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Abstract-The problem of distributed (cooperative) adaptive 
estimation of complex signals is addressed using augmented 

statistics and widely linear modelling, which enables optimal 
second order estimation of complex signals with both circular 

(rotation invariant) and noncircular (rotation dependent) dis­
tributions. The widely linear distributed augmented complex 

Kalman filter (D-ACKF) and recursive least squares (D-ACRLS) 
algorithms are introduced, and shown to allow for a unified 

treatment of the generality of complex valued signals. Further, 
the D-ACKF proposed here avoids the typical assumption that 
the observation noises at different nodes in the network are 
uncorrelated; thus providing enhanced performance in real­

world scenarios. 

Index Terms-Widely linear model, complex circularity, 

Kalman filter, distributed recursive least squares (RLS), dis­
tributed diffusion estimation, sensor networks 

1. INTRODUCTION 

Collaborative distributed networks consisting of multiple 
nodes, equipped with communication capabilities that share 
information with their neighbouring nodes, are a standard in 
real-world applications, including wireless sensor networks 
and battlefield surveillance [1] [2]. Cooperation between the 
nodes leads to a more robust estimation framework than 
using independent uncooperative nodes. Moreover, distributed 
systems offer numerous advantages compared with centralised 
systems, such as robustness to link and node failures, and 
lower communication overheads. In this work, we address the 
problem of adaptive estimation of noncircular complex signals 
within a framework of cooperative distributed networks; this 
has recently attracted plenty of interest, as complex signals 
are the backbone in distributed applications such as wireless 
communication networks and seismic sensing [3]. 

In second order estimation, zero-mean complex signals x, 
similar to real signals, have conventionally been characterised 
by their covariances Rx = E{xxH}, where OH = ((.)*)T is 
the complex conjugate-transpose operator. This characterisa­
tion yields in algorithms suited only to complex signals with 
rotation invariant (circular) distributions. Complex signals are, 
however, typically noncircular, and their rigorous treatment 
requires the covariance together with a second moment known 
as the pseudocovariance, Rx = E{xxT}, to fully capture the 
second order statistics. 

To introduce an optimal second order estimator for the 

generality of complex signals, consider first the mean square 
error (MSE) estimator of a real valued random vector y in 
terms of an observed real vector x, that is, y = E{ylx}. For 
zero-mean, jointly normal y and x, the optimal estimator is 
linear, that is 

y= Ax (1) 

where A = RyxR;;-l is a coefficient matrix, and Ryx = 
E{yxH}. Standard, 'strictly linear' estimation in C assumes 
the same model but with complex valued y, x, and A. How­
ever, when y and x are jointly noncircular Pyx = E {yxT} -I-
0, and x is noncircular P x -I- 0, then the optimal estimator 
becomes [4] [5] 

y= Bx+Cx* = Wxa (2) 

where B = RyxD + P yxE* and C = RyxE + P yxD* 
are coefficient matrices, with D = (Rx - PxR�-lP�)-l and 
E= -(R -P R*-lp*)-lp R*-l while xa= [xT xH]T x X x x x x ' , 
is the augmented input vector, and W = [B, C ] the optimal 
coefficient matrix. The estimator in (2) is optimal for the 
generality of complex signals, both circular and noncircular. 
Further, the full second order information is contained in the 
augmented covariance matrix 

(3) 

and as such, estimation based on R� incorporates both the 
covariance and pseudocovariance. 

Adaptive filters suited to the generality complex signals have 
been introduced recently, and include the augmented complex 
Kalman filter (ACKF) and recursive least squares (ACRLS) 
algorithms [5] [6] [7]. We here extend these algorithms to 
the case of distributed collaborative estimation of noncircular 
complex data, and proposed the widely linear distributed 
ACKF (D-ACKF) and distributed ACRLS (D-ACRLS) al­
gorithms, inspired partly by the diffusion strategies of [1] 
[2] [8]. The D-ACKF proposed here accounts for possible 
cross-correlations between the observation noises at different 
nodes, a real-world scenario encountered when the nodes are 
operating in a common environment, such as in the presence 
of jamming-noise, and extends earlier solutions which assume 
uncorrelated nodal observation noises [1] [2] [8]. 

978-1-4673-5051-8/12/$31.00 ©20 12 IEEE 1518 Asilomar 2012 



II. DISTRIBUTED RECURSIVE LEAST SQUARES 

We next introduce a diffusion based, distributed augmenl 
complex (widely linear) recursive least squares algorithm ( 
ACRLS) suited to the generality of complex signals. Consi< 
a network consisting of N nodes distributed over some ar, 
where at every time instant n, each node i E [I,  N] has acci 
to a desired signal di,n E C and a regressor vector Xi,n 
Cpx1 which are related as 

where Vi,n E C is a zero-mean white noise process. The a 
is to estimate the unknown widely linear weight vectors gC 
Cpx1 and hO E Cpx1 that minimise the weighted least squaJ 
cost function n 

ci,n = 2:�>\n-klei,kI2 
k=O 

where 0 < A ::; 1 ia an exponential forgetting (weightir 
factor, and the error 

ei,k = di,k - Yi,k (6) 

is the difference between the desired signal di,k and the widely 
linear filter output 

Y· k = gT X k + hT x* k 'l, 'l,n 'l, 'l,n 'l, (7) 

The vectors hi,k and gi,k are the filter coefficients (weights) 
at node i. The filter output (7) can be expressed in a compact 
form using complex augmented vectors, that is 

(8) 

where wi,n = [gT,n' hT,n ]T and Xi,k = [xT,k' xfk]T are the 
augmented weight and regressor vectors respectively. 

Observe that (8) has a similar form to the strictly linear 
model (1), and as such, the derivation of the D-ACRLS follows 
in the same manner as that used to derive the standard complex 
RLS (CRLS) algorithm, that is, the derivative of the cost 
function ci,n with respect to wi,n is set to zero, and after some 
matrix manipulations the resulting expression is the augmented 
least squares Weiner solution 

where 

(R
' a ) -l-a Win= in  rin , , , (9) 

Within the RLS framework, the inverse of the input covariance 
matrix is required, and for the augmented complex case, iti n ' 
it can be shown that 

' 

[it 
(ita )-1 = _ t,n 

',n P* ',n 

, 

, 
, , 

, , 

� 
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• 

i 
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Fig. I. A distributed network with N = 10 nodes. 

Note that the inverse matrix (iti,n) -1 maintains the same 
block-conjugate structure as the augmented covariance matrix 
iti n ' Continuing with the derivation, the ACRLS recursions 
for

'
the node i take on the following form: 

a R
' a a* Zi,n == i,n-l Xi,n 

za 
k. _ ',n ',n - A + aT a xi,n zi,n 
Wi,n = Wi,n-1 + ki,n (di,n - wT,n-1xi,n) 
ita 1 (ita k aH) i,n == � i,n-l - i,n zi,n 

(10) 

(11) 

(12) 

(13) 

After each node has estimated the weights for time n, the 
next step is the diffusion scheme used to enable collaboration 
between the nodes in the distributed network. Let Hi denote 
the neighbourhood of a node i, that is, the set of nodes 
connected with the node i (including itself) - see Figure 1. 
At time instant n, each node i forms an estimate wi,n ' using 
its desired signal di,n and input vector xi,n, of the optimal 
weight vector w'/,n = [g'/,L h,/,1Y, and utilises the following 
fusion (diffusion) scheme 

Win  = "" CkiWkn 1 L.-,; )-, kENi 
(14) 

where wi,n is the diffused estimate at node i computed as 
weighted average of the estimates from its neighbourhood 
Hi, and Ck,i ;::: 0 are the weighting coefficients satisfying 

L-kENi Ck,i = 1. Hence, the D-ACRLS algorithm requires 
each node to communicate their local estimates wi,n to 
their neighbours, which are then used to form the diffusion 
estimate Wi,n ' A number of fusion schemes exist, including the 
Laplacian and nearest neighbour method [2], however, these 
schemes are generally not optimal, as the determination of the 
optimal weighting coefficients for an arbitrary network is a 
difficult problem [9]. 

Observe that the D-ACRLS in (10)-(l3), is based on the use 
of augmented vectors and covariance matrices which conform 
to block-conjugate structures I, and as such, D-ACRLS is 
over-parameterised and has unnecessary excess computational 

I The lower halves of augmented vectors and covariance matrices can be 
fully determined from their upper halves, or vice-versa. 
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Algorithm 1 D-ACRLS 

Initialisation: For each node i = 1,2, ... ,N 

Forgetting factor: 0 < A ::; 1 

gi,O = 0; hi,o = 0 

Ci,o = 01; Di,o = 0; 0 > 0 

For every time instant n = 1,2, .. . 
- Evaluate at each node i = 1,2, ... , N 

Zi,n = Ci,n-1X:,n + Di,n-1Xi,n 
k _ Zi,n t,n - A + 2Re{x[n zi,n} 

d T hT * ei,n = i,n - gi,n-l Xi,n - i,n-l xi,n 
g. = gi n-l + ki nei n -'l,n ' " 
hi,n = hi,n-l + k:,nei,n 
, 1 ( , H ) Ci,n = � Ci,n-l - ki,nZi,n 
, 1 ( , T ) Di,n = � Di,n-l - ki,nZi,n 

- For every node i, compute the diffusion update 

g. - "'"' Ck'g . 'l,n - L-t ,'l_k,n' 
kENi 

hi n = "'"' ck ihk n 1 L-.t )- , kENi 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

complexity. However, after some algebraic manipulations, 
an alternative equivalent version of D-ACRLS with reduced 
complexity can be achieved, based on the work in [6], and 
is summarised in Algorithm l. The D-ACRLS presented in 
Algorithm 1 requires approximately half the number multipli­
cations as that required by (10)-(13). 

III. DISTRIBUTED KALMAN FILTER 

Consider the standard linear state space corresponding to a 
node i in a distributed system [10], 

Yi,n 
(23a) 

(23b) 

where Xn E CL and Yi,n E CK are the state vector at time 
instant n and observation (measurement) vector at node i, 

respectively, while F n and Hi,n are the state transition and 
observation matrices, whereas Wn E CL and Vi,n E CK are 
the white state and measurement noises at node i, respectively, 
and are assumed to be uncorrelated and zero-mean, with 
covariances and pseudocovariances defined as 

(24) 

(25) 

where Onk is the Kronecker delta function. Note that the nodal 
observation noises are not assumed to be uncorrelated, that is, 

E{ Vi,n vf,n} = 0 for i =1= k, which was used to derive the 
earlier distributed Kalman filtering algorithms in [2] [1] [8]. 

Following on from the result in [5], the widely linear 
counterpart to (23) is given by [5] 

Xn F n-1Xn-l + An-1X�_1 + Wn 
Yi,n Hi,nXn + Bi,nX� + vi,n 

which leads to an augmented vector representation 

X� F�_l x�_l + w� 
Yi,n Hi,nx� + vi,n 

h a [ T H]T d a [ T H]T h'l w ere xn = Xn, xn an Y n = Y n , Y n , w  I e, 

d Ha _ t,n [H 
an i,n - B* ',n 

(26a) 

(26b) 

(27a) 

(27b) 

Observe that for An = 0 and Bi,n = 0, the widely 
linear (augmented) state space model become strictly linear, 
however, the augmented state space representation should still 
be preferred in order to account for the pseudocovariance of 
the signals. The covariance matrices of w� = [x;, w:;V and 

a [ T H ]T . 
b vi n = Vi n' Vi n are given y , " 

Q� E{w�w�H} = 

Ri,n E{ vi,n vi,�} = 

[Qn Pn] 
(28) P* Q� n [R:,n 

Ui,n 
U:,n] 
Ri,n 

(29) 

To enable collaborative estimation of the state within dis­
tributed networks, we propose the use of neighbourhood 
observation equations, comprising of all the observation data 
from the neighbourhood of each node i, that is 

with the collective (neighbourhood) variables defined as 

V. = [ T T : T ] T 
-t,n vi1 ,n' vi2,n' " viM,n 

where {il' i2, ... , i M} are all the nodes in the neighbourhood 
Ni. Compared with a centralised Kalman filter observation 
equation, which consists of all the observation data in the 
network, the neighbourhood observation equation in (30) es­
sentially mimics it at a local level, using only the observation 
data within the neighbourhoods. The second order statistics of 
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Yi,n are given as 

Ri1,n Ri1i2 ,n Ri1iM,n 

Ri,n = E{Yi,nY�n} 
Ri2i1 ,n Ri2,n Ri2iM,n 

= 

RiMi1,n RiMi2,n RiM,n 
Ui1,n Ui1i2,n Ui1iM,n 

Ui,n = E{Yi,nyf,n} 
Ui2i1 ,n Uiz ,n UiziM,n 

= 

UiMi1 ,n UiMiz ,n UiM,n 
where Ria ,n = E{Via ,nvE,n} ' Riaib ,n = E{Via ,nVf{, n}, 
Uia ,n = E{ via ,n vLn} and Uiaib ,n = E{ Via ,n v�,n}" for 
a, bE {I, 2, ... , M}. The augmented neighbourhood observa­
tion equations can now be written as 

(31) 

where 

Algorithm 2 D-ACKF 
Initialisation: For each node i = 1,2, ... ,N 

xf ,olo = [E{xO}T, E{xO}Hf 
Ma -E{( a �a ) ( a �a )aH} i,OIO - Xo - Xi,OIO Xo - xi,olo 

For every time instant n = 1,2, ... 
- Evaluate at each node i = 1,2, ... ,N 

�a Fa �a Xi,nln-1 = n-l Xi,n-1In-1 
Ma = Fa Ma FaH Qa t,nln-1 n-1 t,n-1In-l n-1 + n 
Ga = Ma HaH(Ha Ma HaH Ra )-1 'l ,n 'l ,nln-l-� ,n -�,n i,nln-l-i,n + -i,n 
�a _ �a Ga (a Ha �a ) �i,nln -Xi,nln-1 + i,n �i,n - -i,nXi,nln-1 
Ma = (I - Ga Ha )Ma t,nln t,n-t,n i,nln-1 
- For every node i, compute the diffusion update as 

�a 
L 

�a x· = C ·X t,nln k,t_k,nln 
kEN, 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

[�i,n] y* , 
-� ,n 

Ha = [Hi,n -t,n B� -'l ,n 
Bi,n] H* , 
-� ,n 

while the covariance of y't ,n is defined as 

Yi,n == (32)where Vi,n is a noncircular complex white Gaussian ob­
servation noise associated with node i with the variance 

R,n = E{lvi,nI2} = 3 + Vi and cross-correlation Rik n = 
E{ Vi,nVZ ,n} = 3 for i, k E {I, 2, ... , N} and i i- k. 

' 

Ra = E{va yaH} = [Ri,n -� ,n -'l,n-�,n U� -�,n 
(33) 

and caters for the complete second order statistics of the 
observation noises within the neighbourhood Ni, together with 
their cross-correlations. 

Let Rf ,nln be the augmented (widely linear) complex 
Kalman filter (ACKF) state estimate at time n, based on the 
neighbourhood augmented observation equation for node i, 

then the diffused state estimate xa I for the neighbourhood 
It. r 

'l ,n n 

We used the ratio of pseudocovariance magnitude to co­
variance, that is 17u = IE{u2}IIE{luI2}, as a measure for 
the degree of noncircularity of a (zero-mean) complex signal 
U = Ur + jUi, where a signal is circular for 17u = 0 and 
maximally noncircular for 17u = 1. The average mean square 
error (MSE) of all the nodes was used for a quantitative perfor­
mances assessment of the algorithms. The nearest neighbour 
diffusion scheme was used, and is as follows [2]. Let INiI 
denote the number of a nodes in the neighbourhood Ni, then 
to calculate the diffused state estimate for node i, the weight jVi, similar to the D-ACRLS, is then given by 

x� ,nln = L Ck,iR%,nln 
associated with a neighbour k is proportional to INk I, that is 

(34) 

Cki= { !Nkl/CYi if kENi 
kENi 

The distributed ACKF (D-ACKF), based on widely linear 
neighbourhood equations, is summarised in Algorithm 2. 

IV. ApPLICATION EXAMPLES 

We compared the performance D-ACKF with its strictly lin­
ear counterpart, the distributed conventional complex Kalman 
filter (D-CCKF), which caters for the cross-correlations be­
tween nodal observation noises, but does not account for the 
pseudocovariances of the signals. Consider the decentralised 
network in Figure 1 with the objective of filtering the complex 
3rd order autoregressive process, AR(3), defined as 

Zn = 0.92zn-1 - 0.53zn_2 + 0.24zn-2 + Un 
where Un is the noncircular complex white Gaussian driving 
noise with unit variance E{lunI2} = 1. The observations 
corresponding to each node i was of the form 

Yi,n = Zn + Vi,n 

' 0 otherwise 

where CYi = L-kENi INk I is a normalisation parameter which 
ensures that L-kENi Ck,i = 1. 

Figure 2 compares the steady state performance of the diffu­
sion Kalman filter in [2] (Algorithm 2), D-CCKF and D-ACKF 
algorithms, along with the centralised CCKF and ACKF (C­
CCKF and C-ACKF), with access to all the observation data 
from all the nodes at each time instant. Figure 2a shows the 
results for circular observation noises (Ui n = E{v2 } = 0 . ' 'l ,n 
for z = 1,2, ... ,N) and a state (driving) noise with various 
degrees of noncircularity, whereas Figure 2b illustrates the 
performance for noncircular observation noises with a circular 
state noise (Pn = 0). For circular noises (17w = 0 and 17v, = 0), 
the strictly linear D-CCKF and widely linear D-ACKF al­
gorithms have identical performances, while for noncircular 
noises the D-ACKF had decreasing MSE for increasing degree 
of noise noncircularity, whereas changes in the circularity of 
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Fig. 2. Steady state performance comparison for the problem of denoising the 
AR(3) process in the cases of: (a) circular observation noises and a noncircular 
driving noise with varying degrees of noncircularity; (b) circular state noise 
and noncircular observation noises with varying degrees of noncircularity (all 
nodes have same degree of observation noise noncircularity). 

the nOises did not effect D-CCKF since it does not account 
for pseudocovariances. Similarly, C-CCKF only matched the 
perfonnance of C-ACKF for circular signals. 

The D-CCKF and D-ACKF outperformed the distributed 
Kalman filter in [2] (Algorithm 2), because they accounted 
for the cross-correlations between the nodal observation noises 
(Rik,n = E{ Vi,nvk,n})' However, for uncorrelated nodal 
observation noises, and circular state and observation noises, 
the D-CCKF, D-ACKF and the diffusion Kalman filter in [2] 
will all have identical performances. 

Next, we compared the strictly linear distributed complex 
RLS (D-CRLS) and the widely linear distributed augmented 
complex RLS (D-ACRLS) for the problem of predicting real­
world Wind data2 (recorded in Oregon USA, 2011), using an 
AR(4) model for a network consisting for two sensors. 

The D-ACRLS was able to capture the underlying dynamics 
of the data better than D-CRLS, as indicated by its enhanced 
prediction perfonnance. This can be attributed to the use of 
the widely linear model, which is better suited to capturing 
the noncircular nature of the Wind data. 

2The Wind signal (sn) has a magnitude (intensity) (vn) and direction (<Pn), 
and is naturally represented as complex signal (sn = l.lne<Pn). 

12 ,-----�--------�------�------_, 

llJ 
(/) 
:2 

Fig. 3. 

5 10 15 
Prediction horizon 

20 

Multistep ahead prediction of real-world Wind data. 

V. CONCLUSION 

We have addressed the problem of adaptive estimation of 
complex signals with both circular and noncircular distribu­
tions within distributed collaborative networks. The distributed 
(widely linear) augmented complex Kalman filter (D-ACKF) 
and recursive least squares (D-ACRLS) algorithms have been 
introduced for the sequential estimation of the generality of 
complex signals. Moreover, unlike existing algorithms, the D­
ACKF proposed here is based on a framework which caters 
for correlations between the observation noises experienced 
by different nodes in the distributed network, thus providing 
enhanced performance in real-world scenarios. The analysis is 
supported by simulations on synthetic and real world data. 
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