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ABSTRACT 

The second order Taylor series expansion (TSE) of scalar func­
tions of complex matrices is explored in order to provide a 
new tool for gradient-based optimisation in the complex do­
main. The expansion is provided both in the augmented real 
and complex matrix spaces, as well as the multidimensional 
complex domain. The duality (isomorphism) between the 
augmented spaces is established and consequently the relation 
of the first- and second-order terms (gradient and Hessian) of 
the TSE in these spaces are introduced. Finally, a study of the 
trade-off between performance and computational complex­
ity of algorithms for the estimation of complex sources in the 
two augmented spaces is performed. 

Index Terms- Complex matrix calculus, Newton opti­
misation, complex eigenvalues, augmented complex matrix 
space. 

1. INTRODUCTION 

The recent resurgence of interest in complex domain signal 
processing has been made possible by the enhanced under­
standing of the statistics in C. For instance, the advances in 
so called augmented statistics and e}R calculus have enabled 
the design and analysis of new algorithms and deeper insight 
into signal processing problems in e [1]. As algorithms based 
on so called augmented complex statistics are emerging, lead­
ing to more accurate but mathematically involved solutions, 
revisiting some aspects of complex calculus is a prerequisite 
to providing a set of analytic tools to support these develop­
ments. 
In this direction, for real-valued functions of complex vector 
variables, the work by van den Bos [2] has provided a plat­
form for modelling and optimisation via so called augmented 
vector spaces, with a thorough overview given in [3], where 
the duality between these spaces is explored. The application 
of these results have been recently utilised in various statisti­
cal signal processing fields, such as adaptive filtering [1]. 
Complex optimisation problems often involve real-valued func-
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tions of complex matrices 1; these are a standard in communi­
cations and signal processing problems, such as in optimisa­
tion problems in MIMO systems and in blind source separa­
tion. In this paper, by complementing the work in [4], [5], we 
extend the concept of duality between vectors }RN and e N 
in [3] to the case of complex matrix spaces, and formalise 
the equivalence of real-valued functions of complex matrix 
variables in the standard and augmented spaces up to their 
second-order Taylor series expansion. 
We show that this is sufficient for the derivation and analy­
sis of standard gradient-based learning algorithms. This also 
helps with the analysis of general signal processing algorithms 
in augmented matrix spaces and allows for simpler closed 
form solutions. Applications in Newton optimisation and blind 
source separation demonstrate the potential of the introduced 
complex matrix calculus results. This is followed by a com­
parison of adaptive algorithms in the real and complex matrix 
spaces demonstrate the trade-offs associated with the algo­
rithms. 

2. REPRESENTATIONS OF COMPLEX MATRICES 

The complex matrix Z = Zr + JZi E e MxN, with Zr and 
Zi denoting respectively the real and imaginary components, 
can be equivalently described as a matrix n in the real-valued 
space }R2Mx2N, given by 

n = [ Zr 
Zi (1) 

or as a matrix V in the complex conjugate-coordinate space2 
e2Mx2N, given by 

V= [ � o ] E e2Mx2N � C Z* (2) 

where V is referred to as the augmented form of the com­
plex matrix Z and 0 is a zero-valued matrix of size MxN [3]. 
This equivalent notation is possible due to the duality (iso-

1 For instance the cost function in complex adaptive filtering is E = 

�e(k)e* (k) and is a real function of complex error e(k). 
2For simplicity, we use the notations R � IR2MX2N andC � C2Mx2N 

in the following sections. 



morphism) between the spaces R and C and is formalised by 
the transformation between 0 and V, described by the ma­
trix3 

(3) 

Matrix J K, introduced in [2] and [3], is a square block matrix 
of size 2Kx2K and I is the identity matrix of size KxK. The 
inverse of this mapping is given by 

r1 - �JH (4) K - 2 K 

and thus matrices 0 and V are related by 
1 H 1 H V = 2JMOJN' 0 = 2JMVJN. (5) 

Alternatively, the mapping in (5) can be written using the 
vec ( . ) operator4. In this manners, 

1 
vee(V) = 2(Jiv @ J M) vee(O) = .7 vee(O) (6) 

1 vee(O) = 2(JJ.;-@JZ)vee(V) = .7-1 vee(V) (7) 

and allows for a simplified and convenient method of describ­
ing the coordinate transformation, denoted by .7 E JR.4M N x 4M N. 
Therefore, the Jacobian of the transformation [3] from R to C 
is given by 

8 8 vee (V) 1 * 
Jc = 80 V = 8veeT(0) = 2(JN@JM) = .7  (8) 

and the Jacobian of the transformation from C to R by 

In = �O = 8 vee (0) = �(JT @JH) = .7-1. (9) 8V 8veeT(V) 2 N M 

This illustrates that the Jacobian of the transformation Jc in 
(8) is equal to the coordinate transformation .7, and the Ja­
cobian of the transformation In in (9) is equal to the inverse 
transformation .7-1 [3]. As a result, the partial derivative 
transformations6 between the two spaces in the vectorised for­
mat are given by 

8vee(·) = � 8vee(·) (JT @JH) (10) 
8 veeT (V) 28veeT(0) N M 

8vee(·) 1 8vee(·) 
J* J 8veeT(0) = 2 8veeT(V) ( N @ M) (11) 

and are row vectors of size lx4MN. Note that the partial 
derivative is defined as a row operator [3] with the transpose 
notation :v:��\?) used to emphasise this fact. 
For a real-valued scalar function of vector complex variables 
feZ, z*) : CMxN x CMxN f-+ JR. ,  the partial derivative trans-

3 Alternatively, by using the scaling factor 1/.;2 in the definition in (3), 
the matrix J becomes a unitary matrix [6]. 

4The vec operator stacks the columns of a matrix into a single column in 
a chronological order [4]. 

5The vec operator and Kronecker product@ are related by vec(RQS) = 

(ST @ R) vec(Q). 
6 Also termed the cogradient transformations in [3]. 
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forms can be simplified to an equivalent form [5] 

8f 1 8f H 
8V = 2JN 80 JM 
8f 1 H 8f 
80 = 2JN8V JM 

(12) 

(13) 

where * and � are matrices of size 2Nx2M. The proof for 
this alternative form is given in the next section, and follows 
directly from the first order expansion of feZ, Z*). Also, note 
that �V and �� are shorthand notations and are calculated 
as 

8(.) [8(') 
_ - 8Z 
8V - 0 8?') ] 

T 

8Z' 

8(.) [£U - 8Zr; 
80 - 0J. 8Zi 

_£0 ] T 
8Zi 
£U 
8Zr 

The real-valued scalar function f can be equivalently described 
in terms of coordinates in either CMXN, Rand C. Following 
on [3], the TSE of the function f(O) up to the second term is 

f(O + �O) = f(O) + Tr (���O) 
1 

+ 2 veeT(�O)Hoo vee(�O) (14) 

where symbol Tr(·) denotes the matrix trace operator, �O 
and � V are of the form given in (1) and (2), and Hoo is a 
real valued Hessian matrix given by 

Hoo = 8vee�(0) vee ( [��r) E JR.4MNx4MN. (15) 

2.1. Duality of First-Order Taylor Series Expansions 

Upon rewriting the first-order expansion term in (14) in the 
vectorised format, and using (7) and (10), we have 

( 8f ) 8f Tr 
80 �0 = 8veeT(0) vee(�O) 

1 8f T H) 28veeT(0)(JN@JM vee(�V) 

8f (8f ) = 8veeT(V) vee(�V) = Tr 8V �V (16) 

which is the first-order TSE of fey) in C. Furthermore, using 
the relations (5), we have 

Tr (���O) = Tr (� ��JZ(�V)JN) 
Tr (���V) = TrG ��JM(�O)J�) 

and due to the duality between Rand C, and the equivalence 
in the first-order terms in the corresponding TSEs we have7 

Tr ( 8f �O) = Tr (� 8f J (�O)JH) 80 28V M N 

= Tr (�JH 8f J (�O)) (17) 2 N8V M 

7We also make use of the identity Tr(RQ) = Tr(QR). 



and 

(18) 

The equivalence of the terms on both sides of relations (17) 
and (18) results in the simplified partial derivative transforms 
given in (12) and (13). 
Now, to produce the first-order expansion of f(Z) in CMxN, 
we can expand the first-order terms of f(V) to yield 

Tr (:��V) = Tr ( (��f �Z + (:1*)T �Z*) 

= 2�{ Tr( (��f �Z) } (19) 

where If. = (M) * , as fE R Also note that the gradient in 
the direction of steepest descent is given by If. [4,5]. 

2.2. Eigenvalue Analysis of Hessian Matrices 

We shall now establish the relationships between second-order 
terms in the TSE of a scalar f in the spaces CMXN, Rand C. 
In addition, by analysing the relationship between the Hessian 
matrices in R and C, a relation between the eigenvalues of the 
corresponding Hessian matrices is provided. 
Observe the relationship between the real Hessian matrix Hoo 
in (15) and the complex Hessian matrix H vv, given byB 

8 
( [

8f
]

H
) 4MNx4MN Hvv = 

8vecT(V) 
vec 8V 

E C . (20) 

From (15), we have9 

Hoo = 

8 ve:r (0) 
vee ( [:�] 

H
) 

= 

8vee�(0) 
{vec (�(J� :�JM ) H) } 

8 
{

1 T H (8f )H
}

1 * = 

8veeT(V) 2(J N i?9 J M) vec 8V 2(J N i?9 JM) 

1 T H 8 (8f )H 
* = 4 (J N i?9 J M ) 8 vecT (V) vee 8V (J N i?9 J M ) 

= �(JJ.;i?9J�)Hvv(JNi?9JM) (21) 

which is the relationship between real and complex Hessian 
matrices, written in terms of H vv. This relationship can also 
be expressed in terms of the real Hessian matrix Hoo by 

8The notation vec([ · ]T) is used interchangeably with vec(-)T. Note the 
difference from vecT (-). 

9Notice that since Hoo in (15) is real-valued, for convenience we can 
apply the complex conjugate operator to both sides of (15) and hence replace 
(y by (.)H. 
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noticing that the two Kronecker product terms are the inverse 
of one anotherlO• Thus 

Hvv = �(JN i?9JM)Hoo(JJ.; i?9J�). (22) 

The analysis of the eigenvalues of the two Hessian matrices 
will assist in understanding their duality. Following the ap­
proach in [2] and [3], consider the linear system 

(Hvv - .xvI)u = 0 :::} (Hvv - .xVI) = 0 (23) 

where the set of solutions spans the eigenspace. Using the 
relation (22) we have 

Hvv - .xVI = �(JN i?9 JM)Hoo(JJ.; i?9J�) (24) 

- A V � (IN i?9 J M ) (JJ.; i?9 J � ) 

= �(JN i?9 JM)lHoo -: AVIJ(JJ.; i?9J�) 
=O>AV =A" 

where {A V} are the eigenvalues of the complex Hessian ma­
trix. This demonstrates that for every eigenvalue A V of the 
complex-valued Hessian matrix Hvv, there is a correspond­
ing eigenvalue AO of the real-valued Hessian matrix Hoo, 
and that these eigenvalues are equal 

A 0 = A V . (25) 

2.3. Duality of Second-Order Taylor Series Expansions 

This section effectively extends the analysis for the vector 
case presented in [3]. The second-order expansion term in 
C is obtained from (14) using the relationship (21) such that 
1 1 
2 vecT(�O)Hoo vee(�O) = 2 veeH (�O)Hoo vec(�O) 

1 (1 H * ) (1 T H ) = 2 2 vec (�V)(J N i?9 J M) Hoo 2(J N i?9 J M) vec(� V) 
1 

= 2 vecH (�V)Hvv vee(� V). (26) 

The components of the second-order expansions in C can now 
be written in terms of matrix Z to derive the second-order 
expansion in the standard CMxN space, that is 
1 
2vecH(�V)Hvvvec(�V) = (27) 

�{vecH (�Z)Hzz vec(�Z) + vecH (�Z)Hz* z vec* (�Z)} 
where the operator �{-} denotes the real part of a complex 

. bl H 1;;, 8vec(8fI8Z)* d H 1;;, 8vec(8fI8Z)* varIa e, zz - 8vecT(Z) an Z*Z - 8vecT(Z*) 
To summarise, the expansion of fin R is illustrated in (14), 
whereas the expansion in C is shown through the isomorphism 

IOThis can be observed from (8) and (9). Alternatively, the identity (R @ 
Q)-l 

= R-1 @ Q-l and (4) can be used to obtain the same result, i.e. 
�(Jrv @ JM)(J� @ J�) = I. 



between the two spaces given in (16) and (26), to yield 

I(V + �V) = I(V) + Tr (:��V) 
1 

+ "2 vecH (�V)Hvv vec(� V) (28) 

Similarly, the TSE of a scalar function of complex matrix 
variables 1 in CMxN is given by (19) for the first term, and in 
(27) for the second term, that is 

I(Z + �Z) = I(Z) + 2�{ Tr ( (��) T �z) } (29) 

and therefore 
{)log I det(O) I [a log I det(Z)I {)log I det(Z*)I ] *=Z-H 

aZ* aZ 
+ aZ 

where we have also used some fundamental results from lin­
ear algebra [8] and matrix derivatives [5]. 

4. NORM-BASED COST FUNCTIONS 

Several cost functions encountered in signal processing re­
search are defined based on matrix inputs [4]. Here we shall 

+ �{vecH (�Z)Hzz vec(�Z) + vecH (�Z)Hz* z vec*(�Z)} address on no�-based cost functions Q(A, A*) : CNxN x 
CNxN f-+ JR gIven by 

3. APPLICATION EXAMPLES 

To illustrate the potential of the derived results, we shall con­
sider two case studies: Newton optimisation and Blind Source 
Separation. Due to lack of space, only a concise implementa­
tion of the theory is provided. 

3.1. Optimisation in the Augmented Matrix Spaces 

A classic optimisation application, illustrated in [2], is the 
minimisation of the real-valued function 1 : CN xCN f-+ 

JR using the Newton method. We will consider the exten­
sion of this approach to functions of complex matrices 1 : 
CMxN xCMxN f-+ JR, to calculate the minima a 1/ aO = 0 
and a 1/ aV = O. By taking the derivative of the second or­
der expansion term of 1(0) in (14), and I(V), in (28), and 
equating to zero, we have 

( al )T Hoovec(�O) = - avecT(O) 
(30) 

( al )H Hvvvec(�V) = - avecT(V) . (31) 

The benefit of this formulation is that it allows complex op­
timisation problems to be cast in augmented matrix spaces, 
which when combined with CJR calculus, provide a simpler 
and easier to understand way of calculating the optimal solu­
tion. 

3.2. Derivative Calculation in Blind Source Separation 

In the derivation of the complex blind source separation algo­
rithm based on maximum likelihood, it is necessary to calcu­
late the derivative 8 log b��t(n)l. The method provided in [7] 
requires the introduction of a new symmetric matrix and fur­
ther algebraic manipulation. A more straightforward calcula­
tion, based on the introduced framework, gives 

1 
log I det(O) I = log I det("2JHVJ)I 

1 = log I det("2JH) det(V) det(J)I 

= log I det(V)I = log I det(Z) . det(Z*)1 
= log I det(Z)I + log I det(Z*)I 
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Q(A, A*) = IIAII� = Tr(AH A) (32) 

where II · IIF denotes the Frobenius norm. Consider the linear 
predictor of U given by 

D = WTZ, (33) 

with estimation error E = U - D, input matrix Z and weight 
matrix WE CNxN, and the norm-based cost function Q = 
IIEII� = Tr{EHE}. The optimal value of W can be ob­
tained adaptively using a gradient descent method that min­
imises the cost function. Thus using CJR calculus 

Wk+l = Wk - P,"ilWk Q = Wk + p,EkZ;;' (34) 

which will be referred to as the block complex least mean 
square (b-CLMS) algorithm, where p, is the step-size. Alter­
natively, by assuming a widely linear model [9] of U based 
on the input Z and its conjugate Z* , the output of the widely 
linear predictor is 

DWL = WTZ + VTZ* (35) 

and W and V are the complex N x N weight matrices. The 
cost function can be minimised for both matrices to achieve 
the gradient descent algorithms II 

Wk+I = Wk + 1]EkZ;;' 
(36) 

and 1] is the step-size. We will refer to (36) as the block aug­
mented complex least mean square (b-ACLMS) algorithm. 
Now consider the matrix analog of the dual channel real least 
mean square (DCRLMS) algorithm described in [10], with 
real-valued input/output relation 

[ � � ] = [:�� :�� r [ i� ] (37) 
where Xi are the real-valued input matrices, Yi are the esti­
mated output. The matrix of weight matrices Hpq E JRNxN 
is updated adaptively as 

Hpq,k+l = Hpq,k + pEqXp,k' p, q = {I, 2} (38) 

11 See [1] for more details. 



and Eq,k = Yq,k - Yq,k is the estimation error and p is the 
step-size. We will refer to the update algorithms (38) as block 
DCRLMS (b-DCRLMS). 
In order to perform analysis between the update algorithms in 
CNxN and ]R.NxN, we will write the linear input relation (33) 
in terms of its real and imaginary components Vr and Vi, to 
obtain 

" T ·T · "  . ·T T . 

Vr = Wr Zr -W' Z', V' = W' Zr +Wr Z' (39) 

and for the widely linear relation (35), we have 

UWL = (wr + vr)Tzr + (Vi _ Wi)TZi (40) 

uin = (Wi + Vi)Tzr + (wr - Vi)TZi. (41) 

Similarly, the update algorithms can be written in terms of the 
updates for the real and imaginary components of the weight 
matrices. For the b-CLMS algorithm (34), we thus have 

Wk+1 = Wk + I1(EkZk + E1Z1) (42) 

W1+1 = W1 + I1(E1Zk - EkZ1), (43) 

while for the b-ACLMS algorithm (36) 

Wk+1 = Wk + 1J(EkZk + E1Z1) (44) 

W1+1 = Wl, + 1J(El,Zk - EkZ1) (45) 

Vk+1 = Vk + 1J(EkZk - E1Z1) (46) 

V�+l = V1 + 1J(E1Zk + EkZ1). (47) 

4.1. Adaptive Linear Algorithms 

To compare the input/output relation and the dynamics of the 
b-CLMS and b-DRCRLMS algorithms, for the same inputs 
from (39) and (37) we have 

(48) 

and the corresponding errors are defined so that 

El = Er, E2 = Ei. (49) 

Thus, for the same outputs Y 1 = ur and Y 2 = Ui, we have 

(50) 

It is clear that the b-CLMS input/output relation is a con­
strained version of the b-DCRLMS, where fixed values are 
assigned to the Hij matrices. 
The dynamic behaviour of the two update algorithms can be 
readily compared from (38) and (42), illustrating that the two 
algorithms are not equivalent, due to the different dynamics 
of the updates in CNxN and ]R.NxN. Also notice that while 
the updates � Wk and � W1 of the b-CLMS algorithm de­
pend on both the real and imaginary error components, the 
b-DCLMS update �Hij is calculated based on only the error 
from one channel. However, by assuming the constraints (50) 
on the weights Hij, we can deduce that 

34 

�Hll k = �H22 k = �(El kXl k + E2 kX2 k) = �� Wkr , ' 2 " " 2 
1 1 · �H12,k = -�H21,k = 2(E2,kXl,k -E1,kX2,k) = 2� Wl, 

(51) 

and so for as equal step-size p = 11, the b-DCRLMS algo­
rithm converges to the optimal solution two times slower as 
the b-CLMS algorithm. 

4.2. Adaptive Widely Linear Algorithms 

We shall now compare the input/output relation of the widely 
linear model (35) to the dual channel real-valued model in (37). 
Assuming the same input relations (48) and by matching the 
output errors (49), the component expansions in (40)-(41) 
provide the relation between the corresponding outputs, such 
that 

Hll = (wr + vr) H12 = (Wi + Vi) 
H21 = (Vi - Wi) H22 = (wr - vr) (52) 

result in the equivalent outputs Y 1 = Vw Land Y 2 = vtv L' 
We can then establish the relationship between the dynamics 
of the b-ACLMS and b-DCRLMS algorithms through sim­
ple algebraic manipulations of (44)-(47), where for the same 
step-size p = 1J we have the equivalence 

�Hll,k = E1,kXl,k = �(�Wk + �VD 
1 . . 

�H12,k = E2,kXl,k = 2(�Wl, + �Vk) 
1 . . 

�H21,k = E1,kX2,k = 2(�Vl, - �Wk) 

�H22,k = E2,kX2,k = �(� Wk - � VD. (53) 

Therefore, the b-DCRLMS is the real-valued equivalent of the 
b-ACLMS algorithm, while having a convergence rate twice 
as slow as that of its complex counterpart. However, due to 
its design based on the optimisation of a widely linear model, 
the b-ACLMS is better suited for modelling of complex data 
as it is optimal for both second order circular and noncircular 
signals. Finally, note that these results are in line with the 
existing results on adaptive algorithms in ]R.N and C [1]. 

4.3. Computational Complexity of Adaptive Algorithms 

In practical applications, the overheads associated with the 
implementation of real, complex and augmented complex al­
gorithms are often equally important as their performance, 
and it is important to address a trade-off between the accu­
racy and performance, in order to reduce power consumption. 
To compare the computational complexity of the b-CLMS, b­
ACLMS and b-DCRLMS algorithms, the measurement used 
was the 'flop', defined as the number of floating point op­
erations [11]. Table 4.3 states the number of flops for each 



Table 1. Computational complexity of the real- and complex­
valued adaptive algorithms. The variable N denotes the size 
of a square matrix. 

Alg. b-CLMS b-ACLMS b-DCRLMS 
Flops 2(3N2 + 4N3) 4(3N2 + 4N3) 4(3N2 + 4N3) 

adaptive algorithm, where N is the length of a square matrix 
while Figure 1 illustrates the increase in the computational 
complexity for an increase in the size of the data matrix for 
the respective algorithms. 
It can be seen that while the computational complexity of 
the b-CLMS and b-DCRLMS algorithms are similar, the b­
ACLMS algorithm has a higher computational cost for the 
same matrix size12. Likewise, for data matrices of size N � 
10, the cost of computation becomes an important factor, while 
for N < 10, the number of flops are approximately the same 
across all algorithms and we focus on the performance of the 
algorithm. Given the equivalence of the b-ACLMS and b­
DCRLMS algorithms, the implementation of the b-ACLMS 
is obviously less computationally effective than that of the b­
DCRLMS, while providing a natural processing environment 
for complex data. 

5. CONCLUSIONS 

The second order Taylor seris expansion (TSE) of real-valued 
scalar functions of complex matrices in <cMxN , and augmented 
real n and complex C spaces has been analysed. The du­
ality between the calculation in the augmented real and com­
plex space is demonstrated by making use of the isomorphism 
between the two spaces. The practicality and efficiency of 
the proposed approach has been demonstrated on two signal 
processing applications, and the trade-off between the perfor­
mance and computational cost has been highlighted. 
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