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ABSTRACT

A novel method for online tracking of the changes in the non-
linearity within complex–valued signals is introduced. This
is achieved by a collaborative adaptive signal processing ap-
proach by means of a hybrid lter. By tracking the dynamics
of the adaptive mixing parameter within the employed hybrid

ltering architecture, we show that it is possible to quantify
the degree of nonlinearity within complex–valued data. Sim-
ulations on both benchmark and real world data support the
approach.

Index Terms— Adaptive signal processing, complex LMS,
convex optimisation, machine learning, wind modelling.

1. INTRODUCTION
Signal modality characterisation reveals the changes in the
nature of real world data (degree of sparsity, or nonlinearity)
and is very important in online applications. Some aspects of
this problem for the analysis of EEG data have been addressed
in [1]. Another bene t of tracking the degree of linearity in
a signal in real–time, is for example, to provide prior knowl-
edge to a blind algorithm. The degree of nonlinearity can be
used as a signal “ ngerprint”, and when combined with other
signal modality trackers [2] this can be a powerful tool for
machine learning, detailing changes within the signal dynam-
ics along time.
We propose to achieve this by a collaborative signal process-
ing approach; by means of hybrid lters [3], a convex mixing
parameter within this structure is updated in an online man-
ner in order to illustrate the modality change of the signal in
hand. It is, however, much more complicated to achieve the
tracking of modality change in the complex domain �. The
extensions of hybrid lters from � to � are non-trivial, this
is due to the fact that the nature of nonlinearity in� is funda-
mentally different from that in �. For instance, in the design
of learning algorithms, it should be taken into account that
the only continuously differentiable function in � is a con-
stant (Liouville’s theorem).
A rst attempt to track the modality change of complex sig-
nals using hybrid lters was introduced in [2], where the changes
between the split- and fully–complex natures of the data were
tracked. The nonlinearity of the input signal was implicitly
assumed, this however, may not necessarily be the case. Thus,
before checking for the split- or fully–complex nonlinear na-

ture, we rst need to assess whether the input is linear or non-
linear.
Our underlying idea is to use a technique similar to that in [4],
and construct a hybrid lter in � whereby each sub lter is
designed so as to perform best, on either linear or nonlinear
input. By making these sub lters collaborate and by tracking
the values of the mixing parameter, we can then assess the
degree of nonlinearity.
Complex–valued signals are either complex by design or are
made complex by convenience of representation. An example
of a real–valued signal which is best analysed in � is wind,
where the fusion of the speed and direction creates a single
complex–valued wind signal.
We shall rst describe the hybrid lter con guration and de-
rive the update for the mixing parameter. Next, the Complex
Nonlinear Gradient Descent (CNGD) and Complex Least Mean
Square (CLMS) algorithms and their normalised variants are
brie y introduced. Finally, the performance of the method
is assessed using benchmark linear and nonlinear signals, as
well as a complex–valued wind signal.

2. HYBRID FILTER CONFIGURATION
A hybrid lter, shown in Figure 1, consist of two sub lters,
each being adapted independently. A convex combination of
the two lters is then taken as the output of the hybrid lter.
Since a convex combination z of two points x and y is de ned
as λx + (1− λ)y, λ ∈ [0, 1] (shown in Figure 2), the values
of λ will indicate which of the sub lters is better suited to the
nature of the input.
The two sub lters within the hybrid ltering architecture op-

erate in the prediction setting, sharing the complex input x(k).
The convex combination of the sub lter outputs ynonlinear(k)
and ylinear(k) forms the overall system output y(k), given by

y(k) = λ(k)ynonlinear(k) + (1− λ(k))ylinear(k) (1)

where λ(k) is the mixing parameter, which is made adaptive,
and is updated by minimising the cost function

E(k) =
1

2
|e(k)|2 =

1

2
|d(k)− y(k)|2 (2)

We can obtain the update for λ(k) using a stochastic gradient
based adaptation, such as the LMS, whereby

λ(k + 1) = λ(k)− μλ∇λE(k)|λ=λ(k) (3)
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Fig. 1. Hybrid lter with complex input x(k), consisting of a
linear and nonlinear sub lter.

and μλ is the step size. It is noted that since the input to the
lters is complex, the error e(k) is also complex, and there-

fore

∇λE(k)|λ=λ(k) =

{
e(k)

∂e∗(k)

∂λ(k)
+ e∗(k)

∂e(k)

∂λ(k)

}
(4)

The two gradient terms from (4) can be evaluated as

∂e(k)

∂λ(k)
=

∂er(k)

∂λ(k)
+ j

∂ei(k)

∂λ(k)

∂e∗(k)

∂λ(k)
=

∂er(k)

∂λ(k)
− j

∂ei(k)

∂λ(k)

(5)

where (·)r and (·)i denote respectively the real and imaginary
part of a complex number. Rewriting (1) in terms of its real
and imaginary part and substituting into (2) yields

∂e(k)

∂λ(k)
= ylinear(k)− ynonlinear(k)

∂e∗(k)

∂λ(k)
=

(
ylinear(k)− ynonlinear(k)

)
∗

(6)

Finally, the gradient (4) becomes

∇λE(k)|λ=λ(k) = �
{

e(k)
(
ylinear(k)− ynonlinear(k)

)
∗
}

(7)

where �(·) denotes the real part of a complex number, which
yields the mixing parameter update as

λ(k + 1) = λ(k) + μλ�
{

e(k)
(
ynonlinear(k)− ylinear(k)

)
∗
}

(8)2.1. Learning Algorithms
While standard hybrid lters aim to provide best output per-
formance based on the convex combination of the sub lters,

yλx + (1   )yλx

Fig. 2. Convex combination of two points x and y.

our aim is to solely track the variation of λ(k). To that end,
the nonlinear and linear sub lter of Figure 1 are adapted using
the CNGD [5] and CLMS [6], respectively. Their normalised
variants CNNGD ans NCLMS will also be used.
The linear CLMS update is given by

ylinear(k) = x
T (k)wlinear(k)

elinear(k) = d(k)− ylinear(k)

wlinear(k + 1) = wlinear(k) + μelinear(k)x∗(k) (9)

whereas the update for the adaptation of the nonlinear sub l-
ter CNNGD is given by

ynonlinear(k) = Φ
(
x

T (k)wnonlinear(k)︸ ︷︷ ︸
net(k)

)

enonlinear(k) = d(k)− ynonlinear(k)

wnonlinear(k + 1) = wnonlinear(k)

+ ηenonlinear(k)[Φ
′

(net(k))]∗x∗(k)
(10)

The normalised variants, NCLMS and CNNGD, are speci ed
by

μNCLMS = μ/
(
‖x(k)‖22 + ε

)
(11)

ηCNNGD = η/
(
[Φ

′

(net(k))]2 ‖x‖22 + ε
)

(12)

3. TRACKING OF NONLINEARITY WITHIN
COMPLEX SIGNALS

For generality, two sets of synthesised benchmark signals and
a real–world complex wind dataset were used in simulations.
The linear processes considered were a stable complex au-
toregressive AR(2) and AR(4), given respectively by

x(k) = 0.9x(k − 1) + n(k) (13)

and

x(k) = 1.79x(k − 1)− 1.85x(k − 2) + 1.27x(k − 3)

− 0.41x(k − 4) + n(k) (14)

where n(k) = nr(k) + jni(k) is a complex white Gaussian
noise (CWGN), for which the real and imaginary parts are
independent real WGN sequences∼ N (0, 1) and σ2

n = σ2
nr

+
σ2

ni
.

As nonlinear complex signals, we used benchmark [7]

x(k) =
x(k − 1)

1 + x2(k − 1)
+ n3(k) (15)
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and

x(k) =
x2(k − 1)(x(k − 1) + 2.5)

1 + x2(k − 1) + x2(k − 2)
+ n(k − 1) (16)

To illustrate the ability of the hybrid lter to track the modal-
ity changes within a signal, experiments were performed on
alternating sequences of linear ((13) or (14)) and nonlinear
((15) or (16)) data. An additional set of experiments was con-
ducted on a set of real–world wind data1. For all simulations,
the initial weight vectors for both lters were set to zero and
the lter order was N = 10. When a nonlinear CNGD or
CNNGD was used, the nonlinearity at the output of the lter
was the complex logistic function

Φ(z) = 1/(1 + e−z) (17)

3.1. Combination of CNGD and CLMS
In the rst set of experiments, the nature of the input alter-
nated every 200 samples between linear and nonlinear. The
evolution of λ is shown in Figure 3 for two different settings.
In both cases, μCNGD was set equal to μCLMS , and it was
always possible to detect both the direction of the change
from linear to nonlinear and vice versa, and the degree of such
change, as illustrated by the values of λ approaching 0.85 for
nonlinear data and 0.1 and 0.4 for linear data. Also, this ap-
proach was robust to changes in the relative values of μCNGD

and μCLMS .
3.2. Combination of CNNGD and CNLMS
Next in order to overcome some problems with signal con-
ditioning, CNNGD (12) and CNLMS (11) were combined in
a hybrid fashion. The results shown in Figure 4 demonstrate
the robustness of this combination compared to that from Fig-
ure 3. Indeed, by setting μCNNGD = μCNLMS = 0.8, the
hybrid lter performed well on a range of synthetically gen-
erated signals and accurately detected both the direction of
the change from linear to nonlinear and vice versa, and the
degree of the change. Furthermore, it can be seen that as the
two transversal lters converge, the tracking of the degree of
nonlinearity in the input is improved in terms of the range
swept by λ (due to learning).

Next, the experiments were performed on complex–valued
wind data, and the simulation results are shown in Figure 5.
The combination of CNNGD and CNLMS was clearly capa-
ble of tracking changes in the linear/nonlinear nature of the
intermittent and nonstationary wind. The wind was changing
its nature in the region between (1–5000) and (10000–15000)
samples, which was correctly re ected in the values of λ. For
steady wind, the nature of wind exhibited a medium degrees
of nonlinearity.

In conclusion, the combination of CNNGD and CNLMS
provided excellent results in the identi cation of signal non-
inearity on a broad range of inputs, provided the individual

lters converged.
1The wind data with speed v and direction ϕ were made complex as v =

veiϕ [5].
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(a) Variation of the mixing parameter λ for the alternating inputs (13) and
(15) (μCNGD = 0.08, μCLMS = 0.08, μλ = 50)
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(b) Variation of the mixing parameter λ for the alternating inputs (14) and
(16) (μCNGD = 0.2, μCLMS = 0.2, μλ = 60)

Fig. 3. Hybrid combination of CNGD and CLMS, for input
natures alternating between linear and nonlinear every 200
samples

4. CONCLUSION
We have introduced a method for online tracking of signal
nonlinearity in the complex domain, which not only reveals
the signal nature but it also can assist in machine learning ap-
plications. This has been achieved by using a collaborative
signal processing approach, whereby the sub lters within a
hybrid lter were adapted using the CLMS and CNGD al-
gorithms and their normalised variants. Simulation results
have shown that the proposed approach is capable of track-
ing the nonlinearity within both synthesised and real–world
complex–valued data.
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