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ABSTRACT

A fast complex-valued blind source extraction algorithm de-

signed for the extraction of smooth sources, is introduced.

This is achieved based on a smoothness constrained cost and

by considering the augmented statistics of the latent source

signals. The methodology, based on the CR calculus and

complex FastICA framework, is shown to be capable of ex-

traction of both complex circular and noncircular smooth

sources for real-time brain computer interfacing. The per-

formance of the algorithm is verified on benchmark signals,

followed by a biomedical application in the extraction of

artifacts from recorded EEG signals in the order of smooth-

ness.

1. INTRODUCTION

Blind source extraction (BSE) belongs to the class of blind

source separation (BSS) techniques, whereby the aim is not

only to recover latent sources from an observed mixture,

but to perform the recovery in a certain order. This way,

we extract a subset of the sources based on a desired signal

property [1], which is particularly useful for large datasets.

Several classes of BSE algorithms based on the temporal

structure and higher-order statistics of sources have already

been explored in the real domain [2, 3]. In the complex do-

main, such BSE algorithms have been recently introduced;

they were designed so as to cater for the generality of com-

plex signals, both circular and noncircular. Performances

of these algorithms in the extraction of synthetic and real-

world signals have been demonstrated on the extraction of

complex circular and noncircular brain electrical activity

sources [4].

The unique property of complex statistics is that the

complete second-order information about a signal z(k) ∈
C

N is based on the covariance Czz = E{z(k)zH(k)} and

pseudo-covariance Pzz = E{z(k)zT (k)} matrices [5, 6].

Signals for which the pseudo-covariance vanishes, that is

Pzz = 0, are termed proper or second-order circular, while

most complex signals encountered in signals processing ap-

plications are improper or second-order noncircular. How-

ever, in the literature complex-valued signals have been, ei-

ther explicitly or implicitly, traditionally considered proper.

The resulting algorithms are optimal for only a subset of

complex signals (proper signals), while performing sub-opti-

mally for the wider class of improper signals.

The recent resurgence in real-time signal processing al-

gorithms in C has been made possible by so called aug-

mented complex statistics which allow for the consideration

of the full second-order information available within the sig-

nal [7]. Furthermore, the concept of CR calculus [8, 9] has

aided the analysis of cost functions which would otherwise

not satisfy the stringent Cauchy-Riemann conditions of the

standard complex calculus.

Smoothness is a fundamental signal property, which can

be modelled based on the gradients of data vectors. It can

also aid BSS and BSE as, for instance, in electroencephalog-

raphy (EEG) analysis, artifacts coming from eye muscles

are smoother than the background EEG. The BSE for real-

valued smooth signals in the time-domain was introduced

in [10], and an implementation based in the frequency do-

main was recently proposed in [11]. Processing in the time

domain has its merits in retaining the signals in their origi-

nal form and avoiding extra computations. In addition, pro-

cessing in the Fourier domain will result in an intermediary

smoothing step due to the low-pass filtering performed by

the Fourier Transform.

To this end, we propose a blind extraction algorithm for

complex-valued signals in time domain. In a similar man-

ner to [10], we introduce a fast converging algorithm by us-

ing a fixed-point type update based on the existing complex

FastICA algorithm [12, 13]. Such an extraction algorithm

can thus be seen as a constrained version of the complex

FastICA algorithm, and as shown in the derivation, it sim-

plifies into the unconstrained complex FastICA where the

smoothness constraint is removed.

The performance is verified on the removal of artifacts

from real-world EEG recordings. It is shown that several

types of eye movement artifacts can be successfully removed

using the proposed algorithm, this making it attractive for

brain computer interface (BCI) applications. Thus by re-

moving or rejecting the artifact sources, further processing

on the remaining pure EEG signals is made possible in real-

time.
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2. SMOOTHNESS-BASED BLIND SOURCE

EXTRACTION

2.1. The Concept of Smoothness in C

The mathematical concept of a smooth function is based on

differentiability. Consider the Sobolev space W p,q ⊂ R
N

defined as the space where the p-th power of a function f ∈
W p,q and also its first q-th derivatives are integrable [14].

The norm is then defined as

‖f‖Wp,q =

(
q∑

i=0

‖D(i)f‖pp

)1/p

(1)

where D(i)f denotes the ith derivative. Due to the dual-

ity between C and R
2 [9], the above definition can also be

adopted for complex-valued functions. We shall utilise the

Sobolev norm for the space W 2,1, where only the second

power of the function and its first derivative are considered.

Taking an arbitrary upper bound of the ratio between the

Sobolev and Euclidean norms of the function f and after

some simplification, we arrive at

‖D(1)f‖22
‖f‖22

≤ ρs (2)

where ρs is the upper bound of the ratio, also referred to as

the smoothness factor. For a discrete signal z(k), a more

simplified form is given by

E{|∆z(k)|2} − ρsE{|z(k)|
2} ≤ 0 (3)

where ∆z(k) = z(k)−z(k−1); a geometric interpretation

is given in Fig. 1. Thus, in a similar fashion to the real-

valued definition, (3) models a complex-valued signal with

a slow varying temporal profile as a smooth signal. Intu-

itively, a complex-valued signal z(k) is smooth if the vari-

ance of the difference between consecutive samples is less

that a pre-defined fraction of the variance of the signal it-

self. This can also be viewed as measuring the variation in

the gradient of the signal1.

Alternatively, consider the definition (2) for z(k) = zr(k)+
zi(k), expressed in its dual form ωk = [zr, zi]

T ∈ R
2.

Then,

E{〈∆ωk,∆ωk〉} − ρsE{〈ωk, ωk〉} ≤ 0 (4)

E{∆z2r (k)}+ E{∆z2i (k)} − ρs(E{z
2
r (k) + z2i (k)}) ≤ 0

where symbol 〈·, ·〉 denotes the inner product.

Notice that the smoothness definition based on the Sobolev

norm of W 2,1 corresponds to the covariances Czz(0) and

Czz(1), that is, the covariances of lag zero and one.

1In C relationships such as > and < do not apply and we need to re-

sort to the duality between R2 and C, and to use so called lexicographic

ordering.

z(k) = [x(k), y(k)]

|∆z(k)|

|z(k)|

ℜ

ℑ

∆zi(k)

∆zr(k)

z(k-1) = [x(k-1), y(k-1)]

Fig. 1. Geometric interpretation of the smoothness defini-

tion given in (3)

2.2. The BSE Problem

Consider an observation x(k) ∈ C
N formed from the linear

weighted combination of latent sources s(k) ∈ C
Ns , given

by

x(k) = As(k) (5)

where A ∈ C
N×Ns is the mixing matrix, and Ns is the

number of sources. The sources are assumed independent

and the observation mixture is whitened prior to processing.

The aim is to find a demixing vector w that will recover one

of the sources, given by

y(k) = w
H(k)x. (6)

Following the standard BSS methodology [15, 12], this

can be achieved by maximising the non-Gaussianity of y(k)
reflected in the cost function

JN (w,w∗) = E
{
G(|wH

x|2)
}

(7)

where G is a nonlinearity used to approximate the associ-

ated negentropy, and for generality, JN is expressed using

both the conjugate coordinates w and w
∗.

To ensure that components with certain smoothness char-

acteristics are extracted, we aim to impose further constraints

on JN . Based on the definition in (3), for the removed

source y(k) given in (6), the smoothness measure becomes

JS(w,w∗)=β
(
E{|wH∆x(k)|2}−ρsE{|w

H
x(k)|2}

)
(8)

The constant β = {−1, 1} gives us a degree of freedom

in dealing with smooth sources, for instance β = −1 the

extraction of the most non-smooth source will be achieved.

Thus, the optimisation problem of BSE of latent sources

based on the smoothness constraint (S-cBSE) can be stated

as

wopt = arg max
‖w‖2

2
=1
JN (w,w∗)

subject to JS(w,w∗) ≤ 0. (9)

After every step, the demixing w is normalised, to avoid

spurious solutions.

2
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To solve the optimisation problem (9), we will employ

the method of Lagrangian multipliers. The extrema of the

Lagrangian can be found using the Newton method, result-

ing in faster convergence to the solution; this method has

been shown to be stable for a related unconstrained prob-

lem in the complex domain [13], and a detailed proof of

the derivation is given in the Appendix. The Newton based

optimisation of the Lagrangian is performed as

∆w =

(
Hww∗ −Hw∗w∗H

−1
w∗wHww

)−1

×

(
Hw∗w∗H

−1
w∗w

∂L

∂w
−

∂L

∂w∗

)

∆λ = ∇λL

w(k + 1)← w(k + 1)/‖w(k + 1)‖2 (10)

where L(w,w∗, λ) is the Lagrangian function, λ is the La-

grangian multiplier and H matrices are the Hessians of L.

To extract successive smooth (non-smooth) sources, a

deflationary orthogonalisation process using the Gram-Schmidt

method is performed after each iteration of the extraction al-

gorithm in (10). While this allows for unambiguous extrac-

tions, errors in the extraction and thus deflation process can

accumulate, resulting in decreased performance over con-

secutive extractions2. The deflation procedure for the ith
demixing vector can be compactly written as

wi(k + 1)← wi(k + 1)−WW
H
wi(k + 1) (11)

where W = [w1(k + 1), . . . , wi(k + 1)].

3. PERFORMANCE BENCHMARKING

To illustrate the performance of the proposed algorithm, sub-

Gaussian and super-Gaussian complex-valued sources with

different degrees of noncircularity were used. The smooth-

ness degree of the sources

ρs =
E{|∆z(k)|2}

E{|z(k)|2}
(12)

was measured using (3), while the circularity was measured

as the ratio of the absolute value of the pseudo-variance

τ2z = E{z2} to the variance σ2
z = E{|z|2} of the source, as

described in [16], and expressed as

r =
|τ2z |

σ2
z

, r ∈ [0, 1]. (13)

The value r = 0 denotes a second-order circular source,

while r = 1 indicates a highly noncircular source.

2In practical applications, this usually does not pose a pose a problem,

as we are interested in only 1-2 smooth sources (artifacts).

The performance of the algorithm was measured using

the Performance Index (PI) given by [1]

PI=10 log10

(
1

M

(
M∑

i=1

|ui|
2

max{|u1|2, . . . , |uM |2}

))
. (14)

where u = A
H
w = [u1, . . . , uM ].

Four complex-valued sources of 5000 samples where

mixed using a randomly generated 4 × 4 mixing matrix to

form the observed mixtures. The magnitude of the sources

are shown in Fig. 2 and the signal properties given in Ta-

ble 1. The mixture was whitened and the latent sources

were extracted using the S-cBSE algorithm (10). In the first

experiment, the value of β = 1, ρs = 0.9, λ = 1 and

µλ = 0.01. As the signals were synthetically generated, the

value of ρs was chosen based on measurements of the sig-

nal smoothness. The nonlinearity G(z) = log cosh(z) en-

sured that the negentropy of both sub-Gaussian and super-

Gaussian sources were sufficiently approximated for max-

imisation.

Fig. 2 shows the sources which were successfully ex-

tracted based on the smoothness criterion. For comparison,

the measured smoothness factors for the extracted sources

are given in Table 1. Notice that as {ρs3 , ρs1} ≤ 0.9 it is

expected that only sources s3(k) and s1(k) were to be ex-

tracted, however, the algorithm also successfully extracted

the subsequent sources s2(k) and s1(k). This can be at-

tributed to the strong non-Gaussianity condition in (7), which

is sufficient for successful extraction. The plot of perfor-

mance index at each iteration (Fig. 3) shows that the algo-

rithm achieved convergence with a PI of around -30dB for

the source estimates y1(k), y2(k) and y4(k) in under 10 it-

erations, while source estimate y3(k) achieved a PI of under

-35dB in 19 iterations. Alternatively, expressed in terms of

the signal-to-interference ratio (SIR), the values for the con-

secutive extractions were respectively 29.81dB, 23.23dB,

21.76dB and 25.68dB. For comparison, the performance of

the S-cBSE algorithm in extracting the first desired source

based on the standard complex FastICA [12] is shown by

the dotted line. Notice that the algorithm is not suitable for

the extraction of noncircular sources.

In the next experiment, the objective was to extract the

non-smooth sources, for which β = −1 and ρs = 2. The

values of the other parameters were set empirically to λ =
20 and µλ = 1 and the nonlinear function G was kept as be-

fore. The sources were extracted in the order of increasing

smoothness, with the performance indices over the extrac-

tion process plotted in Fig. 3. The PI value for the source

estimate y1(k) was around -30dB while y2(k) achieved a

limit cycle with a varying PI of around -22dB to -30dB.

Source estimate y3(k) initially converged but diverged after

3 iterations and y4(k) only achieved a PI of around -20dB.

While source s4(k) was the only non-smooth signal accord-

ing to the value set for ρs, source s2(k) was also success-

3
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Table 1. Source properties for extraction simulations

β = 1 β = −1

Source r ρs ρ̂s ρ̂s

s1(k) 0.9997 0.1154 0.1200 0.0193

s2(k) 0.9865 1.4771 1.4745 1.4782

s3(k) 0.9998 0.0148 0.0150 0.1136

s4(k) 0.9995 2.0214 2.0219 2.0204
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Fig. 2. Performance of the algorithm (10) in the extraction

of smooth (β = 1) and non-smooth (β = −1) sources

fully extracted due to the close proximity to the smoothness

criterion. However, note that sources s1(k) and s3(k) were

not successfully extracted due to the disparity between the

values of ρs1 and ρs3 to ρs = 2 as set for this experiment.

The SIR for the consecutive extractions were respectively

23.87dB, 27.45dB, 3.93dB and 3.87dB.

4. ARTIFACT EXTRACTION FROM EEG

The S-cBSE algorithm was next utilised to extract power

line noise, biological eye blink (electrooculogram, EOG),

and eye muscle activity (electromyogram, EMG) artifacts,

common in EEG recordings. The aim is to condition the

contaminated recording so that further processing, such as

those necessary in real-time BCI, can be performed on pure

EEG signals. To this end, an EEG recording was made

where the electrodes were placed according to the 10-20

systems at positions Fp1, Fp2, C3, C4, O1, O2 and the

ground placed at Cz. The electrical activity from the EOG

and EMG artifacts were recorded using the vEOG and hEOG

channels, with electrodes placed around the eye. The record-

ing lasted 30s and the data were sampled at a rate of 256Hz.

In the first study, the participants were asked to blink at ran-

dom intervals while looking straight. In the second study,
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Fig. 3. Performance of the algorithm (10) in the extrac-

tion of smooth (β = 1) sources and non-smooth (β = −1)

sources. Performance of the S-cBSE algorithm based on the

standard complex FastICA [12] for the first extracted source

with β = 1 is shown by the dotted line.

the instructions were to move the eyes in a vertical motion

at random intervals.

The recorded EEG channels were combined into tem-

poral complex-valued mixtures such that the real and imag-

inary components comprised symmetric EEG channels. In

this manner, the cross-information due to the phase and mag-

nitude relationship between pairs of symmetric electrodes

was utilised by the extraction algorithm [17]. The complex

EEG mixtures x(k) were generated as

x1(k) = Fp1(k) + Fp2(k)

x2(k) = C3(k) + C4(k)

x3(k) = O1(k) + O2(k). (15)

In the EOG study, the algorithm (10) was used to extract

two independent sources, and was initialised respectively

with β1 = 1, β2 = −1, and ρs,1 = 0.01, ρs,2 = 0.9 for the

first and second extraction steps, while the value of λ = 80
and µλ = 1 for both steps. These values were deduced from

prior information about both artifacts; the periodic power

line noise was non-smooth3, while the intermittent EOG ac-

tivity was smooth in comparison to the pure EEG data.

The real and imaginary components of the complex-

valued extracted signal y(k) represent the actual real-valued

latent sources. After the completion of each extraction stage,

the smoothness of the real and imaginary components were

measured, and the component matching the criterion was

removed. The smoothness values for the extracted signals

y1(k) and y2(k), and their respective real and imaginary

3This can be attributed to the low sampling rate, a limitation of the

recording hardware.

4
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Table 2. Smoothness properties for extracted EEG artifacts.

The rejected components are shown in bold font.

Dataset Source ρs ρs(ℜ,ℑ)

‘EOG’
y1(k) 0.0274 0.2706, 0.0085

y2(k) 1.2910 1.3179, 0.8494

‘EMG’
y1(k) 0.7333 0.7748, 0.2323

y2(k) 0.1438 0.0142, 0.1242
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Fig. 4. Left: Power spectrum of the recorded EOG and the

extracted artifacts, Right: Power spectrum of the EMG due

to eye movement and the extracted artifacts.

components are given in Table 2.

A qualitative assessment of the extraction was performed

by comparing the power spectrum of the reference biolog-

ical artifact and the power spectrum of the extracted arti-

facts, such as the EOG shown in the left column of Fig. 4.

The power spectrum of the raw EOG illustrates the presence

of frequencies from 0Hz-5Hz and the power line activity at

50Hz. The power spectrum of ℑ{y1(k)} shows that the al-

gorithm successfully extracted the EOG source, while atten-

uating the 50Hz frequency. The 50Hz source was contained

within the real component of the second extracted source

ℜ{y2(k)}, as seen from the corresponding power spectrum.

For the EMG study, the S-cBSE algorithm was initialised

such that β1 = −1, β2 = 1 and ρs,1 = 0.9, ρs,2 = 0.05.

The parameters λ1 = 1, λ2 = 10 and µλ = 1 for both

extractions steps. The smoothness factor of the extracted

sources and their respective components are given in Ta-

ble 2, and the power spectrum associated with the recorded

eye muscle activity and the extracted components is given

in Fig. 4. Observe that the real component of y1(k) con-

tained the power line activity, while the real component of

y2(k) represented the EMG activity.

5. CONCLUSIONS AND FUTURE WORK
We have introduced an algorithm for smoothness based com-

plex blind source extraction (S-cBSE). The concept of smooth-

ness has been defined for general complex-valued signals

and was employed to define a constrained cost function,

based on the maximisation of non-Gaussianity. The fast

convergence of the algorithm is inherited from FastICA,

confirmed on benchmark data. Further, an application in

the extraction of power line noise and biological artifacts

from contaminated EEG recordings has been addressed.

As illustrated in the simulations, the algorithm responds

to the choice of the smoothness factor ρs. Extensions of

this work will include stricter definition of smoothness by

considering different norms in the Sobolev space. In addi-

tion, while the algorithm is unaffected by noise represented

as a source signal, the performance degrades in the presence

of additive noise. It is thus desirable to enhance robustness

through bias removal within the cost function.

6. APPENDIX
6.1. Derivation of the S-cBSE Algorithm
First, note that due to the whiteness of x(k), the cost JS
in (8) can be expanded as

JS = w
HE{∆x∆x

H}w − ρsw
HE{xxH}w

= w
H [C∆x∆x − ρsI]︸ ︷︷ ︸

,B

w (16)

where B = B
H and I is the identity matrix.

To solve the constrained optimisation problem (9), con-

sider the Lagrangian function L(w,w∗, λ) : CN × C
N ×

R 7→ R given by

L(w,w∗, λ) = JN (w,w∗) + λJS(w,w∗) (17)

where λ ∈ R is the Lagrange multiplier. For the inequal-

ity constraint JS , the Karush-Kuhn-Tucker conditions are

to be considered and satisfied. However, we will follow

the method in [10] and transform the smoothness inequality

constraint into the equality constraint J́S = max(JS , 0) =
0, resulting in a simpler solution.

The Newton method is then used to find the extrema of

the Lagrangian, defined in augmented complex form as [18]

∆w
a = −Ha−1

ww

(
∂L

∂wa∗

)
(18)

where w
a = [wT , w

H ]T denotes an augmented complex

column vector and H
a
ww is the augmented Hessian matrix,

given by4

H
a
ww =

[
Hww∗ Hw∗w∗

Hww Hw∗w

]
(19)

4For the calculation of the S-cBSE algorithm based on the standard

complex FastICA, the block off-diagonal elements of Ha

ww
are assumed

zero, and form a quasi-Newton Hessian matrix.

5
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Expanding the augmented Newton update and solving

for ∆w results in the Newton step given in (10) (see also [9]),

where the individual gradient components, calculated using

CR calculus, are given by

∂L

∂w∗
= E{g(|y|2)y∗x}+ λǫβBw

∂L

∂w
=

(
∂L

∂w∗

)∗

, (20)

and the Hessian components are given by

Hw∗w∗ =
∂

∂w∗

(
∂L

∂w∗

)T

= E{g′(|y|2)y∗2xxT }

≈ E{g′(|y|2)y∗2}E{xxT }

Hw∗w =
∂

∂w∗

(
∂L

∂w

)T

= E{g′(|y|2)|y|2 + g(|y|2)}I

+ λǫβB

Hww =
(
Hw∗w∗

)∗
Hww∗ =

(
Hw∗w

)∗
, (21)

with ǫ =
(
sgn(JS) + 1

)
/2, and g and g′ denote the first

and second derivative of the nonlinearity G. As in [15], for

whitened data we make use of the approximation E{f(x)xx} ≈
E{f(x)}E{xx}.

The value of λ is updated using a gradient ascent method

at each iteration, given in (10). If the value of λ = 0, we ar-

rive at the unconstrained problem, for which the solution is

given in [13], as a generalised complex FastICA algorithm.
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