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Widely Linear Modeling for Frequency Estimation
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Abstract—Real-time frequency estimation in three-phase power
systems is revisited from the state space point of view, in order
to provide a unified framework for frequency tracking in both
balanced and unbalanced system conditions. This is achieved by
using a novel class of widely linear complex valued Kalman filters,
which provide unbiased frequency estimation and are faster con-
verging and more robust to noise and harmonic artifacts than the
existing methods. It is shown that the Clarke’s transformed three-
phase voltage is circular for balanced systems and noncircular for
unbalanced ones, making the proposed widely linear estimation
perfectly suited both to identify the fault and to provide accurate
estimation in unbalanced conditions, critical issues where stan-
dard models typically fail. The analysis and simulations show that
the proposed model outperforms the recently introduced widely
linear stochastic gradient-based frequency estimators, based on
the augmented complex least mean square. Comprehensive sim-
ulations on synthetic and real-world power system data, in both
balanced and unbalanced conditions, support the approach.

Index Terms—Augmented complex Kalman filter (ACKF), com-
plex circularity, frequency estimation, smart grid, widely linear
estimation.

I. INTRODUCTION

THE FREQUENCY of a power system is a crucial power
quality parameter and is allowed to vary around its nom-

inal value only within a prescribed tolerance level. Large
frequency deviations are harmful to the system and arise
in the presence of unbalanced system conditions, such as
generation–consumption imbalances or unexpected conditions
which require corrective actions. With the emergence of smart
grids, system stability issues become even more pronounced,
owing to more and more diversified generation and increas-
ingly unpredictable power consumption. Frequency tracking
and estimation in the context of smart grid is a key parameter
both for the protection of power system and for improved
power quality; for instance, frequent switching from the main
grid to microgrids and electricity islands and dual natures of
some loads require rapid frequency trackers to trigger corrective
actions to maintain power quality.

A number of approaches for frequency tracking have been
proposed, including least mean square (LMS) adaptive filters
[1], state space algorithms based on Kalman filters [2], [3], and
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Fourier transform-based approaches [4], [5]. However, these
techniques either are only optimal for balanced systems (e.g.,
systems with line voltages of equal amplitudes) or are designed
specifically for single-phase systems [6]–[8]; these cannot fully
characterize three-phase power systems where the line-to-line
voltages also need to be taken into account.

In the future smart grid, the system frequency will undergo
deviations due to the following: imbalance in generation (G)
and load (L) (rise for G > L and decay for G < L), single
and dual phase faults or sags (Clarke’s transformed unbalanced
voltage gives wrong frequency reading), dynamical loads and
dual character of G and L, and a number of issues causing
harmonics and transient stability issues (nonlinear loads and
reactive power compensation). Accurate frequency estimators
are a prerequisite for fault identification and troubleshoot-
ing, highlighting the need for a unified frequency estimation
framework in three-phase power systems with the following
characteristics:

1) robust to measurement noise and harmonics in the sys-
tem, including the slowly floating ones which are not
integer multiples of system frequency;

2) real-time adaptive, fast converging, and asymptotically
unbiased;

3) minimum variance and statistically consistent, i.e., ap-
proaching theoretical performance bounds;

4) capable of catering for both balanced and unbalanced
systems under the same umbrella and, at the same time,
tracking frequency and identifying system disturbance.

To deal with the three-phase voltages simultaneously, stan-
dard frequency trackers employ Clarke’s αβ transformation
which maps the three-phase voltages onto the variables v0, vα,
and vβ to produce the complex signal, v = vα + jvβ , with v0
vanishing for a balanced system [3]. However, current strictly
linear estimators are not capable of capturing full second-order
information for unbalanced voltage conditions, resulting in an
oscillatory estimation error at twice the system frequency [9].
Our recent work [10] establishes that, for unbalanced systems,
the αβ voltage is noncircular, and widely linear models are
required for accurate system representation, achieved based on
the augmented complex LMS (CLMS) (ACLMS) [11].

The ACLMS framework is shown to cater for both bal-
anced and unbalanced conditions. However, it assumes that
the measured voltages are noise free; otherwise, the frequency
estimates are inaccurate. This assumption is not practical, as
real-world power systems are typically corrupted by harmonics
and random noise sources. To this end, we extend the gradient-
based widely linear frequency estimation framework in [10]
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and introduce a class of widely linear (augmented) Kalman
filters. Owing to the underpinning state space representation,
this approach offers enhanced accuracy and faster convergence,
together with robustness to noise and harmonics. Illustrative
simulations on unbalanced and noisy real-world power systems
support the analysis.

II. BACKGROUND

A. Augmented Complex Statistics and Widely Linear Modeling

Prior to introducing an optimal linear estimator for the
generality of complex signals, consider the real valued mean
square estimator (MSE) of a random vector y in terms of a real
observation x, i.e., ŷ = E{y|x}. For zero-mean jointly normal
y and x, the optimal estimator is linear, i.e.,

ŷ = Hx (1)

where H is a coefficient matrix. Standard “strictly linear”
estimation in the complex domain (C) assumes the same model,
but with complex valued y, x, and H, and is widely used.
However, observe that both the real yr and imaginary yi parts
of the vector y are real valued, and thus

ŷr = E{yr|xr,xi} ŷi = E{yi|xr,xi}. (2)

Substituting xr = (x+ x∗)/2 and xi = (x− x∗)/2j yields

ŷr = E{yr|x,x∗} ŷi = E{yi|x,x∗} (3)

where (·)∗ is the complex-conjugate operator, and using (1), we
obtain the widely linear complex estimator1 [12]

y = Hx+Gx∗ = Wxa. (4)

The matrix W comprises the coefficient matrices H and G,
and xa = [xT ,xH ]T is the “augmented” input vector, where
[·]T and [·]H are the transpose and complex conjugate-transpose
operators, respectively. The full second-order information is
contained in the augmented covariance matrix

Ra
x = E{xaxaH} =

[
Rx Px

P∗
x R∗

x

]
(5)

which encompasses both the covariance Rx = E{xxH} and
pseudocovariance Px = E{xxT }. Complex signals with van-
ishing pseudocovariances, i.e., Px = 0, are termed second or-
der circular (proper) and are characterized by rotation invariant
probability distributions; otherwise, the signals are noncircular
(improper). For more details about widely linear modeling,
see [11].

B. Improperness and WLAR Modeling

The so-called “proper” data have equal powers in the real and
imaginary parts, while for the improper data, the covariance

1The “widely linear” model is associated with the signal generating system,
whereas “augmented statistics” describe statistical properties of measured
signals. Both the terms “widely linear” and “augmented” are used to name the
resulting algorithms—in our work, we mostly use the term “augmented.”

is greater than the absolute pseudocovariance. This can be
illustrated from the expression for the pseudocovariance

E{zzT } = E
{
(x2 − y2) + 2jxy

}
= σ2

x − σ2
y + 2jρxy (6)

where the symbol σ2 denotes the variance (channel power)
and ρxy denotes the cross-correlation between the real and the
imaginary part. Therefore, for proper data, σ2

x = σ2
y = 0, and

x ⊥ y, whereas for improper data, either σ2
x �= σ2

y or the real
and imaginary parts are correlated.

In standard strictly linear autoregressive (AR) modeling, the
aim is to find a regression of order p, given a history of observed
data. The standard AR model in C has the same form as the real
valued AR model and is given by

zk =

p∑
i=1

hizk−i + nk = hT
k zk + nk (7)

where hk = [h1, . . . , hp]
T is the coefficient vector, zk =

[zk−1, . . . , zk−p]
T is the regressor vector, and nk is the dou-

bly white Gaussian (zero-mean) driving noise. This model is
restricted by the inherent strictly linear regression, and even
for noncircular driving noise, it cannot adequately model the
generality of complex signals (improper) [1].

On the other hand, the widely linear AR (WLAR) model
provides a unified treatment of proper and improper complex
signals and is given by [11], [13]

zk =

p∑
i=1

hizk−i +

p∑
i=1

giz
∗
k−i + h0nk + g0n

∗
k (8)

=hT
k zk + gT

k z
∗
k + [h0, g0]n

a
k (9)

where the symbols hk and gk denote respectively the standard
and conjugate regression coefficients and wa

k = [h0, g0]
T is

the “augmented” weight vector. The performance advantage of
WLAR over the strictly linear AR model, δε2, can be illustrated
using the recently introduced approximate uncorrelating trans-
form as [14]

δε2 ∼ λc

λ2
c − λ2

p

(10)

where λc denotes the eigenvalues corresponding to the covari-
ance matrix and λp denotes those corresponding to the pseudo-
covariance matrix. From (10), the widely linear WLAR model
outperforms the standard strictly linear AR model for improper
signals (for which λp �= 0) and has the same performance as
the standard AR model for circular signals (λp = 0) [12], as
illustrated in Fig. 1 on the modeling of the improper Ikeda
signal.

C. Widely Linear (Augmented) CLMS (ACLMS)

The LMS algorithm is the most commonly used stochastic
gradient adaptive filtering algorithm which adaptively adjusts
the filter coefficients in order to minimize the instantaneous
squared error (difference between the desired signal and its
estimate—the filter output). Following the same principles as
in AR versus WLAR modeling, the standard CLMS algorithm
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Fig. 1. Covariance and pseudocovariance of the strictly linear AR(4) and widely linear WLAR(4) models of the improper Ikeda map. (a) Original Ikeda map.
(b) WLAR(Ikeda). (c) Standard AR(Ikeda).

is only suited to signals with second-order circular distributions
(proper). With this in mind, the widely linear (augmented)
CLMS (ACLMS) algorithm has been proposed to cater for
both circular and noncircular signals [11] and is summarized
in Algorithm 1, where dk is the desired signal at time instant k,
hk and gk are the standard and conjugate filter weights while
wa

k = [hT
k ,g

T
k ]

T is the augmented weight vector.

Algorithm 1: ACLMS
Filter output: yk = waT

k xa
k

Error: ek = dk − yk
Weight updates:[

hk+1

gk+1

]
︸ ︷︷ ︸
≡wa

k+1

=

[
hk + μekx

∗
k

gk + μekxk

]
︸ ︷︷ ︸

≡wa
k
+μekxa∗

k

(11)

III. ACKF

We next introduce the augmented complex Kalman filter
(ACKF) for frequency estimation in unbalanced three-phase
power systems and illuminate its performance advantage in
relation to the conventional complex Kalman filter (CCKF).
Consider the linear state space model given by

xk =Fk−1xk−1 + uk−1 (12)

yk =Hkxk + nk (13)

where xk is the state to be estimated at time instant k, yk

is the observation (or measurement) of the true state, and the
vectors uk and nk are the zero-mean state and measurement
noises, with covariance matrices Ru,k and Rn,k and pseudo-
covariances Pu,k and Pn,k, while Fk and Hk are the state
transition matrix and observation matrices. The corresponding
widely linear state space model is defined as [11], [15]

xk =Fk−1xk−1 +Ak−1x
∗
k−1 + uk−1

yk =Hkxk +Bkx
∗
k + nk

and can be expressed in more compact form using augmented
models, such that

xa
k =Fa

k−1x
a
k−1 + ua

k−1 (14)

ya
k =Ha

kx
a
k + na

k (15)

where the augmented xa
k = [xT

k ,x
H
k ]T , ya

k = [yT
k ,y

H
k ]T ,

Fa
k =

[
Fk Ak

A∗
k F∗

k

]
, and Ha

k =

[
Hk Bk

B∗
k H∗

k

]
.

The coefficient matrices, A and B, determine whether the
state and observation equations are strictly linear or widely
linear. If A = 0 and B = 0, then the state space is strictly lin-
ear; however, the augmented state space representation should
still be preferred over the linear state space if the state and
observation noises are second order noncircular. Consider the
covariance matrices of the augmented state and observation
noise vectors, ua

k = [uT
k ,u

H
k ]T and na

k = [nT
k ,n

H
k ]T , i.e.,

Ra
u,k =E

{
ua
ku

aH
k

}
=

[
Ru,k Pu,k

P∗
u,k R∗

u,k

]
(16)

Ra
n,k =E

{
na
kn

aH
k

}
=

[
Rn,k Pn,k

P∗
n,k R∗

n,k

]
. (17)

Notice that the pseudocovariances are naturally incorporated.
The widely linear minimum MSE estimate x̂a

k|k of xa
k, based on

the observations {ya
1 ,y

a
2 , . . . ,y

a
k}, can be computed sequen-

tially using the ACKF, which is summarized in Algorithm 2.

Algorithm 2: ACKF
Initialize with:

x̂a
0|0 =E {xa

0}

Ma
0|0 =E

{
(xa

0 − E {xa
0}) (xa

0 − E {xa
0})H

}
For k = 1, 2, . . .

x̂a
k|k−1 =Fa

k−1x̂
a
k−1|k−1 (18)

Ma
k|k−1 =Fa

k−1M
a
k−1|k−1F

aH
k−1 +Ra

u,k−1 (19)

Ga
k =Ma

k|k−1H
aH
k

[
Ha

kM
a
k|k−1H

aH
k +Ra

n,k

]−1

(20)

x̂a
k|k = x̂a

k|k−1 +Ga
k

(
ya
k −Ha

kx̂
a
k|k−1

)
(21)

Ma
k|k = (I−Ga

kH
a
k)M

a
k|k−1 (22)

After some tedious algebraic manipulations, the mean square
error (MSE) difference between CCKF and the widely linear
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ACKF can be written as [12], [15]

ΔMk =
(
Pxz,k,k −Rxz,k,kR

−1
z,kPz,k

)
×
(
R∗

z,k −P∗
z,kR

−1
z,kPz,k

)−1

×
(
Pxz,k,k −Rxz,k,kR

−1
z,kPz,k

)H
(23)

where zk = [yT
1 , . . . ,y

T
k ]

T is the observation sequence with
covariance Rz,k and pseudocovariance Pz,k while Rxz,k,k =
E{(xk − E{xk})(zk − E{zk})H} and Pxz,k,k = E{(xk −
E{xk})(zk − E{zk})T } are the cross-correlation and pseudo-
correlation between the state and observation sequence.

Remark 1: Owing to the positive definiteness of the ma-
trix (R∗

z,k −P∗
z,kR

−1
z,kPz,k), the matrix ΔMk is always pos-

itive semidefinite, and consequently, ΔMk = 0 only when
(Pxz,k,k −R−1

xz,k,kRz,kPz,k) = 0. Therefore, the widely lin-
ear ACKF always has the same or better MSE performance than
the strictly linear CCKF.

Remark 2: The CCKF and ACKF yield identical perfor-
mance, i.e., ΔMk = 0, when the state and observation noises
are circular and the state space equations are both strictly linear;
otherwise, the ACKF is superior.

Algorithm 3: State Space 1—Linear (SS1-L)

state equation: xk = xk−1 + uk−1 (24)

observation equation: vk = vk−1xk + nk (25)

IV. WIDELY LINEAR FREQUENCY ESTIMATION

The instantaneous three-phase voltages are defined as

va,k =Va,k cos(ωkT + φ)

vb,k =Vb,k cos(ωkT + φ− 2π/3)

vc,k =Vc,k cos(ωkT + φ+ 2π/3) (26)

where Va,k, Vb,k, and Vc,k are the amplitudes of the three-phase
voltages at time instant k, ω = 2πf is the angular frequency
with f being the system frequency, T is the sampling interval,
and φ is the phase of the fundamental component. Clarke’s
transformation, given by⎡⎣ v0,k

vα,k
vβ,k

⎤⎦ =

√
2

3

⎡⎣
√
2
2

√
2
2

√
2
2

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

⎤⎦⎡⎣ va,k
vb,k
vc,k

⎤⎦ (27)

maps the three-phase voltages onto a new domain where
they can be conveniently represented by a scalar complex
valued signal. In (27), the zero-sequence v0,k vanishes when
the system is balanced, i.e., Va,k = Vb,k = Vc,k, while vα,k =
Ak cos(ωkT + φ) and vβ,k = Ak cos(ωkT + φ+ (π/2)) are
orthogonal. In practice, the zero-sequence v0,k is not consid-

Fig. 2. Geometric view of circularity via a real–imaginary scatter plot of the
Clarke voltage vk . For a balanced system, characterized by Va,k = Vb,k =
Vc,k , the trajectory of vk is circular, while for unbalanced systems, such as
in the case of a 100% single-phase voltage sag illustrated by the ellipse in the
figure (“+”), the trajectory of the output voltage becomes noncircular.

ered, and only vα and vβ are used to form the complex valued
model of the system, i.e.,2

vk = vα,k + jvβ,k = Ake
j(ωkT+φ) = vk−1e

jωT . (28)

The state space model of the system is shown in Algorithm 3,
where the state xk is used to estimate the exponential ejωT

whose argument contains the frequency f and vk is the ob-
servation while uk and nk are respectively the state and ob-
servation noises. This state space model is linear and can be
implemented using the CCKF. The selection of these noise
variances is critical to the steady-state error and convergence
rates of Kalman filters and will be discussed in more detail in
the next section. The system frequency is derived from the state
x as

f̂k =
1

2πT
arcsin (�(xk)) (29)

where �(·) is the imaginary part of a complex quantity.
Fig. 2 shows that, for a balanced system, Clarke’s voltage

vk in (28) follows a circular trajectory since the amplitude
is time invariant and the angular frequency is proportional to
the system frequency. However, this model is inaccurate when
the system is operating under unbalanced conditions, in which
case the voltage amplitudes Va,k, Vb,k, and Vc,k are no longer
equal, and the system trajectory becomes noncircular (ellipse
in Fig. 2). Therefore, for unbalanced systems, the true system
model becomes widely linear [10], that is,

vk = vα,k + jvβ,k = Ake
j(ωkT+φ) +Bke

−j(ωkT+φ) (30)

with

Ak =

√
6(Va,k + Vb,k + Vc,k)

6

Bk =

√
6(2Va,k − Vb,k − Vc,k)

12
−

√
2(Vb,k − Vc,k)

4
j. (31)

When the system is balanced and operating under nom-
inal conditions, i.e., Va,k = Vb,k = Vc,k, the coefficient Bk

2The usual assumption in this type of estimation, that is Ak ≈ Ak−1,
is used.
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Fig. 3. Observation noise distributions after the three-phase (independent, Gaussian, and real valued) noises na,k , nb,k , and nc,k undergo Clarke’s αβ
transformation. (a) na, nb, nc ∼ N (0, 1). (b) na ∼ N (0, 3), nb, nc ∼ N (0, 1). (c) na, nc ∼ N (0, 1), nb ∼ N (0, 3). (d) na, nb ∼ N (0, 1), nc ∼ N (0, 3).

vanishes, and system is accurately characterized by the strictly
linear model in (28). Note that the system is noncircular for
Bk = 0, the expression in (30) is general and characterizes the
system under both balanced and unbalanced conditions, and can
be written recursively as

vk = vk−1hk−1 + v∗k−1gk−1 (32)

which is a first-order WLAR model, WLAR(1), addressed in
Section II-B. The corresponding widely linear (augmented)
state space model is defined in Algorithm 4, where the state
vector consists of the strictly linear weight hk and conjugate
weight gk and the observation vk is a widely linear function
of the previous observation while uh,k and ug,k are the state
noises corresponding to hk and gk.

Algorithm 4: State Space 2—Widely Linear (SS2-WL)
state equation:⎡⎢⎣

hk

gk
h∗
k

g∗k

⎤⎥⎦ =

⎡⎢⎣
hk−1

gk−1

h∗
k−1

g∗k−1

⎤⎥⎦+

⎡⎢⎣
uh,k−1

ug,k−1

u∗
h,k−1

u∗
g,k−1

⎤⎥⎦ (33)

observation equation:

vk =

[
vk−1 v∗k−1 0 0
0 0 v∗k−1 vk−1

]⎡⎢⎣
hk

gk
h∗
k

g∗k

⎤⎥⎦+

[
nk

n∗
k

]
(34)

The system frequency is computed from

f̂k =
1

2πT
arcsin (�(hk + akgk))

ak =
−j�(hk) + j

√
�2(hk)− |gk|2

gk
. (35)

Central to both the state space models SS1 and SS2 is the
assumption of noise-free observations. In fact, if the three-
phase voltages va,k, vb,k, and vc,k are corrupted by additive real
valued zero-mean noises na,k, nb,k, and nc,k, respectively, then
the output voltage is given by

vk = vα,k + jvβ,k + nk. (36)

From Clarke’s transform, the αβ transformed noise is

nk =nα,k + jnβ,k

=
√

2/3

(
na,k − 1

2
nb,k − 1

2
nc,k

)

+ j
√

2/3

(√
3

2
nb,k −

√
3

2
nc,k

)
(37)

which is a zero-mean complex noise with pseudocovariance

pn,k =E
{
n2
k

}
=E

{
2

3
n2
a,k − 1

3
n2
b,k − 1

3
n2
c,k − 2

3
na,knb,k

−2

3
na,knc,k −−4

3
nb,knc,k

}

× jE

{
2
√
3

3
na,knb,k − 2

√
3

3
na,knc,k

−2
√
3

3
n2
b,k +

2
√
3

3
n2
c,k

}
. (38)

The circularity of the noise nk is determined by the ratios of the
variances and cross-correlations of the three-phase observation
noises na,k, nb,k, and nc,k. Fig. 3 shows that the transformed
noise nk is proper, if and only if, the three-phase noises are
all uncorrelated and have identical variances; otherwise, it is
improper. Thus, equal line noise powers provide a circular
Clarke’s noise, whereas combinations of different noise powers
provide noncircular Clarke’s noises with different degrees and
natures of improperness. For instance, the case in Fig. 3(b)
is improper with nα,k ⊥ nβ,k, whereas the cases in Fig. 3(c)
and (d) are improper with nα,k and nβ,k exhibiting different
characters of correlations. Therefore, the noncircularity of noise
should be dealt with within the algorithm structure.

In the presence of noise, the recursion for Clarke’s voltage
can be found by substituting (36) into (32), i.e.,

vk =(vk−1 + nk−1)hk−1 +
(
v∗k−1 + n∗

k−1

)
gk−1 + nk

= vk−1hk−1 + v∗k−1gk−1 + nk−1hk−1 + n∗
k−1gk−1 + nk.

(39)
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Remark 3: In (39), the observation noise nk in (39) is addi-
tive, while the previous noise nk−1 has a multiplicative effect
on the current observation. However, in practice, the dynamics
of real-world three-phase systems do not follow this model,
i.e., the current observation is not a function of the previous
observation noise, and using (39) to model noisy real-world
systems can lead to degraded or diverging estimates.

We next propose a more realistic sequential state space model
where the current observation is independent of the previous
observation noises. This is achieved by also including a widely
linear estimate of the output voltage within the state vector, as
summarized in Algorithm 5.

Algorithm 5: State Space 3—Widely Linear (SS3-WL)
state equation:⎡⎢⎢⎢⎢⎢⎣

hk

gk
v̂k
h∗
k

g∗k
v̂∗k

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
hk−1

gk−1

v̂k−1hk−1 + v̂∗k−1gk−1

h∗
k−1

g∗k−1

v̂∗k−1h
∗
k−1 + v̂k−1g

∗
k−1

⎤⎥⎥⎥⎥⎥⎦+ uk−1 (40)

observation equation:

[
vk
v∗k

]
=

[
0 0 1 0 0 0
0 0 0 0 0 1

]
⎡⎢⎢⎢⎢⎢⎣
hk

gk
v̂k
h∗
k

g∗k
v̂∗k

⎤⎥⎥⎥⎥⎥⎦+

[
nk

n∗
k

]
(41)

Remark 4: The state space model in Algorithm 5 does not
use the previous observation to form the current observation
and hence does not propagate previous observation noises, thus
providing a more a realistic and robust characterization of real-
world power systems. The state equation is nonlinear due to
the coupling between v and x and can be implemented using
the augmented complex extended and unscented Kalman filters,
ACEKF and ACUKF [15].

A strictly linear version of the state space model defined by
(40) and (41) was proposed in [3], where the output voltage
was estimated using the strictly linear model in (28). This state
space model is described in Algorithm 6.

Algorithm 6: State Space 4—Linear (SS4-L)
state equation:[

xk

v̂k

]
=

[
xk−1

v̂k−1xk

]
+ uk−1 (42)

observation equation:

vk = [0 1]

[
xk

v̂k

]
+ nk (43)

Remark 5: Owing to its strictly linear nature, the existing
model in Algorithm 6 suffers from the same limitations as the
state space model described by Algorithm 3, namely, it is not
suited to systems operating in unbalanced conditions and in the
presence of voltage sags or transients.

V. ROBUST TRACKING USING THE INNOVATION PROCESS

The covariances of the state and observation noises govern
the steady-state error as well as the convergence speed of
Kalman filters [16]. For example, when estimating constants,
for a fixed observation noise variance, the smaller we set the
state noise variance, the slower the convergence rate will be.
The noise statistics should ideally be matched to the system op-
erating conditions: Harmonic and random interferences should
be reflected in the statistics of the observation noise, while
changes in the system dynamics, such as voltage sags, should
be reflected in the state process.

Solutions for the estimation of the statistics of the state and
observations noises mostly assume a degree of stationarity.
However, in a real-world power system, the true noise statistics
are generally unknown and almost invariably nonstationary, and
the exact time instances at which changes occur in the system
are generally unpredictable.

To cater for these uncertainties, we propose to employ the
innovation process νk = ya

k −Ha
kx̂

a
k|k−1 within the Kalman

filter, i.e., the difference between the actual and predicted
observations, and use large changes in the innovation as an
indication of changes in the system dynamics. To this end, we
first show that, if the state and observation noise covariance
matrices are simultaneously scaled by the same factor, the
Kalman gain and state estimate are unaltered [17]. In other
words, it is the ratio between the state and observation noise
variances which determines the Kalman gain and not the exact
values of these variances; hence, the actual noise variances need
not be known. Mathematically, the Kalman gain Ga

k can be
written in a recursive form, where the time updates for the
predicted state covariance matrix Ma

k|k−1 can be expressed as

Ma
k+1|k =Fa

k−1M
a
k|k−1F

aH
k−1 − Fa

k−1M
a
k|k−1H

aH
k

×
[
Ha

kM
a
k|k−1H

aH
k +Ra

n,k

]−1

×Ha
kM

a
k|k−1F

aH
k−1 +Ra

u,k−1 (44)

i.e., via a Riccati recursion, with initial condition Ma
0|−1 = Ma

0 .
The computations for Ma

k|k−1 and Ma
k|k are independent of

the observations and can be calculated without any knowledge
of the observations. The state covariance matrix Ma

k|k can be
computed from Ma

k|k−1 by substituting expression (20) into
(22) and using the matrix inversion lemma, i.e.,

Ma
k|k =Ma

k|k−1 −Ma
k|k−1H

aH
k

×
[
Ha

kM
a
k|k−1H

aH
k +Ra

n,k

]−1

Ha
kM

a
k|k−1

=

[(
Ma

k|k−1

)−1

+HaH
k

(
Ra

n,k

)−1
Ha

n

]−1

. (45)
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Substitute (45) into (20) to give the Kalman gain

Gk=

[(
Ma

k|k−1

)−1

+HaH
k

(
Ra

n,k

)−1
Ha

n

]−1

HaH
k

(
Ra

n,k

)−1

=Ma
k|kH

aH
k

(
Ra

n,k

)−1
. (46)

Rearrange (46) so that

Ma
k|k = GkR

a
n,k

(
HaH

k

)−1
(47)

and substitute into (20) to obtain a recursive expression for the
Kalman gain

Gk =
[
Fa

k−1Gk−1R
a
n,k

(
HaH

k

)−1
FaH

k−1 +Ra
u,k−1

]
HaH

k

×
[
Ha

kF
a
k−1Gk−1R

a
n,k

(
HaH

k

)−1
FaH

k−1H
aH
k

+Ha
kR

a
u,k−1H

aH
k +Ra

n,k

]−1

. (48)

Remark 6: The recursion in (48) shows that the Kalman gain
is unchanged if the covariance matrices of state and observation
noises are both scaled by the same factor, i.e., using κRa

u,k−1

and κRa
n,k yields the same Kalman gain and state estimate

as when using the true noise covariances Ra
u,k−1 and Ra

n,k,
where κ > 0.

Based on (48), the observation noise variance can be set to a
positive constant, while the state noise variance can be chosen
to balance between the convergence speed and the steady-state
error. With this in mind, for the remainder of this section, the
observation noise variance is assumed fixed.

Imposing a low state noise variance would lead to a low
steady-state error; however, the Kalman filter will be unable
to quickly track sudden changes in the system and vice versa
for relatively high state noise variance. If significant changes
in system dynamics are to be detected, then a large state
noise variance should be set when these changes occur while
maintaining a low state noise variance if otherwise.3

With this setup, we can preserve fast convergence together
with low steady-state error. A convenient way of detecting
changes in system dynamics is to monitor the innovation νk.
Large changes in the innovation indicate that the observed
signal does not match the Kalman filter state estimate, and
consequently, the state estimate is inaccurate. We propose to
mitigate this issue by setting the state noise variance (or state
covariance matrix κMa

k|k) to a relatively large value so that the
state is reestimated from the observations.

A simple estimate of the innovation power is an L sample
moving average4 given by

|ν̄k|2 =
1

L

k∑
i=k−L−1

|νi|2. (49)

At time k, if |νk|2 > c|ν̄k−1|2, where c > 1 is a threshold, then
the state estimate is considered inaccurate, and the state noise

3The same effect can be achieved by setting a low state noise variance
and setting the state covariance Ma

k|k as κMa
k|k with κ � 1 when a system

change is detected.
4In power systems operating at 50 Hz, the cycle period is 20 ms, and it is of

interest to estimate changes in the system frequency in less than the duration
of this cycle; hence, the corresponding number of samples, L, has to also be
smaller than the cycle period.

Fig. 4. Geometric and phasor views of Type C and Type D voltage sags.
The real–imaginary plots illustrate the noncircularity of Clarke’s voltage in
unbalanced conditions. The parameters of the circularity plot (ellipse) help
identify the type of fault (voltage sag).

variance is increased for the next time instant. This allows
for the detection of changes in system dynamics (e.g., the
occurrence of voltage sags), and hence, the noise variances can
be set accordingly.

VI. SIMULATIONS

The proposed widely linear sequential state estimation algo-
rithms were assessed for a simulated benchmark system using
a 5-kHz sampling rate and were all initialized to 50.5 Hz. The
strictly linear state space models, SS1 and SS2, were imple-
mented using the CCKF, and SS4 was implemented using the
conventional complex extended Kalman filter (CEKF), while
the (widely linear) augmented CEKF (ACEKF) was used for
SS3 [15]. Their performances were compared with those of
their stochastic gradient-based counterparts, the strictly linear
CLMS and widely linear ACLMS [11].

In the first set of simulations, the performances of the
algorithms were evaluated for an initially balanced system
which became unbalanced after undergoing a Type C voltage
sag starting at 0.1 s, characterized by a 20% voltage drop and a
10◦ phase offset on both vb and vc, followed by a Type D sag
starting at 0.25 s, characterized by a 20% voltage drop at line va
and a 10% voltage drop on both vb and vc with a 5◦ phase angle
offset, as illustrated in Fig. 4. Observe from Fig. 5 that, for an
unbalanced system, the widely linear algorithms, ACLMS, SS2,
and SS3, were able to accurately estimate the system frequency,
conforming with the analysis, while the strictly linear
algorithms, CLMS, SS1, and SS4, yielded oscillating frequency
estimates due to the undermodeling of the system. The widely
linear and strictly linear algorithms had similar performances
under balanced conditions, as illustrated in the time interval
0–0.1 s. Due to their stochastic gradient nature, CLMS and
ACLMS had relatively slow convergence compared with the
state space-based Kalman filter algorithms, as illustrated in Fig. 6.
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Fig. 5. Frequency estimation for a system which is balanced up to 0.1 s, after which the system becomes unbalanced due to the occurrence of voltage sags of
differing natures.

Fig. 6. Initial transient behavior for the simulations in Fig. 5 (first 5 ms), where all the Kalman filters where initialized as Ma
k|k = 10I.

Fig. 7. Frequency estimation for a balanced system in the presence of doubly white circular Gaussian noises at 20-dB SNR.

Fig. 8. Frequency estimation when phase voltages are contaminated with in-phase harmonics at 10% p.u. for the 3rd and 5% p.u. for the 5th harmonics.

Fig. 7 illustrates the frequency estimation in the presence
of Gaussian noise. As expected, CLMS, ACLMS, SS1, and
SS2, which assume noise-free observations, gave inaccurate
estimates, while the more general SS3 and SS4 provided ac-
curate frequency estimates. Fig. 8 illustrates the frequency
estimation in the presence of in-phase harmonic observation
noise. Again, only SS3 and SS4, which do not assume noise-
free observations, converged to the true system frequency, and
the remaining algorithms gave inaccurate estimates.

The performance of the algorithms for a power system which
undergoes rise and decay in frequency, a typical case where
generation does not match the load like in microgrids and
islanding, is illustrated in Fig. 9. The widely linear algorithms,
ACLMS, SS2, and SS3, were able to accurately track the
system frequency, as opposed to their corresponding strictly
linear counterparts. Moreover, the stochastic gradient-based
ACLMS was outperformed by the widely linear Kalman filter
algorithms, SS2 and SS3.
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Fig. 9. Frequency estimation for a power system which experiences a 5-Hz/s rise and decay in system frequency.

Fig. 10. MSE and bias analysis for an unbalanced system undergoing a
voltage sag (Type D). (a) MSE analysis. (b) Bias analysis.

The statistical advantage of the widely linear estimators over
their corresponding strictly linear estimators is illustrated by
comparing the bias and MSEs in the presence of Gaussian
doubly white circular complex noise.5 Fig. 10 shows the per-
formance of the algorithms for a system undergoing a Type
D voltage sag (see Fig. 4). The results in Fig. 10(a) illustrate
that the widely linear algorithms, ACLMS, SS2, and SS3, had
decreasing MSEs as the signal-to-noise ratio (SNR) increased,
while the strictly linear algorithms, CLMS, SS1, and SS4,
yielded relatively large, almost constant, MSEs with increasing
SNR. This can be attributed to the oscillating frequency esti-
mates of these algorithms for unbalanced conditions that do not
change with increasing SNR. Moreover, SS3 and SS4 had the
best performances among the widely linear and strictly linear
algorithms, respectively, because they did not assume noise-
free observations. Fig. 10(b) shows the bias of the algorithms
at different SNRs; observe that the algorithms based on the
widely linear model offered the best performances and that,
again, the best results among the strictly linear and widely
linear algorithms were achieved by SS4 and SS3, respectively.
In other words, Fig. 10 shows that the widely linear algorithms
were asymptotically unbiased and statistically consistent.

Fig. 11 illustrates the benefits of monitoring the innovation
process to adjust the model to the changes in the system, eval-
uated for a system which undergoes a step change in frequency
in the presence of additive white Gaussian observation noise
using SS3 and SS4 (similar results can be shown for the other

5For white Gaussian noise, nk = nr,k + jni,k , double whiteness implies
E{nk · n∗

l } = σ2δk−l and E{nk · nl} = ρ2δk−l, where σ2 and ρ2 are the
noise variance and pseudovariance.

Fig. 11. Frequency estimation for a system which experiences a temporary
step change in frequency from 50 to 52 Hz in the presence of doubly white
circular Gaussian noises at 35-dB SNR. In (a), the frequency is estimated
using SS3 and SS4 with fixed state and observation noise variances, while in
(b), the state noise variance was set according to the innovation power using
the methodology described in Section V. (a) Fixed noise variances. (b) Noise
variances set according to innovation power.

state space models). Observe the superior frequency estimation
results, in terms of convergence speed and steady-state error,
when the state noise variance was set according to the changes
in the innovation process, compared to a conventional Kalman
filter implementation.

The robustness of the proposed models to a combination of
harmful events was examined using the setup in Fig. 5, where
an initially balanced system experienced consecutive voltage
sags, together with the presence of doubly white Gaussian noise
at 40-dB SNR, with the results shown in Fig. 12. Observe
that, when the noise variances were set according to innovation
power, the algorithm was more robust in the presence of the
noise. Fig. 12(c) shows the two peaks in the innovation process
corresponding to the time instances when the system experi-
enced the two different voltage sags.

The last set of simulations considers frequency estimation
for a real-world power system, where unbalanced three-phase
voltages were recorded at a 110/20/10 kV transformer station.
The measured three “phase–ground” voltages come from a
system with a nominal frequency of 50 Hz, sampled at a rate
of 1 kHz and normalized with respect to their normal peak
voltage value. The first set of results, for an unbalanced system
(a single-phase short with earth), is shown in Fig. 13, where
the theoretical and practical superiority of the algorithms based
on the widely linear model, ACLMS and SS3, compared with
the strictly linear algorithms, CLMS and SS4, in unbalanced
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Fig. 12. An initially balanced system experiences a series of voltages sags, all in the presence of complex doubly white measurement noise. (a) Fixed noise
variances. (b) Noise variances set according to innovation power. (c) Innovation signal for SS3.

Fig. 13. Frequency estimation for a real-world three-phase system, where an
initially balanced system experienced a single-line short with earth.

system conditions is highlighted. Fig. 14 illustrates the perfor-
mance of the algorithms for a real-world unbalanced system un-
dergoing a two-phase shortcut with earth. Conforming with the
analysis, the strictly linear algorithms, CLMS and SS4, yielded
inaccurate, biased, and oscillating frequency estimates due to
the undermodeling of the system, while the algorithms based
on the widely linear model, ACLMS and SS3, yielded accurate
estimates, which were unbiased and with minimum variance,
conforming with the ensemble analysis in Fig. 10. In both
simulations, the state space-based widely linear Kalman filter-
based algorithm, SS3, had a faster convergence rate and lower
steady-state error than the stochastic gradient-based widely
linear ACLMS algorithm.

VII. CONCLUSION

We have introduced a novel widely linear framework for
state space-based frequency estimation in the context of three-
phase power systems, under both balanced and unbalanced

Fig. 14. Frequency estimation for a real-world unbalanced three-phase sys-
tem, where two lines experience a short with earth.

operating conditions. The signal, obtained from Clarke’s αβ
transformation, is noncircular (improper) when the three-phase
voltages are unbalanced, which makes the standard strictly
linear estimation inadequate. It has been shown that account-
ing for noncircularity of amplitude distributions allows for
both the development of second-order optimal frequency es-
timation algorithms and the identification of unbalanced con-
ditions via circularity diagrams and degrees of impropriety.
We have addressed frequency estimation from a state space
perspective and illustrated the superiority of the widely linear
(augmented) complex Kalman filters over the stochastic
gradient-based ACLMS algorithm. In order to increase the
convergence speed and reduce the steady-state error, a method
based on the Kalman filter innovation process has also been
proposed and was shown to enhance the performance of the
Kalman filters in terms of response and convergence rate. Com-
prehensive simulations over a range of power system conditions
evaluated for both balanced and unbalanced systems support the
analysis.
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