing accuracy of potential transformers classifies six separate
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Fig. 3. A distributed power network with N = 5 nodes (Sub-stations) used in
the simulations.

classes for metering requirements, which translates to an SNR
range of 30 dB to 60 dB [52]. To illuminate the robustness of
our proposed augmented diffusion Kalman filters, we have cho-
sen an SNR level of 25 dB in all our simulations, unless stated
otherwise.

B. Algorithms

The proposed D-ACEKF (Algorithm 3) was benchmarked
against the D-CEKF which uses State Space Model 1 and
the distributed strictly linear three point (D-SL3PT) algorithm
which uses the signal model in (33) with the D-CKF in
Algorithm 2. The D-SL3PT was chosen since it is a well-know
classical algorithm which employs a similar principle to the D-
ACEKF (i.e. estimating the frequency with an autoregressive
model of the signal). Single node (uncooperative) estimates of
the algorithms are also presented for completeness.

Case Study #1: Voltage sags. In the first set of simula-
tions, the performances of the algorithms were evaluated for
an initially balanced system which became unbalanced after
undergoing a Type C voltage sag starting at 0.1s, characterised
by a 20% voltage drop and 10o phase offset on both the vb and
vc channels, followed by a Type D sag starting at 0.3s, char-
acterised by a 20% voltage drop at line va and a 10% voltage
drop on both vb and vc with a 5o phase angle offset. The pha-
sor trajectories and degrees of noncircularity of these system
imbalances are illustrated in Fig. 4.

Fig. 5 shows that, conforming with the analysis, the widely
linear algorithms, ACEKF and D-ACEKF, were able to con-
verge to the correct system frequency for both balanced and
unbalanced operating conditions, while the strictly linear algo-
rithms, CEKF and D-CEKF, were unable to accurately estimate
the frequency during the voltage sag due to under-modeling of
the system (not accounting for its widely linear nature) – see
(34). As expected, the widely linear and strictly linear algo-
rithms had similar performances under balanced conditions, as
illustrated in the time interval 0–0.1 s. The distributed algo-
rithms, D-CEKF and D-ACEKF, outperformed their uncoop-
erative counterparts, CEKF and ACEKF, owing to the sharing
of information between neighbouring nodes.

Case Study #2: Presence of switching noise. Fig. 6 illus-
trates frequency estimation in the presence of random spike
noise, which models the switching noise from the invert-
ers which interface the renewable sources to the grid. The

Fig. 4. Circularity (left) and phasor (right) views of Type C and D unbalanced
voltage sags. The real-imaginary phasor plots illustrate the noncircularity of
Clarke’s voltage in unbalanced conditions, indicated by the elliptical shapes of
circularity plots. The eccentricity of this ellipse (degree of noncircularity) serve
to identify the type of fault (in this case a voltage sag).

distributed algorithms, D-CEKF and D-ACEKF, outperformed
their uncooperative counterparts, CEKF and ACEKF, because
neighbouring nodes were able to share information to facilitate
better estimation performances.

Case Study #3: Bias and variance of the proposed estima-
tors. Fig. 7 illustrates the bias and variance for the proposed
distributed frequency estimators. The steady state frequency
estimate at a node i for the trial m is given by f̂i,ss[m]. The
bias and variance of the frequency estimators were calculated
over 2000 independent trials using

Bias =
1

2000 ·N
2000∑
m=1

N∑
i=1

f̂i,ss[m]− f0

Variance =
1

2000 ·N
2000∑
m=1

N∑
i=1

(
f̂i,ss[m]− f̄i,ss

)2 (40)

where N = {1, 5} for single-node and distributed cases respec-
tively, while f0 = 50Hz is the fundamental frequency. The
sample mean was evaluated as f̄i,ss =

1
2000

∑2000
m=1 f̂i,ss[m].

The algorithms were evaluated at different SNR levels for an
unbalanced system undergoing a Type D voltage sag. Observe
that both the single- and multiple-node widely linear algo-
rithms, ACEKF and D-ACEKF, were asymptotically unbiased
(left panel) while both the single- and multiple-node strictly
linear algorithms were biased. In terms of the variance of the
estimators (right panel), both the distributed estimation algo-
rithms outperformed their non-cooperative counterparts, while
the only consistent estimator was the proposed D-ACEKF.

Case Study #4: Benchmark against classical methods. The
D-ACEKF was compared to the single-node (uncooperative)
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Fig. 5. Frequency estimation performance of single node (CEKF and ACEKF) and distributed (D-CEKF and D-ACEKF) algorithms for a system at 25dB SNR.
The system is balanced up to 0.1s, it then undergoes a Type C voltage imbalance followed by a Type D voltage imbalance at 0.3s.

Fig. 6. Frequency estimation performance of single node (CEKF and ACEKF) and distributed (D-CEKF and D-ACEKF) algorithms when the phase voltages of
three nodes in the network are contaminated with random spike noise.

Fig. 7. Bias and variance analysis of the proposed distributed state space frequency estimators for an unbalanced system undergoing a Type D voltage sag. Left:
Estimation bias. Right: Estimation variance.

Fig. 8. Frequency estimation performance of single node (SL3PT and ACEKF) and distributed (D-SL3PT and D-ACEKF) algorithms for a system at 50dB SNR.
The system is balanced up to 0.1s, it then undergoes a Type C voltage imbalance followed by a Type D voltage imbalance at 0.3s.

and distributed implementations of the classical strictly linear
three-point (SL3PT) model given in (33). The set-up in Case
Study #1 was used with the exception that the SNR was
increased to 50 dB as the SL3PT was performing poorly at
lower SNRs. For a fair comparison, the D-SL3PT was con-
figured to have the same convergence speed as the D-ACEKF.
From Fig. 8, we can observe that the D-SL3PT produced nois-
ier estimates compared to the D-ACEKF when their adaptation
speeds were equalised.

Next, the bias and variance of the D-ACEKF were bench-
marked against the D-SL3PT using the methodology in (40).

As seen in Fig. 9, while the variance of the frequency estimates
decreased with the diffusion scheme, the bias of the SL3PT
model did not. As mentioned in Section V, the SL3PT and D-
SL3PT both exhibit high bias due to modelling inaccuracies in
the presence of noise [51]. This shows the markedly increased
robustness to noise of the widely linear model compared to the
strictly linear AR(2) model.

Case Study #5: Different Voltage Sags. Fig. 10 shows the
profile of the voltages at different nodes in the network. Each
substation underwent different faults, which is reflected by
the different relative amplitudes and phase shifts of the αβ
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Fig. 9. Bias and variance analysis of the proposed distributed state space frequency estimators against classical strictly linear three-point (SL3PT) models for an
unbalanced system undergoing a Type D voltage sag. Left: Estimation bias. Right: Estimation variance.

Fig. 10. Each substation (node) has a different αβ voltages including cases
where the voltage drops to zero (line cut).

Fig. 11. The D-ACEKF is able to estimate the frequency in a distributed setting
with different types of faults at each node, see Fig. 10 for voltage profiles.

voltages. In addition Substations 2 and 4 underwent total line
failures from 0.3s to 0.5s and 0.1s to 0.3s respectively.

Fig. 11 shows that due to its unique state space structure, the
proposed D-ACEKF was able to estimate the frequency of the
network even with different levels of imbalance at each node,
see Remark #4 in Section V-B.

Case Study #6: Frequency tracking. Fig. 12 illustrates the
performance the D-ACEKF when a power network was con-
taminated with white noise at 25dB and 60dB SNR and under-
went a gradual drop and increase in frequency from 0.1s to 0.3s.
This is a typical scenario when generation does not match the
load and system inertia keeps the frequency from changing too
quickly. From 0.3s to 0.5s the system undergoes a step-change
in frequency; this is the scenario when there is not enough

Fig. 12. Frequency tracking performance of D-ACEKF at 25dB and 60dB
SNR, which experiences a gradual change fro, 0.1s to 0.3s and a step change
in system frequency to 48Hz at 0.3s. The D-ACEKF is able to track both slow
and rapid changes in frequency.

Fig. 13. The mean square error (MSE) of the D-ACEKF which shares only the
state estimates (standard diffusion scheme) and full D-ACEKF which shares
both state estimates and observations (proposed diffusion scheme) with various
degrees of correlation between three nodes in the network.

inertial response in the system caused by the influx of elec-
tronic inverters that are replacing synchronous machines. The
D-ACEKF was able to track the frequency in both cases illus-
trating that its suitability for both the current electricity grid and
future smart grids.

Case Study #7: Noise Correlation. Next, the D-ACEKF was
evaluated for the case where the observation noises between
three nodes were correlated, exhibiting various degrees of
correlation. The proposed D-ACEKF was compared to the D-
ACEKF with the classical diffusion scheme where only the
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Fig. 14. Real world case study. Left: The αβ voltages at Sub-station 1 before and during the fault event. Right: Frequency estimation using the proposed algorithms
before and during the fault event.

states were shared between the nodes. As seen in (20), the pro-
posed diffusion scheme shares both observations vi,n and state
estimates x̂i,n|n, which allows the proposed diffusion scheme
to exploit cross-nodal correlations of the observation noise.
Fig. 13 shows the mean square error (MSE) of the frequency
estimates where MSE = Bias2 +Variance, and the Bias and
Variance terms are defined in (40). The proposed D-ACEKF
outperformed the classical diffusion scheme especially when
the cross-nodal correlations of the noise were large.

Real World Case Study. We next assessed the performance
of the proposed algorithms on a real world case study using
three-phase voltage measurements from two adjacent sub-
stations in Malaysia during a brief line-to-earth fault on the
29th June 2014. This caused voltage sags, similar to those in
Case Study #1. The three-phase measurements were sampled at
5 kHz and the voltage values were normalized. The left panel
in Fig. 14 shows the normalized αβ voltages at one of the sub-
stations. The fault that occurs in phase A around 0.1s is reflected
in the voltage dip in vα. The right panel in Fig. 14 shows the fre-
quency estimate from the D-ACEKF and D-CEKF. Conforming
with the analysis and the single node scenario in Fig. 5, the col-
laborative widely linear D-ACEKF was able to track the real
world frequency of a power network under both balanced and
unbalanced conditions, whereas the strictly linear D-CEKF was
unable to track the frequency after 0.1s when the line-to-earth
fault (non-circularity) occurred.

VII. CONCLUSION

We have proposed a novel class of diffusion based distributed
complex-valued Kalman filters for cooperative frequency esti-
mation in power networks. To cater for the general case of
improper states, observations, and state and observation noises,
we have introduced the distributed (widely linear) augmented
complex Kalman filter (D-ACKF) and its nonlinear version,
the distributed augmented complex Kalman filter (D-ACEKF).
These have been shown to provide sequential state estimation of
the generality of complex signals, both circular and noncircular,
within a general and unifying framework which also caters for
correlated nodal observation noises. This novel widely linear
framework has been applied for distributed state space based
frequency estimation in the context of three-phase power sys-
tems, and has been shown to be optimal for both balanced and
unbalanced operating conditions. Simulations over a range of
balanced and unbalanced power system conditions and for both
synthetic and real world measurements have illustrated that the

proposed distributed state space algorithms are consistent esti-
mators, offering accurate and fast frequency estimation in both
balanced an unbalanced system conditions.

APPENDIX

A. Bias Analysis of the D-ACKF Estimates

To analyse the mean performance of the D-ACKF
(Algorithm 2), we employ the methodologies in [22][30]. First
consider the local (non-diffused) error at node i ∈ [1, N ]

eai,n|n
def
=xa

n − x̂a
i,n|n. (41)

Substituting Step 2.5 in Algorithm 2, into the non-diffused error
(41) gives

eai,n|n =xa
n − x̂a

i,n|n−1 −Ga
i,n

(
ya
i,n

−Ha
i,nx̂

a
i,n|n−1

)
. (42)

Using the optimal observation equation ya
n in (10), this non-

diffused error can be expressed as

eai,n|n =
(
I−Ga

i,nH
a
i,n

)
eai,n|n−1 −Ga

i,nv
a
i,n. (43)

Now consider the diffused a priori error eai,n|n−1

def
= xa

n −
x̂a
i,n|n−1. Subtracting xa

n in (10) from Step 2.2 in Algorithm
2 yields the expression for the diffused a priori error as

eai,n|n−1 = Fa
n−1e

a
i,n−1|n−1 +wa

n. (44)

Finally, consider the diffused a posteriori error eai,n|n
def
= xa

n −
x̂a
i,n|n which can be expressed in terms of the local (non-

diffused) errors in (41) using the diffusion step in (16) as

eai,n|n =
∑

�∈Ni

c�ie
a
�,n|n. (45)

Substituting (43) and (44) into (45) and using
Ma

�,n|n(M
a
�,n|n−1)

−1 = I−Ga
�,nH

a
�,n from the covariance

update in Step 2.6 in Algorithm 2, we have

eai,n|n =
∑
�∈Ni

c�i

[
Ma

�,n|n(M
a
�,n|n−1)

−1Fa
n−1e

a
�,n−1|n−1

+Ma
�,n|n(M

a
�,n|n−1)

−1wa
n −Ga

�,nv
a
�,n

]
. (46)

Upon taking the statistical expectation E {·}, the recursion in
(46) leads to a closed form expression for the mean error of the
D-ACKF algorithm, given by

E
{
eai,n|n

}
=
∑
�∈Ni

c�iM
a
�,n|n(M

a
�,n|n−1)

−1Fa
n−1E

{
ea�,n−1|n−1

}
= 0. (47)
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Remark 5: The D-ACKF is an unbiased estimator of both
proper and improper complex random signals.
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