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ABSTRACT The analysis in [4] assumes that the pair {d(k), x(k)} is jointly-
The least-mean-square (LMS) algorithmrl is a useful and popu- Gaussian, and that x(k) is zero mean and complex circular Gaus-
lar procedure for adaptive signal processing of both real-valued sian (that is, having a rotationally-invariant p.d.f. in the complex
and complex-valued signals. Past analysis of the complex LMS domain), such that
algorithm has assumed that the input signal vector is circularly-
distributed, such that the pseudo-covariance matrix of the input R = E{x(k)xH(k)} # 0 (4)
signal is zero. In this paper, we relax this assumption, providing and P = E{x(k)xT(k)} _ 0. (5)
a complete mean and mean-square analysis of the complex LMS
algorithm for non-circular Gaussian signals. Our analysis unifies The matrices R and P are known as the covariance and pseudo-
the statistical descriptions of the conventional (real-valued) LMS covariance matrices of x(k), respectively when x(k) is zero mean.
and complex LMS algorithms as specific cases of our more-general While the assumption that P .0is sometimes reasonable it is
behavioral description, negating the need for a distinction between n t
these two procedures. Simulations indicate that our analysis more- not true in general. For example. when a real-valued BPSKSilg-
accurately predicts the behavior of complex LMS for non-circular ... .'an equalizer can exhibit non-circular statistical behavior. Recentlysignals as compared to existing analyses in the scientific literature. equserof non-circular statisticsleveragedrtdevelo prthe use of non-circular statistics has been leveraged to develop pro-

cedures for carrier recovery [6], direction-of-arrival estimation [7],
1. INTRODUCTION and signal separation [8]. It is not clear, however, how the statisti-

cal behavior of the complex LMS algorithm changes when the input
The least-mean-square (LM[S) algorith is perhaps the most-often- signal exhibits non-circular statistics.
used adaptive signal processing algorithm. Based on a stochastic in thispapercwe ar atcf
version of gradient descent applied to a mean-square error cost the c p LMspapgrit for complex non-circular nlyGsisia
LMS algorithm is used in a number of applications in communica-

tions, image pcg
input and desired response signals such that P 0. This analysistin img prcssn spec prcsig an meicn amn includes the work of lHorowitz and Senne in [4] as a special case

other disciplines. The algorithm is simple to code computationally- when P o0.It ren itz alsoSleadsito a uni ingpanalysi
efficient. and has robust performance. Numerous analyses of the per- thenr LM and complexL stalgoithms asnclusi: . ~~~~~~~~~~~~~thereal-valued LMS anld complex LMS algorithms, as it includes
formance of the LMS algorithm have been developed in the signal the well-known analysis by Feuer and Weinstein [9] in the case of
processing literature. real-valued signals such that R = P = P*. Thus there is no need

The complex LMS algorithm is an extension of the LMS algo- to present two different analyses for the real-valued and complex
rithm to complex-valued signals [1 2]. It is particularly useful in LMS algorithms negating the main reason for a distinction between
communication applications involving modulated signals.. as such the real-valued and complex-valued data scenarios. From our study,signals are best represented using complex numbers in a baseband several issues are illuminated about the complex LMS algorithm:
representation. For the weight vector w(k) = [wi (k). WL (k)]
at time k, the complex LMS algorithm is given by * Its mean behavior is unaffected by input signal non-circularity

H( and desired-response signal non-circularity.y(k) = x (k)w(k) (1)
e(k) d(k) - y(k) (2) * Its mean-square behavior is independent of the non-circularity

w(k + 1) w(k) + pe(k)x(k). (3) of d(k).

k Ik...LkT-is the input*signalvecto Its mnean-square behavior depends weakly on the non-where x( [(. . )i y(k) circularity of the input signal vector. This effect is most-
is the output signal d(k) is the desired response signal e(k) is the gy-non-crcular
error signal and j is the step size. In this form, the complex LMS punc fsml
algorithm differs from the LMS algorithm only in the use of the Her- nput sgnals.
mitian transpose in the definition of y (k). * The modes of convergence of the algorithm cannot be decou-

The first analysis of the complex LMS algorithm was most- pled except for special cases of input signal non-circularity.
likely developed by K.D. Senne in his Ph.D. dissertation [3], which
was llater expanded on and published as an oft-cited paper [4]. A re- Simnulations show that our analysis is accurate inl predicting mnean-
lated analLysis as applied to the adaptive line enhancer appears in [5]. squalre perfolrmance.
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2. SIMPLIFYING AND STRUCTURAL ASSUMPTIONS We look at the (i, j)th entry ofthe expectation matrix ofthe last term
in (14) under the independence assumptions.

For our analysis, we can assume without loss of generality that d(k)
is generated from the linear model E{x(k)xH(k)v(k)vH (k)x(k)xH(k)

d(k) - xH(k)w0pt +r(k), (6) L L

where rj(k) is complex non-circular Gaussian and uncorrelated with Z Z { k 7(>mk m()Ev()vi)(
x(k), because of the joint Gaussianity of d(k) and x(k). 1=1 m=1

Throughout our analysis, we will make use of the independence The fourh-moment term has the value
assumptions, such that {d(l), x(l)} is independent of {d(k), x(k)}
when k 7 1. While not strictly true in some cases such as FIR E{(k)x*(k)xm(k)x(k)} rilrj +pmp7 + rijr,(6)filtering, such assumptions lead to reasonably-accurate behavior, es- 1 + ij
pecially for small step sizes /-t. using the fourth-moment expression for jointly Gaussian random

variables. Thus, we have
3. MEAN BEHIAVIOR

Define the coefficient eor vector E{x(k)xH (k)v(k)v (k)x(k)xH (k)
= RK(k)R+PK*(k)P* +Rtr[RK(k)] (17)

v(k) w(k)-wwpt. (7)
where tr[.] denotes the trace of a matrix. Thus, the evolution of the

wherev w0t iS We can then write the update for w(k) in terms of coefficient error correlation matrix is given by the equation
v(k) as

v(k + 1) v(k) - ,tx(k)XH(k)v(k) + ft(k)x(k). (8) K(k 1,) K(k) - jiRK(k) K(k)R
+1- ((r72 + tr[RK(k)])R

Taking expectations of both sides of (8) and employing the indepen- + +2RK(k)R +[2RPK*(k)P*R (18)
dence assumptions, we obtain

E{v(k + 1)} = (I - R)E{v(k)}, (9) Several remarks can be made at this point:

which is identical to that for complex LMS with circularly-symmetric 1. The update relation in (18) unites the complex and real-valued
Gaussian input signals. Hence, the mean characteristics of complex input signal case. If x(k) is completely real-valued, then
LMS do not change with non-circular input signals. R = P = P and we obtain the well-known relations orig-

inally published by A. Feuer and E. Weinstein [9]. If x(k) is
complex circular, then P = 0, such that we obtain the well-

4. MVlEAN-SQUARE BEHlAVIIOR known relations originally published by Horowitz and Senne
[4]. It also includes cases that neither analysis can examine:We now develop analytical equations for the evolution of the coeffi- tho soling non-crcula non-realalued in sinas

cient errorcorrelationmatrix ~~~~~those involving non-circulLar, non-realL-valued input signals.dlent error correlatiLon matriLx
K(k) Efv(k)vH (k) 1. (I 0)

2. The expression in (18) is not diagonalizable in general. Ifwe
K(k) = E{v(k)vH(k)} (10) define the eigenvalue decomposition

This matrix can be used to determine the MSE for any k through the 2H
relations

E{ e(k) 2} a q + uEMISE(k) ( 1) where Q is orthonormal and 2 is adiagonalmatrixofeigen-
(EAISE(k) tr[RK(k)] (12) values, it is not the case that QHpQ* is diagonal in general.

Thus, it is not possible to diagonalize (18) in an attempt to de-
where ExJSE(k) is the excess MSE at time k. Taking both sides of couple the evolutions ofthe diagonal elements ofQHK(k)Q
(8) and multiplying them by their Hermitian transposes, we obtain as is done for both the real-valued and the circular complex

data cases.
v(k + 1)vH(k + 1)

H HH 3. If ,u is small, then we can neglect the terms that depend on
- v(k)vH(k) - fx(k)xH(k)v(k)V (k) 2K(k). Thus, we obtain relations that are identical to the

- /Jv(k)v (k)x(k)X(k) + /_t7J(k) 2x(kxH(kXk) small step size case for the standard analysis of the complex
22X(k)XH Hk)V(k)V Hk)X(k)X (k) LMS algorithm. Hence the excess MSE ofthe complex LMS

+ iitx(k)X (k)v(k)V (k)x(k)X (k) algorithm is unaffected by the non-circularity of the data to
+ (crossterns), (13) first order (i.e. for small step sizes).

where the crossterms not shown in the above relation are zero under
expectation with the independence assumptions in place. 5. SPECIAL CASES OF INTEREST

Taking expectations of bothn sides of thle abDove relation, we get
2 2 In order to understand the convergence behavior of (1L8) it is usefulK(k + 1L) =K(k) - /JRK(k) + K(k)R] + fR7 ~~~toassumne that x(k) possesses additional statistical structure, We

+ ,12E{x(k)xH(k)v(k)vH(k)x(k)xH(k) .14) now describe two such specific cases of interest.
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5.1. Case A: Uncorrelated Non-Circular Input Data Consider the additional simplification that all of the circularity
Assume that coefficients are the same, such that Ai = A, 1 < i < L. Then, we

have
R U21 (20)2

such that the input signal vector is circularly uncorrelated. Then, it M 2 - [LU2 [L + 1 + A2131
can be shown that it is always possible to select a complex orthonor-
mal transformation matrix Q such that Again, this result unifies the complex and real-valued data cases, as

A = 0 yields the complex-valued result for misadjustment and A 1
H * - 2Q PQ a A, (21) yields the corresponding real-valued result.

where A is a diagonal matrix of noncircularity coefficients that sat-
isfyO < A < 1. Such a transformation is a special case of the strong 5.2. Case B: A Specific Correlated Non-Circular Input Data
uncorrelating transform [8]. Define Model

K(k) = QK(k)QH (22) Suppose that the input signal vector has a uniform non-circularity
coefficient A in all of its dimensions, such that

Then, we can transform (18) to
22 222 2 R CCH (32)

K(k +1) (1-tu)K(k) + Uzz(Ur1 + Utr[K(k)])I P = ACCT (33)
+ 1-t2Ai-K * (k) A. (23)

where C is any strong uncorrelating transform for the data. Then,
The off-diagonal elements of K(k) are decoupled and evolve as using the singular value decomposition of C, it can be shown that

ij (k + 1) (ij (k) + _tU AXiAjI< (k). (24) R = Q2QH (34)
Because they have no driving term then liMko i.(k) =0 for AQEQ (35)
small enough values of g. The on-diagonal terms are real-valued
and evolve according to a vector relation. Let wXhere Q contains the left sinlgular vectors of C anld containls its

corresponding singular values. Then, we may again transform K(k)
s(k) - [r 1 (k) KLL(k)]1 (25) to K(k) to obtain the evolutionary relation

Then, we have K(k + 1) K(k) i [2k(k) -3K(k) 2

s(k 1) - L1 -_tU2)21- /_U [2 iii-2 T s(k) +/- T2 + tr[2k(k)] 2

-IUJ (6 + [t2E2 [k(k) + AN2k*(k)] 2 (36)
The steady-state value of s(k) is given by

2 2 r 2 T -1 The off-diagonal terms are decoupled from each other and the on-
SSS /= U4[21 _-,[U I + A + 11 1. (27) diagonal terms, and they evolve as

Employing the matrix inversion lemma we ohtain 4ij(k + _t( 7-
i ij,(k)(I _ U_) + 2 7i Ui -(k 037)

___. As before, if the step size is small enough, i (k) decays expo-
2 r2(1(AI ) (28) nentially to zero for i 7& j. For the on-diagonal terms,
L 2

12- U2(I + A2) s(k+1)= [1. 2+ 224+ s k +T s(k)+ 2 p,(38)
j-1

The steady-state excess MSE is where

L 22 p - 2] 3

-EilKlSE,ss U(72sT 1 U= (+) (29)
' - The steady-state value of s(k) is

__T1- U

2 - U2(1 + ])2 - UL2 2 (1 A2)4 - -' . 40

and the misadjustment is Employing the matrix inversion lemma we obtain
LS 2

-

______ _________________ U[(1 2)>5______ =__2_=_____________= (41)
U 2 L (30) - L 25- 2-_H2 + A2) 1- lZ2[U~1+2( )
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The steady-state excess MSE is Analysis f thi ppe

L /1072 ;2 -5

1 2 2-o(I + A2)

T ~~~2-u(+A2) §101-, (42o

21 2 At( '-15- 8

and the misadjustment is -20

L 2 -25 -

M = JMa4SE.o - ~ 2 - u(1 ± A2)
(r 2 L 2 ( 10 20 30 40 50 60 70 80 90 100

0) I0( i numberofiterations k

2- 2. or 1 2
-=1 2 Fig. 1. Evolutions of the normalized total coefficient error power

from simulation and from two different analytical predictions ofper-
Again,theprssoserveihicsebrdehegab- formance for the single-channel FIR filtering example.tween the real-valued (A = 1) and circular complex-valued ( = 0)

data cases. We now consider an adaptive array processing task, in which
x(k) is generated according to the critically-spaced uniform linear

6. NUMERICAL EVALUTATIONS array (ULA) model with three users given by

We now explore the accuracy of the above analysis through numer-3SN 12
ical evaluations. The scenarios considered in this section employ (45)
non-circular Gaussian distributions for both the input signal vector P=

and desired response signal, respectively. We use the existing analy- where v( is the steering vector for the pth user whose th ec-
sis for the complex LMS algorithm in [4] and compare its predictive .
accuracy to that of the analysis in this paper, although [4] does not menat iS 1/L exp(- (t- 1) sin(a), sNpk)is the message Sig-
allow for non-circular signal distributions within its statistical signal raltrom the pth user with unkit variance SNR is the signal-to-nsoise
models. Thus, we can observe both the accuracy of our new results r
in predicting actual convergence behavior as well as the performance measurement noise vector at time k with E{u(k)uT (k)} = rI
differences in LMS convergence behavior due to non-circular sig- and. cr- = 1. For these simulations si (k) is generated as a circular-
nals. We do not employ the analysis in [9] as it is not specified for distributed complex Gaussian source, whereas s2(k) and s3(k) arecmlsex-value sinls andlter coefficients inea cspe 100000 real-valued Gaussian sources. Moreover we choose the directions-colmplex-valued signals and flnIter coefficients. In each case, I100000 0201=[1 1 ' 2' n h inlt-os
different simulation runs of the complex LMS algorithm were run of-arrival [X1 2 31= [-10° 100 25°] and the signal-to-noise
and estimates of the quantities of interest were ensemble-averaged ratios [SNR1 SNd2 SNR3[=ovr [10 20 25] dB, respectively. Thus
from the simulations to obtain the observed data with which the anal-
yses can be compared. 3

Consider first a simple single-channel adaptive FIR filtering R = I+E 1SNRP110v(O4vH( ) (46)
tasks, in which L = 4, ,u = 0.15.

{ X t =[0.25 + j 0.5 + 0.75j 0.75 + 0.5j 1 + 0:25jT (4 i3E .SNR /1 T()(
x(k) is a zero-mean non-circular Gaussian signal with E{ (k)x* (k- p=2
j)} = d(j) and E{x(k)x(k - )} = 0.50(j), and 71(k) is a zero- respectively. For the complex LMS algorithm, we set d(k) - 4(k),
mean cilrcular Gaussian signal with E{rq(k)rq * (k- j)I= O 01 (j). Imean ircuarGassia,signl wih E{r(k)r0 (k -0.1 (4 such that the statistical model used in this paper is accurate~withIn this case, the analysis in Case A of the last section is appropri-
ate, where A = 0.5I. In these simulations, w(0) was chosen as 2 H(48)
Wopt + v(O), where v(0) is circular-complex Gaussian-distributed 1 1-wOPtRwop t
with zero mean and covariance K(0) = I. Shown in Figure 1 wot = R' [lOsNR2/20v(0j)] (49)
is the evolution of the average normalized coefficient error power
E{tr[K(k)]}/E{tr[K(0)]} using Eq. (18) from this paper, along Shown in Figure 2 is the convergence ofE{tr[K(k)]}/E{tr[K(0)]}
with that generated from the analysis in [4]. As can be seen, our using Eq. (18) from this paper, along with that generated from the
analysis is the most accurate in predicting the simulated behavior analysis in [4]. As can be seen, our analysis more accurately predicts
because ours takes into account the non-circularity of the input and overall convergence performance than that of [4]. The difference
desired response signals. The main performance difTerence is a between what our analysis predicts for the final value in the plots
lower steady-state value for E{K(k)}. Considering the average of and the estimated final value from the last 100 simulation points is
the last 20 points of the averaged simulation runs to be the "true -0.222dB, whereas the difference computed using the analysis in
value" of this quanltit our anlalysis accurately predicts this value to [r4] is -0.880dB.
within -0.00073dB. The analysis in [4] predicts a value that ditfers Given that we have an accurate analysis of the LM[S algorithm
by -0.324 dB in this case. for non-circulLar complex signLalLs one question that nLaturally arises
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____Analysis fromt this papert
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Fig. 2. Evolutions of the normalized total coefficient error power ° 0. 02 03 04Rh1i0f5/0. 07 08 09
from simulation and from two different analytical predictions of per-
formance for the multichannel array processing examaple. Fig. 3. Percentage increase in convergence time as a function of step

size and input signal noncircularity, i.i.d. input signals, L - 2.
is: HEow is the overall performance of the LMS adaptive filter af-
fected by input signal noncircularity This question could be ex-
plored in many ways given our analytical results. In order to sim-
plify the discussion, consider the simplest case in which the inputFls,LgtL 2
signal is i.i.d. with a constant circularity coefficient A,such that the 50 _________________________ -1.0

Assume that the step size of the LMS algorith has been de- 4/
signed according to the circular data case, such that - 0 has been
assumed. In this particular scenario, it is possible to determine hoth S3
the increase in convergence speed and the increase in misadjustment = 30_/
due to a non-zero A value. Figures 3 and 4 show the percentage in- 2
creases inl convergence time and final misadjustment in steady state E/,./
for an L =2-tap adaptive filter as a function of the step size ratio E-

.../ opt for -Var1iou valus of......... A -wh1--=0.6

1lopt L + 1 -50.40 X

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

is the step size that yields the tastest convegence speed tor circular Ratioof6 /tOP,
i.i.d. input signals in this scenario. As can he seen, a non-circular
input signal can lead to a 60% increase in convergence time as well Fig. 4. Percentage increase in final misadjustment as a function of
as a 500o increase in final misadjustment as compared to the circular step size and input signal noncircularity, i.i.d. input signals, L= 2.
case in this situation, and the performance decreases are most severe
for large step size values and non-circularity values. These e ects
decrease significantly, however as the filter length is increased. Fig-
ures 5 and 6 schow the percentage increases in convergence time and Filter Length L-10
final misadjustment in steady state for an L 1l0-tap adaptive filter, 2
in which the convegence time and final misadcjustment increase by no -01.0
more thanIO.5f and lO%, respectively. Figures 7 and 8 show the 10 _
percentage increasesin convergencetime and finalmisadjustment in
steady state for an L 50-tap adaptive filter, in which the conveg-en
ence time and final misadjcustment increase by no more than 20o in -
practice. These results indicate that the effect of input signal non- E~6 _/<" =.
circularity on overall convergence performance is relatively minor
particularlyJ for long filter lengths L. -0.6

O _LL = == A=~~~~~~~~~~~~~~~~~~~~~0.8due~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0.1 a. nonzer A. value Figre 3. and 4. shwteprenaei12

Fig. 5. Percentage increase in convergence time as a function of step
size and input signal noncircularityp i.i.d. input signals L 0.
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7. CONCLUSIONS

10 Filter Length L10 =1.0 Previously, the least-mean-square (LMS) algorithm has been con-
9

sidered to be different when applied to real-valued and complex-
valued data, with different derivations, performance analyses, and

8 _ behavioral descriptions. In this paper, we provide an analysis for
70 the LMS algorithm assuming complex non-circular Gaussian input
<,6 / ,z =0.8 and desired response signals. This analysis includes as special cases

those published in [9] and [4]. Our analysis shows that the mean-
square behavior of the modes of convergence of the complex LMS
algorithm cannot be as easily decoupled as in other data cases, al-

3-0 though specific statistical structures for the covariance and pseudo-
2 covariance input signal matrix allow similar expressions for final

-=04 misadjustment and excess mean-squared error to be derived. Simu-
010 -2 lations show that our new analysis more-accurately predicts conver-

0( 0.1 0.2 0.3 0.4 R.5 0.6 0.7 0.8 0.9 gence behavior when non-circular input and desired response signals
Ratio ofp/~,.Pt are applied. In addition, these performance differences are most sig-

nificant for large step size values and small filter lengths.
Fig. 6. Percentage increase in final misadjustment as a function of
step size and input signal noncircularity, i.i.d. input signals, L = 10. 8. REFERENCES
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