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ABSTRACT

The least-mean-square (LMS) algorithm is a useful and popu-
lar procedure for adaptive signal processing of both real-valued
and complex-valued signals. Past analysis of the complex LMS
algorithm has assumed that the input signal vector is circularly-
distributed, such that the pseudo-covariance matrix of the input
signal is zero. In this paper, we relax this assumption, providing
a complete mean and mean-square analysis of the complex LMS
algorithm for non-circular Gaussian signals. Our analysis unifies
the statistical descriptions of the conventional (real-valued) LMS
and complex LMS algorithms as specific cases of our more-general
behavioral description, negating the need for a distinction between
these two procedures. Simulations indicate that our analysis more-
accurately predicts the behavior of complex LMS for non-circular
signals as compared to existing analyses in the scientific literature.

1. INTRODUCTION

The least-mean-square (LMS) algorithm is perhaps the most-often-
used adaptive signal processing algorithm. Based on a stochastic
version of gradient descent applied to a mean-square error cost, the
LMS algorithm is used in a number of applications in communica-
tions, image processing, speech processing, and medicine, among
other disciplines. The algorithm is simple to code, computationally-
efficient, and has robust performance. Numerous analyses of the per-
formance of the LMS algorithm have been developed in the signal
processing literature.

The complex LMS algorithm is an extension of the LMS algo-
rithm to complex-valued signals [1, 2]. It is particularly useful in
communication applications involving modulated signals, as such
signals are best represented using complex numbers in a baseband
representation. For the weight vector w(k) = [w1 (k) - - wr(k)]T
at time k, the complex LMS algorithm is given by

H

y(k) = x"(kw(k) M
e(k) = d(k)—y(k) )
w(k+1) = w(k)+ pelk)x(k). 3)

where x(k) = [z1(k) - 25 (k)]T is the input signal vector, y(k)
is the output signal, d(k) is the desired response signal, e(k) is the
error signal, and  is the step size. In this form, the complex LMS
algorithm differs from the LMS algorithm only in the use of the Her-
mitian transpose in the definition of (k).

The first analysis of the complex LMS algorithm was most-
likely developed by K.D. Senne in his Ph.D. dissertation [3], which
was later expanded on and published as an oft-cited paper [4]. A re-
lated analysis as applied to the adaptive line enhancer appears in [5].
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The analysis in [4] assumes that the pair {d(k),x(k)} is jointly-
Gaussian, and that x(k) is zero mean and complex circular Gaus-
sian (that is, having a rotationally-invariant p.d.f. in the complex
domain), such that

R
and P

E{x(k)x" (k)} # 0
E{x(k)x"(k)} = 0.

G
)

The matrices R and P are known as the covariance and pseudo-
covariance matrices of x(k), respectively, when x(k) is zero mean.
While the assumption that P = 0 is sometimes reasonable, it is
not true in general. For example, when a real-valued BPSK sig-
nal is transmitted over a dispersive channel, the received signal to
an equalizer can exhibit non-circular statistical behavior. Recently,
the use of non-circular statistics has been leveraged to develop pro-
cedures for carrier recovery [6], direction-of-arrival estimation [7],
and signal separation [8]. It is not clear, however, how the statisti-
cal behavior of the complex LMS algorithm changes when the input
signal exhibits non-circular statistics.

In this paper, we provide a complete statistical analysis of the
complex LMS algorithm for complex non-circular jointly Gaussian
input and desired response signals, such that P £ 0. This analysis
includes the work of Horowitz and Senne in [4] as a special case
when P = 0. Interestingly, it also leads to a unifying analysis of
the real-valued LMS and complex LMS algorithms, as it includes
the well-known analysis by Feuer and Weinstein [9] in the case of
real-valued signals such that R = P = P*. Thus, there is no need
to present two different analyses for the real-valued and complex
LMS algorithms, negating the main reason for a distinction between
the real-valued and complex-valued data scenarios. From our study,
several issues are illuminated about the complex LMS algorithm:

o Its mean behavior is unaffected by input signal non-circularity
and desired-response signal non-circularity.

Its mean-square behavior is independent of the non-circularity

of d(k).

Its mean-square behavior depends weakly on the non-
circularity of the input signal vector. This effect is most-
pronounced for small filter lengths L and highly-non-circular
input signals.

The modes of convergence of the algorithm cannot be decou-
pled, except for special cases of input signal non-circularity.

Simulations show that our analysis is accurate in predicting mean-
square performance.
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2. SIMPLIFYING AND STRUCTURAL ASSUMPTIONS

For our analysis, we can assume without loss of generality that d(k)
is generated from the linear model

d(k) = x"(k)Wopt +n(k), (©)

where 77(k) is complex non-circular Gaussian and uncorrelated with
x(k), because of the joint Gaussianity of d(k) and x(k).

Throughout our analysis, we will make use of the independence
assumptions, such that {d({),x(1)} is independent of {d(k),x(k)}
when & # . While not strictly true in some cases such as FIR
filtering, such assumptions lead to reasonably-accurate behavior, es-
pecially for small step sizes p.

3. MEAN BEHAVIOR

Define the coefficient error vector

v(k) = w(k) = Wopt. Q)

where Wop: is We can then write the update for w(k) in terms of
v(k) as

vk +1) = v(k) = px(k)x" (k)v(k) + pn(k)x(k). (8)

Taking expectations of both sides of (8) and employing the indepen-
dence assumptions, we obtain

E{v(k+1)} = I-puR)E{v(K)}, ©)

which is identical to that for complex LMS with circularly-symmetric
Gaussian input signals. Hence, the mean characteristics of complex
LMS do not change with non-circular input signals.

4. MEAN-SQUARE BEHAVIOR

We now develop analytical equations for the evolution of the coeffi-
cient error correlation matrix

K(k) = E{v(k)v7(k)}. (10)

This matrix can be used to determine the MSE for any & through the
relations

E{le(k)*}
Eemse(k)

where £ pnrs (k) is the excess MSE at time k. Taking both sides of
(8) and multiplying them by their Hermitian transposes, we obtain

o+ Eemse(k) (11)
tr[RK (k)] (12)

vk +1)v7(k+1)
= v(k)v (k) — pux(k)x" (k)v(k)v* (k)
— v (kv (k ) k + () Px(k)x™ (k)
2R (kv () (k) (k)™ (k)
+(crossterms), (13)
where the crossterms not shown in the above relation are zero under

expectation with the independence assumptions in place.
Taking expectations of both sides of the above relation, we get

K(k+1) = K(k)—
+ 2 E{x(k)x"

p[RK(K) + K(k)R] + p°or R
(R)v (k)v (k)x(k)x™ (k)¥14)
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We look at the (¢, 7)th entry of the expectation matrix of the last term
in (14) under the independence assumptions.

[E{X(k)XH(k)V(k)VH(k)X(k)XH(k)} Y
= D> Elmi(k)ai (K)zm(k)a; ()} E{u(k)on (k) }(15)

=1 m=1

The fourth-moment term has the value

E{as(R)xi (k)zm (k)zj (k)} = rarmj + pimpi; + rijrmf16)
using the fourth-moment expression for jointly Gaussian random
variables. Thus, we have

B{x(k)x" (k)v(k)v" (k)x(k)x" (k)}
— RK(k)R+PK*(k)P* + Ru[RK(k)]  (17)

where tr[-] denotes the trace of a matrix. Thus, the evolution of the

coeflicient error correlation matrix is given by the equation
K(k+1) = K(k)—puRK(k)+ K(k)R]

+1* (o] + tt[RK(k))R

+ 1PRK(K)R + °PK*(k)P*.  (18)

Several remarks can be made at this point:

1. The update relation in (18) unites the complex and real-valued
input signal case. If x(k) is completely real-valued, then
R = P = P”, and we obtain the well-known relations orig-
inally published by A. Feuer and E. Weinstein [9]. If x(k) is
complex circular, then P = 0, such that we obtain the well-
known relations originally published by Horowitz and Senne
[4]. It also includes cases that neither analysis can examine:
those involving non-circular, non-real-valued input signals.

2. The expression in (18) is not diagonalizable in general. If we
define the eigenvalue decomposition

R = Qx’Q” (19)

where Q is orthonormal and X2 is a diagonal matrix of eigen-

values, it is not the case that Q7 PQ* is diagonal in general.

Thus, it is not possible to diagonalize (18) in an attempt to de-

couple the evolutions of the diagonal elements of Q7K (£)Q

as is done for both the real-valued and the circular complex
data cases.

3. If p is small, then we can neglect the terms that depend on
w”K(k). Thus, we obtain relations that are identical to the
small step size case for the standard analysis of the complex
LMS algorithm. Hence, the excess MSE of the complex LMS
algorithm is unaffected by the non-circularity of the data to
first order (i.e. for small step sizes).

5. SPECIAL CASES OF INTEREST

In order to understand the convergence behavior of (18), it is useful
to assume that x(k) possesses additional statistical structure. We
now describe two such specific cases of interest.
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5.1. Case A: Uncorrelated Non-Circular Input Data
Assume that
R = oI (20)

such that the input signal vector is circularly uncorrelated. Then, it
can be shown that it is always possible to select a complex orthonor-
mal transformation matrix Q such that

QPQ* = A, 2D

where A is a diagonal matrix of noncircularity coefficients that sat-
sty 0 < A < 1. Such a transformation is a special case of the strong
uncorrelating transtorm [8]. Define

Kk) = Q"Kk)Q. @2)
Then, we can transform (18) to
K(k+1) = (1—uo”)Kk)+p’0® (o) + o u[K (k)T
+ 1’ AK* (k) A. (23)
The off-diagonal elements of INC(k) are decoupled and evolve as
rig(k+1) = (L= po®)ky (k) + pPo'Xiri; (k). (24)

Because they have no driving term, then limy_.o 45 (k) = 0 for
small enough values of p. The on-diagonal terms are real-valued
and evolve according to a vector relation. Let

s(k) = [ru(k)---moo(k)] (25)
Then, we have
s(k+1) = [(1 — i P It AP ,u20411T] s(k)
+ pPoonl. (26)
The steady-state value of s(k) is given by
Ses = pog[21—po’ {I FA 11T}]*11. @7

Employing the matrix inversion lemma, we obtain

poy
2 p)
Ssadi = 2L = (1+;\Z) (28)
uo
1N HF
Z 2 — po?(1+X3)

j=1

The steady-state excess MSE is
5 3 « 2 — po(l+ A2)

gEMSE,ss = (2} Sss]- - a(29)
o
1_; 2—,uau2(1+>\]2)
and the misadjustment is
>
—2

M = gE]\if%E,ss _ 2- IU’O-Q 1Oj§>\ ) (30)

1_; 2—,uau2(1+>\]2)
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Consider the additional simplification that all of the circularity
coeflicients are the same, such that A; = A, 1 < 4 < L. Then, we
have

oL

M= 2— po?[L+ 1+ 2] G

Again, this result unifies the complex and real-valued data cases, as
A = 0 yields the complex-valued result for misadjustment and A = 1
yields the corresponding real-valued result.

5.2. Case B: A Specific Correlated Non-Circular Input Data
Model

Suppose that the input signal vector has a uniform non-circularity
coeflicient A in all of its dimensions, such that

R = ccf (32)
P = xcc” (33)

where C is any strong uncorrelating transform for the data. Then,
using the singular value decomposition of C, it can be shown that

R Qx2Q” (34
P = AQx=?qQ7 (35

where Q contains the left singular vectors of C and X contains its
corresponding singular values. Then, we may again transform K (k)

to K (k) to obtain the evolutionary relation

K(k+1) = Kk)—p [Egﬁ(k) + IN{(k)EQ]

+ 4 [0 + u[PR (k)] =2

N o [f{(k) + AQINC*(k)] =2 36)
The off-diagonal terms are decoupled from each other and the on-
diagonal terms, and they evolve as

R (k4 1)=(1 — poi ki (k) (1 — pos) + p*NoofoF ki (K§37)

As before, if the step size v is small enough, x5 (k) decays expo-
nentially to zero for ¢ £ j. For the on-diagonal terms,

s(k+1)= [(I—u22)2+u2/\224 +1°pp’ | s(k)+1°05p(38)
where

p = [oi---0i]" 39)

The steady-state value of s(k) is

=1

poy [222 = (1 + X2 — upp”| p. 40)

Sss —
Employing the matrix inversion lemma, we obtain

W%
2 — uo2(1+4 A2)
Sss,i - I3 5 (41)

HT 5
1N
]232—,ua (1+A2)
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The steady-state excess MSE is

" ey 2 — po2(1+ A2)
EEMSE,ss Sesp = — 5 , (42)
MOy
L= Z 2 2
=, 2 — poi(1+A2)
and the misadjustment is
L ILLO'Q
Z 2 — po2(1+ X2)
Moo §EM52E,ss _ z:lL 43)
9

2
Ha

1S — P

Z 2 — poF (14 22)

Jj=1

Again, the expressions derived in this case bridge the gap be-
tween the real-valued (A = 1) and circular complex-valued (A = 0)
data cases.

6. NUMERICAL EVALUATIONS

We now explore the accuracy of the above analysis through numer-
ical evaluations. The scenarios considered in this section employ
non-circular Gaussian distributions for both the input signal vector
and desired response signal, respectively. We use the existing analy-
sis for the complex LMS algorithm in [4] and compare its predictive
accuracy to that of the analysis in this paper, although [4] does not
allow for non-circular signal distributions within its statistical signal
models. Thus, we can observe both the accuracy of our new results
in predicting actual convergence behavior as well as the performance
differences in LMS convergence behavior due to non-circular sig-
nals. We do not employ the analysis in [9] as it is not specified for
complex-valued signals and filter coefficients. In each case, 100000
different simulation runs of the complex LMS algorithm were run
and estimates of the quantities of interest were ensemble-averaged
from the simulations to obtain the observed data with which the anal-
yses can be compared.

Consider first a simple single-channel adaptive FIR filtering
tasks, in which I, = 4, p = 0.15,

Wopt = [0.25 4 7 0.5+ 0.755 0.75 + 0.5 1 +0.255]F,  (44)
2(k)is a zero-mean non-circular Gaussian signal with E{z(k)x" (k—
71} = 6(5) and E{z(k)x(k — 7)} = 0.56(5), and n(k) is a zero-
mean circular Gaussian signal with E{n(k)n"(k— j)} = 0.0158(j).
In this case, the analysis in Case A of the last section is appropri-
ate, where A = 0.5I. In these simulations, w(0) was chosen as
Wopt + v(0), where v(0) is circular-complex Gaussian-distributed
with zero mean and covariance K(0) = I. Shown in Figure 1
is the evolution of the average normalized coefficient error power
E{tr[K(k)]}/E{tr[K(0)]} using Eq. (18) from this paper, along
with that generated from the analysis in [4]. As can be seen, our
analysis is the most accurate in predicting the simulated behavior
because ours takes into account the non-circularity of the input and
desired response signals. The main performance difference is a
lower steady-state value for F{K(k)}. Considering the average of
the last 20 points of the averaged simulation runs to be the “true
value” of this quantity, our analysis accurately predicts this value to
within —0.00073dB. The analysis in [4] predicts a value that differs
by -0.324 dB in this case.

T T T

Analysis from this paper

— — —Horowiz and Senne Analysis
+ Monte Carlo Simulation

1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100
number of iterations k
Fig. 1. Evolutions of the normalized total coefficient error power

from simulation and from two different analytical predictions of per-
formance for the single-channel FIR filtering example.

We now consider an adaptive array processing task, in which
x(k) is generated according to the critically-spaced uniform linear
array (ULA) model with three users given by

x(k) = u(k)+ > v(ép)10° s k),

p=1

45)

where v(¢,) is the steering vector for the pth user whose ith ele-
mentis \/1/Lexp(—jm(i — 1)sin(¢p)), sp(k) is the message sig-
nal from the pthuser with unit variance, SN R, is the signal-to-noise
ratio of the pth user, and u(k) is the uncorrelated circular Gaussian
measurement noise vector at time k& with E{u(k)u® (k)} = o21I
and o2 = 1. For these simulations, s1 (k) is generated as a circular-
distributed complex Gaussian source, whereas s2(k) and s3(k) are
real-valued Gaussian sources. Moreover, we choose the directions-
of-arrival [¢1 @2 ¢3] = [—10° 10° 25°] and the signal-to-noise
ratios [SNR1 SNRy SNRs| = [10 20 25| dB, respectively. Thus,
the covariance and pseudo-covariance matrices are

3
I+ Z 1OSNRP/1OV(¢p)VH(¢p)

p=1

3
Z 1OSNRP/1OV(¢p)VT(¢p),
p=2

R = (46)

P = @47

respectively. For the complex LMS algorithm, we set d(k) = s7(k),
such that the statistical model used in this paper is accurate, with

0'2 =
n —

wopr = RTI05VR/ 0y (6]

1 — wi, Rwope (48)

(49)

Shown in Figure 2 is the convergence of E{tr[K(k)|}/E {tr[K(0)]}

using Eq. (18) from this paper, along with that generated from the
analysis in [4]. As can be seen, our analysis more accurately predicts
overall convergence performance than that of [4]. The difference
between what our analysis predicts for the final value in the plots
and the estimated final value from the last 100 simulation points is
—0.222dB, whereas the difference computed using the analysis in
[4]is —0.880dB.

Given that we have an accurate analysis of the LMS algorithm
for non-circular complex signals, one question that naturally arises
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Fig 2. Evolutions of the normalized total coefficient error power
from simulation and from two different analytical predictions of per-
formance for the multichannel array processing example.

is: How is the overall performance of the LMS adaptive filter at-
fected by input signal noncircularity? This question could be ex-
plored in many ways given our analytical results. In order to sim-
plify the discussion, consider the simplest case in which the input
signal is 1.i.d. with a constant circularity coefficient A, such that the
results of Section 5.1 are appropriate and P = Ao

Assume that the step size of the LMS algorithm has been de-
signed according to the circular data case, such that A = 0 has been
assumed. In this particular scenario, it is possible to determine both
the increase in convergence speed and the increase in misadjustment
due to a non-zero A value. Figures 3 and 4 show the percentage in-
creases in convergence time and final misadjustment in steady state
for an I, = 2-tap adaptive filter as a function of the step size ratio
1/ topt for various values of A, where

1

Hovt = 777 (50)

is the step size that yields the fastest convegence speed for circular
i.1.d. input signals in this scenario. As can be seen, a non-circular
input signal can lead to a 60% increase in convergence time as well
as a 50% increase in final misadjustment as compared to the circular
case in this situation, and the performance decreases are most severe
for large step size values and non-circularity values. These effects
decrease significantly, however, as the filter length is increased. Fig-
ures 5 and 6 show the percentage increases in convergence time and
final misadjustment in steady state for an I = 10-tap adaptive filter,
in which the convegence time and final misadjustment increase by no
more than 10.5% and 10%, respectively. Figures 7 and 8 show the
percentage increases in convergence time and final misadjustment in
steady state for an . = 50-tap adaptive filter, in which the conveg-
ence time and final misadjustment increase by no more than 2% in
practice. These results indicate that the effect of input signal non-
circularity on overall convergence performance is relatively minor,
particularly for long filter lengths L.
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Filter Length L = 2
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Fig. 3. Percentage increase in convergence time as a function of step
size and input signal noncircularity, i.i.d. input signals, L = 2.
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Fig. 4. Percentage increase in final misadjustment as a function of
step size and input signal noncircularity, 1.i.d. input signals, L. = 2.
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Fig. 5. Percentage increase in convergence time as a function of step
size and input signal noncircularity, i.i.d. input signals, L = 10.
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Filter Length L = 10
T T T

05 06 07 058 0.9 1
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Fig. 6. Percentage increase in final misadjustment as a function of
step size and input signal noncircularity, i.i.d. input signals, L = 10.

Filter Length L =50
T T T

Convergence Time Increase (%)

4 05 06 07 0.8 09 1
Ratio of b/

Fig 7. Percentage increase in convergence time as a function of step
size and input signal noncircularity, i.i.d. input signals, L = 50.

Filter Length L = 50

Misadjustment ncrease (%)

05 06 07 0.8 09 1
Ratio of b/

Fig 8. Percentage increase in final misadjustment as a function of
step size and input signal noncircularity, i.i.d. input signals, L = 50.
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7. CONCLUSIONS

Previously, the least-mean-square (LMS) algorithm has been con-
sidered to be different when applied to real-valued and complex-
valued data, with different derivations, performance analyses, and
behavioral descriptions. In this paper, we provide an analysis for
the LMS algorithm assuming complex non-circular Gaussian input
and desired response signals. This analysis includes as special cases
those published in [9] and [4]. Our analysis shows that the mean-
square behavior of the modes of convergence of the complex LMS
algorithm cannot be as easily decoupled as in other data cases, al-
though specific statistical structures for the covariance and pseudo-
covariance input signal matrix allow similar expressions for final
misadjustment and excess mean-squared error to be derived. Simu-
lations show that our new analysis more-accurately predicts conver-
gence behavior when non-circular input and desired response signals
are applied. In addition, these performance differences are most sig-
nificant for large step size values and small filter lengths.
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