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a b s t r a c t

This paper presents an augmented algorithm for fully complex-valued neural network based onWirtinger
calculus, which simplifies the derivation of the algorithm and eliminates the Schwarz symmetry restric-
tion on the activation functions. A unified mean value theorem is first established for general functions
of complex variables, covering the analytic functions, non-analytic functions and real-valued functions.
Based on so introduced theorem, convergence results of the augmented algorithm are obtained under
mild conditions. Simulations are provided to support the analysis.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Complex-valued neural networks (CVNNs) have recently at-
tracted broad research interests, for example, in seismics, sonar,
and radar (Hirose, 2012). CVNNs have been shown to inherent ad-
vantages in reducing the number of parameters and operations
involved (Mandic & Goh, 2009). In addition, CVNNs have compu-
tational advantages over real-valued neural networks in solving
classification problems (Aizenberg, 2011), and can even solve the
XOR problem with only one complex-valued neuron (Nitta, 2003).
However, the choice of activation function remains being a chal-
lenging task due to the conflict requirements of boundedness and
analyticity—Liouville’s theorem states that if a function is analytic
and bounded in the complex plane, then it must be a constant.
A traditional split-complex approach (Nitta, 1997) uses a pair of
real-valued activation functions to process the real and imaginary
parts of a complex signal separately. While this approach helps
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avoiding the problem of unboundedness, split complex activation
functions are never analytic. In contrast, ‘fully’ complex activation
functions (Kim & Adali, 2003), such as elementary transcenden-
tal functions, are analytic and bounded almost everywhere in C,
and have been used inmulti-layer perceptions (Kim&Adali, 2003),
radial basis function networks (Savitha, Suresh, & Sundararajan,
2012) and extreme learning machines (Li, Huang, Saratchandran,
& Sundararajan, 2005). Classical real-valued learning algorithms
that have been extended to complex case, contains the com-
plex least mean square (Widrow, McCool, & Ball, 1975), complex
backpropagation (Georgiou & Koutsougeras, 1992; Hirose, 1992;
Leung & Haykin, 1991; Nitta, 1997) and complex real-time recur-
rent learning (Goh &Mandic, 2004, 2007a). Signal processing tech-
niques (Adali, Li, Novey, & Cardoso, 2008; Dini & Mandic, 2012)
have also been proposed based on such activation functions, how-
ever, the basic research issue: whether these complex algorithms
share convergence properties with their real counterparts remains
largely unanswered. The complex universal approximation theo-
remof the CVNNswith fully complex activation functions (denoted
as FCVNNs for simplicity) has been given by Kim and Adali in Kim
andAdali (2003),which ensures that the FCVNNs canbe considered
as a universal approximator of any continuous complex mappings.

Convergence of the real-valued learning algorithm has been
widely studied (Shao & Zheng, 2011; Wang, Yang, & Wu, 2011;
Wu, Fan, & Zurada, 2014; Wu, Feng, Li, & Xu, 2005; Wu, Wang,
Cheng, & Li, 2011). However, in the complex domain, in addition to
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the conflict between boundedness and analyticity of the activation
function, another challenge is that the traditional mean value
theorem does not hold in the complex domain (e.g., f (z) = ez with
z2 = z1+2π i, then f (z1) = f (z2) but f (z2)− f (z1) ≠ f ′(ξ)(z2−z1)
for all ξ ∈ C). In addition, cost functions are real-valued and
therefore the complex derivative cannot be used. Some results
for split-complex nonlinear gradient descent (SCNGD) algorithms
exist (Xu, Zhang, & Liu, 2010; Zhang, Zhang, &Wu, 2009), whereby
the analysis is based on reformulating complex algorithm in
the real domain by separating it into real and imaginary parts.
Furthermore, the convergence of the SCNGD algorithms with
momentum or penalty has been established in Xu, Shao, and
Zhang (2012) and Zhang, Xu, and Zhang (2014). In addition, the
convergence of some complex adaptive filters algorithms has been
obtained under the assumption that the activation function is
a contraction (Mandic & Goh, 2009). The convergence of fully-
complex nonlinear gradient descent (FCNGD) algorithms has been
proved under Schwarz symmetry condition f ∗(z) = f (z∗) (Zhang,
Liu, Xu, & Zhang, 2014). However, this condition is usually not valid
for a polynomial function with complex coefficients, and the mean
value theorem used in Zhang, Liu et al. (2014) is not applicable
to the non-analytic functions, such as real-valued cost functions.
Recently, augmented complex statistics have been introduced into
some learning algorithms, such as the augmented complex least
mean square (Mandic & Goh, 2009; Mandic, Javidi, Goh, Kuh, &
Aihara, 2009), augmented complex extended Kalman filter (Dini &
Mandic, 2012; Goh & Mandic, 2007b), and augmented echo state
network (Xia, Jelfs, Van Hulle, Príncipe, &Mandic, 2011). These can
capture the second-order statistical information and thus produce
optimal estimates for second-order noncircular (improper) signals.
However, the convergence of the augmented FCNGD (AFCNGD)
algorithms for the FCVNNs has not yet been fully established in the
literature, which motivates this work.

The aim of this paper is to present a comprehensive study on
the weak and strong convergence for the AFCNGD algorithm, indi-
cating that the gradient of the error function goes to zero and the
weight sequence goes to a fixed point, respectively. In comparison
to the existing complex backpropagation (CBP) algorithms (Geor-
giou & Koutsougeras, 1992; Hirose, 1992; Leung & Haykin, 1991;
Nitta, 1997), the proposed AFCNGD algorithm shows faster conver-
gence and better steady-state performance. The main points and
novel contributions of this paper are as follows:
• Based onWirtinger calculus, we develop an augmented FCNGD

algorithm for CVNNs with fully complex activation functions.
This approach can simplify the derivation of the proposed
algorithm and eliminate Schwarz symmetry restriction on the
complex activation functions.

• We establish a unified mean value theorem for the com-
plex nonlinear functions, covering the analytic functions, non-
analytic functions and real-valued functions. This theorem
plays an important role in the convergence proof of the pro-
posed AFCNGD algorithm.

• The deterministic convergence including weak convergence
and strong convergence of the AFCNGD algorithm is obtained.
Our results are of considerable generality, including as particu-
lar cases almost all CVNNs with complex elementary transcen-
dental functions given in Kim and Adali (2003).

• Illustrated experiments have been performed to verify the the-
oretical results of this paper and the advantages of the proposed
AFCNGD algorithm.

The rest of this paper is organized as follows. In Section 2, we
provide an overview of second-order augmented complex statis-
tics and Wirtinger calculus. Section 3 derives the proposed aug-
mented learning algorithm for the FCVNNs. The main convergence
results and their proofs are presented in Section 4. Supporting nu-
merical experiments are presented in Section 5. Some conclusions
are drawn in Section 6.
2. Preliminaries

2.1. Notations

We use bold-face upper case letter to denote matrices, bold-
faced lower case letters for column vectors, and light-faced lower
case letters for scalars. The superscripts (·)∗, (·)T and (·)H denote
the complex conjugate, transpose and Hermitian (conjugate
transpose), respectively. Re(z) and |z| denote the real part and
module of a complex number z. ∥z∥ and ∥Z∥ denote the Frobenius
norm of a vector z and amatrix Z. Finally, we refer to f (z∗) = f ∗(z)
as the Schwarz symmetry principle (Needham, 1998, p. 257).

2.2. Second-order augmented complex statistics

The recent introduction of so-called augmented complex statis-
tics (Mandic & Goh, 2009) showed that for a general (improper)
complex vector z, second order statistics based on the covariance
matrix Czz = E[zzH ] is inadequate and that the pseudo-covariance
matrix Pzz = E[zzT ] is also required to fully capture the second or-
der information. Processes with the vanishing pseudo-covariance,
Pzz = 0 is termed second order circular (or proper). In real-world
applications, most complex signals are second order noncircular
or improper, and their probability density functions are not rota-
tion invariant. In practice, the widely linear modeling (Picinbono
& Chevalier, 1995) is based on a regressor vector produced by con-
catenating the input vector zwith its complex conjugate z∗, to give
an augmented 2M × 1 input vector za = [zT , zH ]

T , together with
the corresponding augmented coefficient vector wa

= [uT , vH ]
T .

The 2M × 2M augmented covariance matrix (Schreier & Scharf,
2003) then becomes

Czaza = E

z
z∗

 
zH zT


=


Czz Pzz
P∗

zz C∗

zz


. (1)

This matrix now contains the complete complex second order sta-
tistical information available in the complex domain, see Mandic
and Goh (2009) and Schreier and Scharf (2010) for more details.

2.3. Wirtinger calculus

Any function of a complex variable z can be defined as f (z) =

u(x, y) + iv(x, y), where z = x + iy and i denotes an imaginary
unit. If the partial derivatives ∂u

∂y ,
∂v
∂x ,

∂u
∂x ,

∂v
∂y exist and satisfy

the Cauchy–Riemann conditions ∂u
∂x =

∂v
∂y and ∂v

∂x = −
∂u
∂y , then

f (z) is said to be analytic (complex derivative exists), otherwise,
it is non-analytic (complex derivative does not exist). For general
functions of complex variables (both analytic and non-analytic),
the following pair of derivatives can be defined (Brandwood, 1983;
Kreutz-Delgado, 2009; Wirtinger, 1927)

R-derivative:
∂ f
∂z

=
1
2


∂ f
∂x

− i
∂ f
∂y


(2)

R∗-derivative:
∂ f
∂z∗

=
1
2


∂ f
∂x

+ i
∂ f
∂y


(3)

which are calledWirtinger or CR derivatives. In particular, if f (z) is
analytic, then the R-derivative ∂ f

∂z becomes the complex derivative
f ′(z) and the R∗-derivative vanishes, that is the Cauchy–Riemann
equations are equivalent to ∂ f

∂z∗ = 0. Some basic rules of the CR
derivatives are summarized as (Kreutz-Delgado, 2009; Mandic &
Goh, 2009; Wirtinger, 1927)

Differential rule: df =
∂ f
∂z

dz +
∂ f
∂z∗

dz∗ (4)
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Chain rule:
∂g(f )
∂z

=
∂g
∂ f

∂ f
∂z

+
∂g
∂ f ∗

∂ f ∗

∂z
(5)

Chain rule:
∂g(f )
∂z∗

=
∂g
∂ f

∂ f
∂z∗

+
∂g
∂ f ∗

∂ f ∗

∂z∗
(6)

Conjugation rule:


∂ f
∂z

∗

=
∂ f ∗

∂z∗
;

when f is real


∂ f
∂z

∗

=
∂ f
∂z∗

(7)

Conjugation rule:


∂ f
∂z∗

∗

=
∂ f ∗

∂z
;

when f is real


∂ f
∂z∗

∗

=
∂ f
∂z

. (8)

3. Learning algorithm for CVNN using Wirtinger calculus

For simplicity, we consider a three-layer FCVNN with M in-
put nodes, M extended input nodes, N hidden nodes and one
output node. Letw0 = (w01, w02, . . . , w0N)T ∈ CN be the weight-
ing vector between the hidden units and the output unit, and
un, (vn) ∈ CM (n = 1, 2, . . . ,N) be the weighting vectors be-
tween the input (extended input) units and the n-th hidden unit.
All the network weights can be written in a compact form w =
wT

0,u
T
1, . . . ,u

T
N , vT1, . . . , v

T
N

T
∈ CN(2M+1). Let f , g : C → C be

the fully complex activation functions of hidden and output layers.
We now define two vector-valued functions

g(z) = (g(z1), g(z2), . . . , g(zM))T ,

g′(z) = (g ′(z1), g ′(z2), . . . , g ′(zM))T
(9)

where z = (z1, z2, . . . , zM)T ∈ CM . For the input vector z ∈ CM

and its conjugate z∗, the output of the augmented FCVNN is given
by

y = f

w0 · g(Uz + Vz∗)


(10)

where ‘·’ denotes the inner product of two vectors, U =

(u1, . . . ,uN)T ∈ CN×M and V = (v1, . . . , vN)T ∈ CN×M . Note that
the output of the FCVNN in (10) depends on both z and z∗, so it is
suitable for the processing of general complex valued signals, both
circular and noncircular (Mandic & Goh, 2009).

For the training sample set {zj, dj}
J
j=1 ⊂ CM

× C, where zj and
dj are respectively the input and the desired output, the training
process finds an optimal weighting vector w⋆ that minimizes the
error function

E(w) =

J
j=1

|ej|2 =

J
j=1

|yj − dj|2 (11)

where

ej = yj − dj, yj = f

w0 · g


Uzj + Vz∗

j


. (12)

Using the chain rule in (5) and noting that f , g are analytic
(R∗-derivative vanishes), we have

∂E(w)

∂w0
=

J
j=1


∂|ej|2

∂ej

∂ej
∂w0

+
∂|ej|2

∂e∗

j

∂e∗

j

∂w0



=

J
j=1

e∗

j

∂ f

w0 · g


Uzj + Vz∗

j


∂w0

+

J
j=1

ej
∂ f ∗


w0 · g


Uzj + Vz∗

j


∂w0

(13)
while from the conjugate rule in (8) and ∂z
∂z∗ = 0, we arrive at

∂E(w)

∂w0
=

J
j=1

e∗

j f
′

w0 · g(Uzj + Vz∗

j )

gT Uzj + Vz∗

j


+

J
j=1

ej


f ′

w0 · g(Uzj + Vz∗

j )


×
∂

w0 · g(Uzj + Vz∗

j )


∂w∗

0

∗

=

J
j=1

e∗

j f
′

w0 · g(Uzj + Vz∗

j )

gT Uzj + Vz∗

j


. (14)

Note that this derivation does not required the Schwarz symmetry
f ∗(z) = f (z∗) that is needed in Adali et al. (2008), Leung and
Haykin (1991) and Zhang, Liu et al. (2014). Similarly, we have

∂E(w)

∂un
=

J
j=1

e∗

j f
′

w0 · g(Uzj + Vz∗

j )


× w0ng ′

uT
nzj + vTnz

∗

j


zTj (15)

∂E(w)

∂vn
=

J
j=1

e∗

j f
′

w0 · g(Uzj + Vz∗

j )


× w0ng ′

uT
nzj + vTnz

∗

j


zHj . (16)

Since E(w) is real-valued, then using the conjugation rule in (7),
the gradient of E(w) is given by

∇w∗E(w) ,


∂E(w)

∂w

H

=


∂E(w)

∂w0
,
∂E(w)

∂u1
, . . . ,

∂E(w)

∂uN
,

∂E(w)

∂v1
, . . . ,

∂E(w)

∂vN

H

(17)

which defines the direction of themaximum rate of change of E(w)
in Brandwood (1983). Starting from an arbitrary initial weighting
vector w0, the weight updating rule based on the Wirtinger
calculus can be written as

wk+1
= wk

+ 1wk
= wk

− η∇w∗E(wk) (18)

where η > 0 is the learning rate. This completes the derivation of
the augmented FCNGD (AFCNGD) algorithm.

4. Convergence analysis

To analyze the convergence of the algorithm (18), we need the
following assumptions:

(A1) There exists a constant c1 such that max

∥wk

0∥, ∥U
k
∥, ∥Vk

∥


≤ c1 for all k = 0, 1, 2, . . .;
(A2) The functions f (z) and g(z) are analytic in a bounded region

|z| < R and continuous on |z| = R, where R is defined in (25);
(A3) There exists a bounded closed regionΦ ⊂ CN(2M+1) such that

wk ∈ Φ and Φ0 = {w ∈ Φ : ∇w∗E(w) = 0} contains only
finite number of points.

Remark 4.1. Assumption (A1) means the condition on bounded-
ness of ∥wk

∥, which is often used in the literature (Aizenberg, 2010,
2011; Gori & Maggini, 1996; Shao & Zheng, 2011; Wu et al., 2005,
2011; Xu et al., 2010), and can be removed when adding a penalty
term to the error function (Zhang, Xu et al., 2014). Assumption (A2)
indicates that complex coefficient polynomials can be used as the
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activation function, which removes the Schwarz symmetry condi-
tion in Adali et al. (2008), Leung and Haykin (1991) and Zhang, Liu
et al. (2014). Assumption (A3) implies that the error function has
only a finite number of local minima, which will be used to obtain
strong convergence results.

Theorem 4.1 (Mean Value Theorem of Integral Form). Consider a
continuous function f : S ⊆ C → C for which the Wirtinger
derivatives exist and are continuous in the set S. If ∃z1, z0 ∈ S such
that the segment joining them is also in S, then

f (z1) − f (z0) =

 1

0


∂

∂z
1z +

∂

∂z∗
(1z)∗


f (z0 + t1z)dt (19)

where 1z = z1 − z0, and
∂ f
∂z ,

∂ f
∂z∗ are the Wirtinger derivatives.

Proof. Denote g(t) = f (z0 + t1z), 0 ≤ t ≤ 1, then g(t) is
continuous on [0, 1] and has real derivatives in (0, 1). Using the
chain rule (5), the derivative of g(t) can be found as

g ′(t) =
∂ f (z0 + t1z)

∂z
1z +

∂ f (z0 + t1z)
∂z∗

(1z)∗. (20)

Upon substituting (20) into g(1) − g(0) =
 1
0 g ′(t)dt with g(0) =

f (z0) and g(1) = f (z1), the equality (19) follows. �

In particular, if f (z) is analytic (R∗-derivative vanishes), then
(19) becomes

f (z1) − f (z0) =

 1

0
f ′(z0 + t1z)1zdt. (21)

Moreover, if f (z) is real-valued, then

f (z1) − f (z0) = 2
 1

0
Re


∂ f (z0 + t1z)
∂z

1z

dt (22)

where the conjugation rule (7) is used in (22) and Re(z) is the real
part of z.

Lemma 4.2. If the assumptions (A1) and (A2) are valid. Then the
gradient ∇w∗E(w) satisfies the Lipschitz condition, in other words,
there exists a positive constant L, such that

∥∇w∗E(wk+1) − ∇w∗E(wk)∥ ≤ L∥wk+1
− wk

∥. (23)

Proof. For brevity, we use the following notion

sk,j = (Uk)T zj + (Vk)T z∗

j , pk,j = wk
0 · g


sk,j


(24)

where k = 1, 2, . . . ; j = 1, 2, . . . , J . By Assumption (A1) and a
finite set of samples {zj, dj}

J
j=1, there exists a constant R such that

max
sk,j ,

pk,j < R, j = 1, 2, . . . , J; k = 1, 2, . . . . (25)

Since the continuous functions f and g are bounded in the closed
region |z| ≤ R, there exists c2 ∈ R+ such that

max

|f (z)|, |f ′(z)|, |f ′′(z)|, ∥g(z)∥ ,

g′(z)
 < c2 (26)

where the analyticity of f and g guarantees derivatives of all orders.
By (21), (26) and the Cauchy–Schwarz inequality, we have

g sk+1,j
− g


sk,j
 =


g

sk+1,j
1


− g


sk,j1


...

g

sk+1,j
N


− g


sk,jN



=




sk+1,j
1 − sk,j1

  1

0
g ′(sk,j1 + t1s1)dt

...
sk+1,j
N − sk,jN

  1

0
g ′(sk,jN + t1sN)dt


≤ c3


∥Uk+1

− Uk
∥ + ∥Vk+1

− Vk
∥

, (27)

where c3 = c2 max1≤j≤J ∥zj∥ and 1sn = sk+1,j
n − sk,jn . By (26), (27)

and Assumption (A1), we now havepk+1,j
− pk,j

 =
wk+1

0 · g

sk+1,j

− wk
0 · g


sk,j


≤
wk+1

0 − wk
0


· g

sk+1,j

+
wk

0 ·

g(sk+1,j) − g(sk,j)


≤ c2

wk+1
0 − wk

0

+ c1
g sk+1,j

− g

sk,j


≤ c2
wk+1

0 − wk
0


+ c1c3


∥Uk+1

− Uk
∥ + ∥Vk+1

− Vk
∥

. (28)

Note that ∥ · ∥ is Frobenius norm, w =

wT

0,u
T
1, . . . ,u

T
N , vT1, . . . ,

vTN
T
, U = (u1, . . . ,uN) and V = (v1, . . . , vN), which yieldspk+1,j

− pk,j
 ≤ c2

wk+1
0 − wk

0


+ c1c3


∥Uk+1

− Uk
∥ + ∥Vk+1

− Vk
∥


≤ c4∥wk+1
− wk

∥ (29)

where c4 = 2max{c2, c1c3}. Upon combining (21) with (29), this
yieldsyk+1

j − ykj
 =

f (pk+1,j) − f (pk,j)


=

pk+1,j
− pk,j

  1

0
f ′(pk,j + t1p)dt


≤ c2

pk+1,j
− pk,j

 ≤ c5∥wk+1
− wk

∥ (30)

where c5 = c2c4. In the same way, we can prove thatf ′(pk+1,j) − f ′(pk,j)
 ≤ c5∥wk+1

− wk
∥. (31)

From (21), (26)–(31) and the Cauchy–Schwarz inequality, we then
have

∥f ′(pk+1,j)gT (sk+1,j) − f ′(pk,j)gT (sk,j)∥
≤
f ′(pk+1,j) − f ′(pk,j)


gT sk+1,j

+

f ′(pk,j)

g(sk+1,j) − g(sk,j)

T
≤ c5∥wk+1

− wk
∥
g sk+1,j

+
f ′(pk,j)

 g(sk+1,j) − g(sk,j)


≤ c2c5∥wk+1
− wk

∥ + c2c3

∥Uk+1

− Uk
∥ + ∥Vk+1

− Vk
∥


≤ c2(c3 + c5)∥wk+1
− wk

∥ (32)

while from (26), (30), (32) and the Cauchy–Schwarz inequality, we
arrive at∂E(wk+1)

∂w0
−

∂E(wk)

∂w0


=

 J
j=1

(ek+1
j )∗f ′(pk+1,j)gT sk+1,j

−

J
j=1

(ekj )
∗f ′(pk,j)gT sk,j

≤

J
j=1

(yk+1
j − ykj )

∗f ′(pk+1,j)gT sk+1,j
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+

J
j=1

(ekj )∗ f ′(pk+1,j)gT (sk+1,j) − f ′(pk,j)gT (sk,j)


≤ Jc22c5∥w
k+1

− wk
∥ + J max

j,k
|ekj |c2(c3 + c5)∥wk+1

− wk
∥

≤ L1∥wk+1
− wk

∥ (33)

where L1 = Jc22c5 + J maxj,k |ekj |c2(c3 + c5). Similarly,∂E(wk+1)

∂un
−

∂E(wk)

∂un

 =

∂E(wk+1)

∂vn
−

∂E(wk)

∂vn


≤ L2∥wk+1

− wk
∥. (34)

Hence, (23) follows by setting L = 2max{L1, L2}. �

The following lemma is a complex version of Theorem 14.1.5
in Ortega and Rheinboldt (1970), its proof is omitted as it follows
straightforwardly.

Lemma 4.3. Let F : Φ ⊂ Cm
→ Cm (m ≥ 1) be continuous for a

bounded closed region Φ . If the set Φ0 = {z ∈ Φ : F(z) = 0} has a
finite number of points and the sequence {zk} ⊂ Φ satisfies:

(1) limk→∞ F(zk) = 0,
(2) limk→∞ ∥zk+1 − zk∥ = 0,

then there exists z⋆
∈ Φ0 such that limk→∞ zk = z⋆.

Theorem 4.4. Let the sequence {wk, k = 1, 2, . . .} be generated by
the algorithm (18) with an initial value w0. If Assumptions (A1)
and (A2) are valid and the learning rate η satisfies (38), then the
conclusion for weak convergence is given by

lim
k→+∞

∇w∗E(wk)
 = 0. (35)

Furthermore, if Assumption (A3) is valid, the conclusion for strong
convergence states that there existsw⋆

∈ Φ0 such that

lim
k→+∞

wk
= w⋆. (36)

Proof. By (22), Lemma 4.2 and Cauchy–Schwarz inequality, we
have

E(wk+1) − E(wk) = 2
 1

0
Re


∂E(wk
+ t1wk)

∂w
1wk


dt

= 2
 1

0
Re

(∇w∗E(wk

+ t1wk))H1wk dt
= 2Re


(∇w∗E(wk))H1wk

+ 2
 1

0
Re

(∇w∗E(wk

+ t1wk) − ∇w∗E(wk))H1wk dt
≤ 2Re


(∇w∗E(wk))H1wk

+ 2
 1

0

∇w∗E(wk
+ t1wk) − ∇w∗E(wk)

 ∥1wk
∥dt

≤ −2ηRe

(∇w∗E(wk))H∇w∗E(wk)


+ 2L

 1

0
t∥1wk

∥
2dt

= η(−2 + ηL)
∇w∗E(wk)

2 . (37)

Further, if the learning rate η is small enough such that

0 < η <
2
L

(38)
then E(wk+1) ≤ E(wk) holds. Write β = η(2 − ηL). According to
(37), it suffices to show that

E(wk+1) ≤ E(wk) − β
∇w∗E(wk)

2
≤ · · · ≤ E(w0) − β

k
n=0

∇w∗E(wn)
2 . (39)

Since E(wk+1) ≥ 0, for k → +∞ we obtain

β

+∞
n=0

∇w∗E(wn)
2 ≤ E(w0). (40)

This immediately gives

lim
k→+∞

∇w∗E(wk)
 = 0 (41)

which completes the proof of weak convergence.
Next, to prove the strong convergence, from (18) and (41), we

have

lim
k→+∞

wk+1
− wk

 = η lim
k→+∞

∇w∗E(wk)
 = 0. (42)

Using Lemma 4.3 and by taking z = w and F(z) = ∇w∗E(w),
together with Assumption (A3) and (42), this immediately leads
to the strong convergence, i.e., there exists w⋆

∈ Φ0 such that
limk→∞ wk

= w⋆. �

5. Simulations

In the simulations, almost all the complex elementary transcen-
dental functions can be selected as the activation function within
the FCVNNs. However, for comparison purposes, the nonlinearities
within neurons of the CVNNwere chosen to be the following fully-
complex tanh function (Leung &Haykin, 1991), split-complex tanh
function (Nitta, 1997) and amplitude–phase functions (Georgiou &
Koutsougeras, 1992; Hirose, 1992)

Φfc(z) = tanh(z), Φsc(z) = tanh(x) + i tanh(y)

Φap(z) = tanh(|z|) exp(i arg z), Φap(z) =
z

c +
1
r |z|

(43)

where z = x + iy ∈ C (x, y real numbers), c = 1 and r = 1.
The FCVNN architecture consisted of one output node and N = 6
hidden nodes, with the tap input length of M = 2. The randomly
selected initial weightsw0 were taken from a uniform distribution
in the range [−1, +1], the learning rateη = 0.001, and the training
procedure was epochwise, with 1000 epochs of J = 100 training
samples.

In the first set of experiments, we illustrate the convergence
behavior of the AFCNGD algorithm by averaging the performance
curves of 10 independent trials for one-step-ahead prediction
of complex-valued signals. The complex benchmark noncircular
signal was a complex AR moving-average (ARMA) process, given
by (Xia et al., 2011)

z(t) = 1.79z(t − 1) − 1.85z(t − 2) + 1.27z(t − 3)
− 0.41z(t − 4) + 0.2z(t − 5) + 2n(t) + 0.5n∗(t)

+ n(t − 1) + 0.9n∗(t − 1) (44)

where n(t) is the complex-valued doubly white circular Gaussian
noise, while the complex benchmark nonlinear input signal is
given by (Narendra & Parthasarathy, 1990)

z(t) =
z(t − 1)

1 + z2(t − 1)
+ n3(t). (45)
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a b

Fig. 1. Learning curves of AFCNGD for the noncircular input (44) and nonlinear input (45) for η = 0.001. (a) Noncircular signal. (b) Nonlinear signal.
a b

Fig. 2. Learning curves of AFCNGD, FCNGD and SCNGD for the nonlinear signal (44) and Ikeda map signal (46) for η = 0.001. (a) Nonlinear signal. (b) Ikeda map signal.
a b

Fig. 3. Comparison of five kinds of algorithms for the nonlinear signal (44) and Ikeda map signal (46) for η = 0.001. (a) Nonlinear signal. (b) Ikeda map signal.
Fig. 1 shows the learning curves for the AFCNGD algorithm on
complex noncircular (44) and nonlinear (45) signals, indicating
that the mean square error (MSE) decreases monotonically and
correspondingly the gradient converges to zero in magnitude
along the iterations. Thus, the simulation results support our
convergence theorem in Section 4.

In the second set of simulations, we compared the performance
of AFCNGD with standard FCNGD and SCNGD (without the
augmented states) on the prediction of the nonlinear signal (45)
and synthetic nonlinear and noncircular chaotic Ikeda map signal
(Aihara, 1994), given by

x(t + 1) = 1 + µ[x(t) cos(α(t)) − y(t) sin(α(t))]
y(t + 1) = µ[x(t) sin(α(t)) + y(t) cos(α(t))]

(46)

where µ = 0.9 and α(t) = 0.4 − 6/(1 + x2(t) + y2(t)).
Fig. 2 shows the prediction performance of the AFCNGD applied

to the complex-valued nonlinear signal (45) and chaotic Ikedamap
signal (46). In both cases, there was a significant improvement in
the performance when the AFCNGDwas employed over that of the
FCNGD and SCNGD algorithms.

To further illustrate the advantage of the AFCNGD using the
augmented complex statistics, four complex backpropagation
algorithms, namely, teachers-signal complex backpropagation
(TCBP) (Hirose, 1992), complex domain backpropagation (CDBP)
(Georgiou & Koutsougeras, 1992), fully-complex backpropagation
(FCBP) (Leung&Haykin, 1991), and split-complex backpropagation
(SCBP) (Nitta, 1997) algorithm are provided. These four kinds
of algorithms are compared to the proposed AFCNGD algorithm
for nonlinear signals (45) and chaotic Ikeda map signal (46). In
Fig. 3, we give the learning curves of these five algorithms for
the two types of complex signal. We can see that the AFCNGD
algorithm converges quickly, and the steady state performances of
the AFCNGD algorithm is better than those of the CBP algorithms.
From this comparison,wenote that the augmented complex statics
provide an increment of performance, which is consistent with the
theoretical results shown in Picinbono and Chevalier (1995).

6. Conclusions

The AFCNGD algorithm has been introduced for training
FCVNNs under the framework of Wirtinger calculus, which greatly
reduces the algorithm derivation and removes the Schwarz sym-
metry restriction on the complex activation functions within
FCVNNs. Further, a unified mean value theorem has been intro-
duced for general functions of complex variables, both analytic and
non-analytic ones. This has enabled us to prove both the weak
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and strong convergence results of the proposed AFCNGD algo-
rithm. The results so obtained are valid for more extensive classes
of CVNNs, including the CVNNs with complex hyperbolic tangent
activation functions as a special case. Illustrative experiments
are implemented to illustrate theoretical results, and the com-
parison between the AFCNGD algorithm and the existing CBP
algorithms shows that augmented complex statistics plays an im-
portant role in improving the convergence speed and steady state
performance.
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