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Is a Complex-Valued Stepsize Advantageous in Complex-Valued
Gradient Learning Algorithms?

Huisheng Zhang and Danilo P. Mandic, Fellow, IEEE

Abstract— Complex gradient methods have been widely used in
learning theory, and typically aim to optimize real-valued functions
of complex variables. The stepsize of complex gradient learning
methods (CGLMs) is a positive number, and little is known about how
a complex stepsize would affect the learning process. To this end, we
undertake a comprehensive analysis of CGLMs with a complex stepsize,
including the search space, convergence properties, and the dynamics
near critical points. Furthermore, several adaptive stepsizes are derived
by extending the Barzilai–Borwein method to the complex domain, in
order to show that the complex stepsize is superior to the corresponding
real one in approximating the information in the Hessian. A numerical
example is presented to support the analysis.

Index Terms— Barzilai–Borwein method (BBM), complex
gradient method, complex stepsize, complex-valued neural
networks (CVNNs), convergence.

I. INTRODUCTION

Complex-valued neural networks (CVNNs) have attracted
widespread interest in a variety of disciplines, including array
signal processing, radar and magnetic resonance data imaging,
communication systems, and interval data processing [1]–[4].
The popularity of CVNNs stems not only from the mathematical
advantages over the bivariate reals when dealing with complex-valued
signals but also owing to several special properties of CVNNs,
which make them more powerful than the traditional real-valued
neural networks (RVNNs). For example, the orthogonality of the
decision boundary greatly enhances the generalization ability of
CVNNs [5], while the widely linear processing can capture the
complete second-order statistical relationship between the input and
the output [1], [6], [7].

Based on the different choices of the activation functions, the
three typical feedforward CVNN models are: 1) the real-imaginary
CVNN [8]; 2) the amplitude-phase CVNN [9]; and 3) the fully
CVNN [10], [11]. Gradient training algorithms for these networks
have been originally proposed in [8]–[12]; however, most of these
algorithmic expressions appear cluttered, as the real part and the
imaginary part (or the amplitude and the phase) of the network para-
meters are treated separately. To overcome this drawback, Wirtinger
calculus (also known as the CR calculus) [13]–[15] has been intro-
duced for the optimization of real-valued cost functions with respect
to complex variables [1], [16]. With the help of Wirtinger calculus,
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several elegant and efficient gradient training methods for fully
CVNNs have been proposed [17], [18]. In addition, the gradient train-
ing methods for real-imaginary CVNNs and amplitude-phase CVNNs
can also be derived under the framework of Wirtinger calculus [19].
In this brief, we refer to this class of gradient learning algorithms for
CVNNs as complex gradient learning methods (CGLMs).

Similar to its real counterpart, CGLMs suffer from slow
convergence due to the high nonconvexity of the cost function and
the numerous plateaus around its saddle points. For a given CVNN
architecture, the convergence rate of CGLMs depends critically on
the stepsize and the search direction, which are usually set as a small
positive number and the negative gradient direction, respectively.
It has been shown that the adaptive stepsize [20], [21] and the search
direction based on the second derivative information [22] can greatly
accelerate the convergence. Moreover, Kim and Adali [10], [11] pro-
posed to use an imaginary or a complex stepsize; however, they found
no significant difference in performance. More recently, the enhanced
performance of a complex stepsize has been experimentally shown for
complex-valued tensor decomposition problems [23]. However, both
the theoretical and experimental justifications for the advantages and
disadvantages of the complex stepsize for CGLMs are still lacking.

This brief aims to provide insights into the essential nature of the
CGLMs with a complex stepsize. Our contributions are as follows.

1) We show that the complex stepsize extends the search space
of CGLMs from a half-line to a half-plane, which equips the
learning process with more degrees of freedom; moreover, it
is shown that the complex stepsize algorithms offer enhanced
ability to escape from saddle points.

2) Convergence results for CGLMs with a complex stepsize are
established; the analysis shows that a pure imaginary number
should not be used as the stepsize of CGLMs.

3) By analyzing the dynamics of CGLMs with a complex stepsize
near the critical points, several circumstances where a constant
complex stepsize should be avoided are identified.

4) An adaptive complex stepsize strategy for CGLMs is proposed
by extending the Barzilai–Borwein method (BBM) [24], [25]
to the complex domain, and it is shown that the generic
extensions of BBM to the complex domain should employ a
complex stepsize.

The remainder of this brief is organized as follows. In Section II,
we list notations and provide a background on Wirtinger calculus.
Section III presents some heuristics and theoretical analysis for
CGLM with a complex stepsize, followed by several adaptive com-
plex stepsize strategies for CGLMs in Section IV. A numerical
example is given in Section V to support the analysis. A summary
of the findings and the conclusions are given in Section VI.

II. NOTATIONS AND PRELIMINARY

A. Notations

In this brief, the following notations are adopted.

1) Bold-faced quantities with uppercase and lowercase letters
denote, respectively, matrices and vectors.

2) R denotes the set of real numbers.

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016 2731

3) C denotes the set of complex numbers.
4) | · | denotes the absolute value of a variable.
5) ‖ · ‖ denotes the Euclidean norm of a vector.
6) (·)∗ denotes the complex conjugate.
7) (·)T denotes the transpose of a vector or a matrix.
8) (·)H denotes the Hermitian transpose of a vector or a matrix.
9) �(·) denotes the real part of a complex number or a vector.

10) �(·) denotes the imaginary part of a complex number or a
vector.

B. Wirtinger Calculus

Consider a function f (z) : C → C, given by

f (z) = u(x, y) + iv(x, y) (1)

where i = √−1 and z = x + i y. Upon substituting

x = z + z∗
2

, y = z − z∗
2i

(2)

the mapping f can be rewritten as a bivariate function of z and z∗. If
f is real differentiable, i.e., u(x, y) and v(x, y) are differentiable with
respect to real-valued variables x and y, we can then apply Wirtinger
calculus to compute (∂ f /∂z) and (∂ f /∂z∗) by treating z and z∗
as two independent variables. In this way, when taking the partial
derivative with respect to z, we consider z∗ as a constant and
calculate (∂ f /∂z). Similarly, (∂ f /∂z∗) is derived by considering z
as a constant and taking the partial derivative with respect to z∗.
This makes it possible for (∂ f /∂z) and (∂ f /∂z∗) to be derived in
the same manner as for the real-valued case. Upon applying the chain
rule, we obtain

∂ f

∂z
= 1

2

(
∂ f

∂x
− i

∂ f

∂y

)

∂ f

∂z∗ = 1

2

(
∂ f

∂x
+ i

∂ f

∂y

)
. (3)

If function f is real-valued, i.e., v(x, y) = 0, based on (3), it is
straightforward to obtain the following property:(

∂ f

∂z

)∗
= ∂ f

∂z∗ . (4)

If v(x, y) �= 0, a more general result is obtained(
∂ f

∂z

)∗
= ∂ f ∗

∂z∗ . (5)

Wirtinger calculus not only offers an elegant way to compute the
two partial derivatives (∂ f /∂z) and (∂ f /∂z∗), but also provides a
solution to the optimization of real-valued cost functions of complex-
valued variables. This is particularly important for learning machines,
as the negative of the gradient with respect to the conjugate of the
network parameters defines the direction of the steepest descent; this
is key in designing gradient-based optimization algorithms for the
minimization of real-valued cost functions with respect to complex-
valued variables.

III. COMPLEX GRADIENT LEARNING METHOD

WITH COMPLEX STEPSIZE

A. Algorithm Description

For the convenience of presentation, we consider a single output
complex-valued feedforward neural network model with weight
vector w ∈ C

N .
Suppose that {(ξk , dk)}K

k=1 ⊂ C
p × C is a given set of train-

ing samples, where ξ k is the input, and dk is the corresponding

Fig. 1. Illustration of the search space for CGLMs with complex stepsize.

desired output. The aim of the network training is to find the optimal
weight vector w�, which minimizes the error function

E =
K∑

k=1

(dk − o(ξk , w))(dk − o(ξ k , w))∗ =
K∑

k=1

ek e∗
k (6)

where o(ξk , w) denotes the output of the network for the
input ξk and ek = dk − o(ξk , w) is the output error for the training
sample (ξk , dk).

From (6), the error function E can be viewed as a function of
complex variable w and its complex conjugate w∗, and for brevity,
we shall use E(w) to denote this functional relationship. As the
gradient ∇w∗ E defines the direction of the maximum rate of change
with respect to w, starting from an initial point w(0) [14], the cost
function E(w) can be minimized using complex gradient descent in
the following recursive form:

w(k+1) = w(k) − ηk∇w∗ E(w(k)) (7)

where ηk is the stepsize at the kth iteration, which is usually set to
be a small positive number.

For a complex-valued ηk , (7) takes the following form:
w(k+1) = w(k) − (�(ηk)∇w∗ E(w(k))

+ i�(ηk )∇w∗ E(w(k))). (8)

Fig. 1 shows that, geometrically, the vector i∇w∗ E(w(k)) is rotated
with respect to −∇w∗ E(w(k)) clockwise, by an angle (π/2). Thus,
the increment −ηk∇w∗ E(w(k)) lives in a half-plane spanned by the
two orthogonal vectors −∇w∗ E(w(k)) and i∇w∗ E(w(k)), for all
ηk ∈ C with �(ηk) > 0. Therefore, the complex stepsize extends
the search space from a half-line (for a standard positive stepsize) to
a half-plane, hence providing more freedom in optimization.

Remark 1: If the imaginary part of the stepsize is nonzero,
CGLM with a complex stepsize does not follow the usual steepest
descent direction, i.e., the negative of the gradient. However, there
is plenty of evidence that the negative of the gradient may not be
the best or the actual steepest descent direction in iterative learning.
For example, some variants of standard gradient descent method,
such as the conjugate gradient method and the gradient method with
momentum, do not update the parameters in the steepest descent
direction, but they converge faster than the standard gradient descent.
Therefore, it comes as no surprise that the gradient descent with a
complex stepsize gradient descent exhibits similar behavior.
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Fig. 2. Learning trajectories for CGLM with the complex stepsize against
the real stepsize on a contour map.

B. Ability to Escape the Saddle Points

Gradient-based learning algorithms converge to points with vanish-
ing gradient; such points are referred to as critical points and include
both the saddle points and local minima. Nitta [26] pointed out a
prominent property of CVNNs—owing to the hierarchical structure
of complex-valued neural networks most of their critical points are
saddle points—critical points of RVNNs tend to be local minima.
It is important to notice that as saddle point is unstable, in most
cases, the algorithm will eventually converge to a local minimum.
This property points to an advantage of CVNNs. During the gradient
training process, they are more likely to reach a global minimum
than the RVNNs. However, this property also poses a challenge for
complex gradient training algorithms, as too many saddle points
will greatly slow down the convergence [27]. Thus, it is of great
importance for a learning algorithm to be able to automatically escape
the saddle points.

In the sequel, we show that the complex stepsize is well equipped
to address this issue. When a real gradient learning algorithm with
a small positive stepsize is stuck in the plateau of a saddle point,
the algorithm moves very slowly along the direction of the negative
gradient. By including an imaginary part in the stepsize, a new
search direction is obtained, which is a linear combination of the
negative gradient vector −∇w∗ E(w(k)) and its orthogonal vector
i∇w∗ E(w(k)), thus offering another degree of freedom to escape the
saddle point. To illustrate this concept, consider the function

(cos(cos(cos(w))) − 0.1)(cos(cos(cos(w))) − 0.1)∗, w ∈ C (9)

which mimics the error function of a hierarchical CVNN. Starting
from an initial point 0.1 − i , Fig. 2 shows the contour plot of the
function in (9) and the trajectories for the learning process of the
complex gradient algorithm with: 1) a real stepsize 0.1 and 2) a
complex stepsize 0.1−0.05i . Notice that the learning process with a
real stepsize slowed down at the saddle point, whereas the learning
process with a complex stepsize successfully avoided the saddle point,
and converged to a minimum faster than the CGLM with a real
stepsize.

C. Convergence Analysis

It has been proved that the convergence of gradient descent based
on ∇w∗ E(w) can be guaranteed if ηk is a sufficiently small positive
number [28]. In the following theorem, we show that the complex

stepsize can also guarantee the decrease in E(w) along iterations and
the convergence of ∇w∗ E(w).

Theorem 2: Let the sequence {w(k)} be generated by (7) starting
from an arbitrary initial value w(0), and let ∇w∗ E(w) satisfy the
Lipschitz condition, that is, there exists a positive constant L , such
that

||∇w∗ E(w1) − ∇w∗ E(w2)|| ≤ L ||w1 − w2|| (10)

for any w1 ∈ C
N and w2 ∈ C

N . Then, if the stepsize ηk satisfies

1 − √
1 − 4L2θ2(�(ηk))2

2Lθ
< �(ηk)

<
1 + √

1 − 4L2θ2(�(ηk))2

2Lθ
(11)

where θ is a constant in the interval (0, 1), the following holds:
E(w(k+1)) < E(w(k)) and limk→∞ ∇w∗ E(w(k)) = 0.

Proof: As E(w) is real-valued, using (4), we have

∇w∗ E(w) = (∇w E(w))∗. (12)

Now, using (7), (10), and (12), the mean value theorem and the
triangle inequality, we have

E(w(k+1)) − E(w(k))

= (∇w E(w(k) + θ(w(k+1) − w(k))))T (w(k+1) − w(k))

+ (∇w∗ E(w(k) + θ(w(k+1) − w(k))))T (w(k+1) − w(k))∗
= (∇w E(w(k)))T (w(k+1) − w(k))

+ (∇w∗ E(w(k)))T (w(k+1) − w(k))∗
+ (∇w E(w(k) + θ(w(k+1) − w(k))) − ∇w E(w(k)))T

× (w(k+1) − w(k))

+ (∇w∗ E(w(k) + θ(w(k+1) − w(k))) − ∇w∗ E(w(k)))T

× (w(k+1) − w(k))∗
≤ 2�((∇w E(w(k)))T (w(k+1) − w(k)))

+ 2‖∇w E(w(k) + θ(w(k+1) − w(k))) − ∇w E(w(k))‖
×‖w(k+1) − w(k)‖

≤ −2�(ηk (∇w∗ E(w(k)))H (∇w∗ E(w(k))))

+ 2Lθ‖w(k+1) − w(k)‖2

= 2(−�(ηk) + Lθ |ηk |2)‖∇w∗ E(w(k))‖2 (13)

where θ is a constant in (0, 1). In order to verify E(w(k+1)) <
E(w(k)), we only require the stepsize ηk to satisfy

−�(ηk) + Lθ |ηk |2 < 0 (14)

which is equivalent to (11). Let γ = 2(�(ηk) − Lθ |ηk |2), then
using (13), we have

E(w(k+1)) ≤ E(w(k)) − γ ‖∇w∗ E(w(k))‖2

≤ · · · ≤ E(w(0)) − γ

k∑
t=0

‖∇w∗ E(w(t))‖2. (15)

Since E(w) ≥ 0, from (15), it then follows that∑+∞
t=0 ‖∇w∗ E(w(t))‖2 < +∞, which implies limk→∞

∇w∗ E(w(k)) = 0. This completes the proof. �
Remark 3: Theorem 2 establishes the bounds on the complex

stepsize in order to ensure the decrease in the error function along
the iterations and the convergence of its gradient. We should mention
that, as shown in [29, Lemma 4.2] and [30, Lemma 2], the Lipschitz
condition in Theorem 2 and the value L do exist for a variety of
activation functions, including both locally analytic functions and
traditional split-complex functions. From (11), it is important to point
out that, although the real part of the stepsize must be positive,
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there is no sign restriction for the imaginary part. This also means
that the positive real part of the stepsize is a necessary condition for
the algorithm to converge; in other words, pure imaginary numbers
should not be used as the stepsize.

D. Dynamics Near the Critical Points

We next investigate the dynamics of complex gradient methods
with a constant complex stepsize near a critical point, in order to
identify several application scenarios where the constant complex
stepsize should be avoided.

The complex gradient method (7) can be viewed as a discrete
dynamical system, given by

w(k+1) = g(w(k)) (16)

where the vector-valued function g(w) = w − η∇w∗ E(w). Notice
that the fixed point of the dynamical system in (16) is precisely the
critical point of E(w).

Suppose w� is a fixed point of (16), and

g′(w) = I − η∇w∗wT E(w) (17)

is the Jacobian matrix of g(w), where I denotes the identity matrix
of an appropriate order. Then, w� is an attractor of (16) if the
spectral radius (maximum modulus of the eigenvalues of a matrix)
ρ(g′(w�)) < 1. The smaller ρ(g′(w�)), the faster the convergence
of the sequence {w(k)} generated by (16) from an initial point close
enough to w�.

As ∇w∗wT E(w�) is a Hermitian symmetric matrix, all its eigen-
values are real. Suppose λ is an eigenvalue of ∇w∗wT E(w�), then

|1 − ηλ|2 = |1 − (�(η) + i�(η))λ|2
= (1 − �(η)λ)2 + (�(η)λ)2

≥ (1 − �(η)λ)2 (18)

to yield

ρ(g′(w�)) ≥ ρ(I − �(η)∇w∗wT E(w�)). (19)

From the above, we can make the following observations regarding
the choice of the stepsize, given in Remarks 4–7.

Remark 4: From (19), we can conclude that when w(k) is close
enough to w�, for which E(w�) is a local minimum, and a constant
stepsize is used during the learning process, the algorithm with a
constant complex stepsize η will converge slower and may be less
stable than when using a real stepsize �(η). The slower convergence
can also be explained from the geometry viewpoint: for a complex
constant stepsize, w(k) will rotate around the minimum point, thus
slowing down the convergence. On the other hand, if the critical point
is not a minimum but a saddle point, the learning algorithm with a
complex stepsize offers enhanced ability to escape from the attraction
of this saddle point. This conforms with our analysis in Section III-B.

Remark 5: Suppose E(w) is a quadratic function of the form

E(w) = c + bH w + bT w∗ + wH Aw (20)

where c ∈ R, b ∈ C
n , and A is a positive definite (or semidefinite)

Hermitian matrix. Then, the complex gradient method in (7) takes
the form

w(k+1) = w(k) − η(Aw(k) + b)

= (I − ηA)w(k) − ηb. (21)

Similarly to (19), we now have ρ(I − ηA) ≥ ρ(I − �(η)A). Thus,
in this case, the constant real stepsize is superior to the constant
complex stepsize.

Remark 6: Consider a complex linear feedforward filter with the
mean square error to be minimized, given by

E[e(k)e∗(k)] = E[(d(k) − wH x(k))(d(k) − wH x(k))∗]
= E[d(k)d∗(k) − wH x(k)d∗(k)

− wT x∗(k)d(k) + wH x(k)wT x∗(k)]
= E[|d(k)|2] − wH

E[x(k)d∗(k)]
− wT

E[x∗(k)d(k)] + wH
E[x(k)xH (k)]w (22)

where the symbol E[·] denotes the statistical expectation operator,
d(k) and x(k) are, respectively, the desired output and input vector
at iteration k, and w is the weight vector. This error function is
obviously a quadratic function of the form (20). If the stepsize is a
very small constant, the dynamics of this filter are very similar to
the system in (16), and there is no advantage of a complex-valued
constant stepsize.

Remark 7: The above discussion shows that, when the
iteration w(k) is very close to an optimal w�, or the objective
function is quadratic of the form (20), the constant complex stepsize
is not a better choice than the constant real stepsize. However, this
does not prevent us from using the complex stepsize even in the
above situations. With an appropriate adaptive strategy, the complex
stepsize could still outperform the real one, as shown in Section IV.

IV. COMPLEX BARZILAI–BORWEIN TRAINING METHOD

The BBM [24] is an efficient strategy for adaptively choosing the
stepsize of gradient algorithms. With very low computation and mem-
ory requirements, the BBM is an alternative to conjugate gradient
methods [25], and has been used in a variety of applications [31].
In this section, we extend the BBM to train CVNNs, by deriving
the complex Barzilai–Borwein learning method with both a complex
stepsize (CBBM-CSS) and a real stepsize (CBBM-RSS). We also
show that the CBBM-CSS has a generic form and is superior to
CBBM-RSS.

The well-known Newton method is defined by

w(k+1) = w(k) − (H(k))−1∇w∗ E(w(k)) (23)

where H(k) is the Hessian matrix of E(w) at the point w = w(k).
As the computation of the Hessian matrix and its inverse is very
time-consuming, it is advantageous to use a simpler matrix to
approximate H(k).

Motivated by the following relationship between the second deriv-
ative and the first derivative:

f ′′(z0)(z − z0) ≈ f ′(z) − f ′(z0) (24)

when z is very close to z0, then the quasi-Newton method (secant
method) aims at finding a matrix B(k) which satisfies

B(k)s(k) = y(k) (25)

in order to approximate H(k). Here, s(k) = w(k) − w(k−1) and
y(k) = ∇w∗ E(w(k))−∇w∗ E(w(k−1)). In order to obtain the optimal
stepsize for (7), we use αkI to replace B(k) in (25), where αk is a
scalar. Obviously, in general, we cannot find αkI that satisfies (25).
Instead, we compute αk by solving the least squares problem

αk = arg min
α∈C

‖αIs(k) − y(k)‖2

= arg min
α∈C

(αs(k) − y(k))H (αs(k) − y(k)) (26)

to give

αk = (s(k))H y(k)

(s(k))H s(k)
. (27)
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Accordingly, the optimal stepsize ηk at the iteration k can be obtained
as

ηk = 1

αk
= (s(k))H s(k)

(s(k))H y(k)
. (28)

By analogy, we can set

βk = arg min
β∈C

‖s(k) − βy(k)‖2

= arg min
β∈C

(s(k) − βy(k))H (s(k) − βy(k)) (29)

to give

ηk = βk = (y(k))H s(k)

(y(k))H y(k)
(30)

as another choice of the optimal stepsize. We should mention that the
stepsize ηk given by (28) and that given by (30) are both complex-
valued. Moreover, as

‖(y(k))H s(k)‖ ≤ ‖(y(k))‖‖s(k)‖ (31)

we have ∣∣∣∣∣
(s(k))H s(k)

(s(k))H y(k)

∣∣∣∣∣ ≥
∣∣∣∣∣
(y(k))H s(k)

(y(k))H y(k)

∣∣∣∣∣. (32)

Thus, a complex gradient method with the complex stepsize given
by (30) will exhibit enhanced stability compared with its counterpart
given by (28), and we shall, therefore, mainly discuss the case in (30)
in the rest of this brief.

Notice that we can also solve the least squares problem in (29) in
the real domain as follows:

βR
k = arg min

β∈R

‖s(k) − βy(k)‖2

= arg min
β∈R

(s(k) − βy(k))H (s(k) − βy(k)). (33)

The so-obtained real stepsize is given by

ηR
k = βR

k = �((y(k))H s(k))

(y(k))H y(k)
(34)

for which

‖s(k) − βky(k)‖2 ≤ ∥∥s(k) − βR
k y(k)

∥∥2
. (35)

Recall that the basic idea behind the BBM is to find βk by minimizing
‖s(k) − βy(k)‖2, such that βkI provides a rational approximation for
the inverse of the Hessian matrix H(k). In this sense, (35) implies
that the complex stepsize ηk , defined by (30), is a better choice than
its real counterpart ηR

k .

V. SIMULATION RESULTS

We verified the theoretical analysis on a complex-valued approxi-
mation problem. The function to be approximated is given by [32]

f (z) = 1

1.5

(
z2

2
z1

+ z3 + 10z1z4

)
(36)

where z = (z1, z2, z3, z4)T ∈ C
4. Training samples were gen-

erated by randomly choosing the real and imaginary parts of
zl (l = 1, 2, 3, 4) from the uniform distribution in the
range [−0.5, 0.5].

We used a single hidden-layer CVNN with the structure 4−50−1
to approximate 50 points of the function (36). The activation func-
tions of the neurons were tanh(·) functions. The network was trained
using the following five methods: 1) CGLM with a constant real

Fig. 3. Learning curves for CGLM with different stepsizes.

stepsize η = 0.02; 2) CGLM with a constant complex stepsize
η = 0.02 − 0.01i ; 3) CGLM with a constant pure imaginary stepsize
η = 0.02i ; 4) CBBM-CSS from (30); and 5) CBBM-RSS from (34).
For convenience, in every simulation trial, the methods shared the
same initial weights (both the real part and the imaginary part) that
were taken as random numbers from the interval [−0.2, 0.2].

The average performance curves based on averaging 50 indepen-
dent trials are shown in Fig. 3, and indicate the following.

1) Both the CGLMs with constant stepsizes η = 0.02 and
η = 0.02 − 0.01i were converged. Due to the enhanced ability
to escape the saddle points and the increase in the modulus,
the constant complex stepsize outperformed the corresponding
constant real stepsize in terms of convergence speed. The
CGLM with the pure imaginary stepsize η = 0.02i failed to
converge.

2) By adaptively choosing the stepsize in the complex domain,
the CBBM-CSS converged almost six times faster than the
conventional CGLM, whereas the CBBM-RSS almost failed to
learn the data. This exemplifies that the CBBM-CSS, but not
the CBBM-RSS, is a generic extension of the original BBM to
the complex domain.

VI. CONCLUSION

We have introduced a CGLM with a complex-valued stepsize,
which has demonstrated significant advantages in CGLMs. Our
findings can be summarized as follows.

1) Compared with the traditional real stepsize, the complex step-
size extends the search space of CGLM from a half-line to a
half-plane and reduces the risk of getting stuck into the plateaus
around the saddle points.

2) To guarantee the convergence of CGLM with a complex
stepsize, the real part of the stepsize should be a positive
number, while there is no sign restriction on the imaginary
part. Pure imaginary numbers cannot serve as the stepsize.

3) During the learning process, if the iteration is near a local
minimum of the error function, a constant complex stepsize
should be avoided. Constant complex stepsizes are also not
recommended for linear networks.

Furthermore, we have derived two CBBM-CSS and CBBM-RSS.
Both the theoretical and experimental analyses have shown the
superiority of the complex stepsize.
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