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Abstract—The augmented complex Kalman filter (ACKF) has
been recently proposed for the modeling of noncircular complex-
valued signals for which widely linear modelling is more suitable
than a strictly linear model. This has been achieved in the
context of neural network training, however, the extent to
which the ACKF outperforms the conventional complex Kalman
filter (CCKF) in standard adaptive filtering applications remains
unclear. In this paper, we show analytically that the ACKF
algorithm achieves a lower mean squared error than the CCKF
algorithm for noncircular signals. The analysis is supported by
illustrative simulations.

I. INTRODUCTION

Standard applications of adaptive systems normally use the

signal magnitude as the main source of information. However,

many real world applications rely on information from both the

magnitude and direction or are multidimensional (e.g. radar,

sonar and wind). This has lead to research towards extending

the results from real-valued adaptive filters and standard com-

plex domain filters to those employing augmented complex

statistics and widely linear modelling. One popular adaptive

system is the Kalman filter, which is optimal in the sense

of second order statistics. Both the complex and real version

of the Kalman filter exist, however the augmented complex

version have only been deployed for the training of neutral

networks and assume a random walk state foundations [1].

The implementation of the Kalman filter uses complete

specifications of both dynamical and statistical model param-

eters of a system. In order to give the best results, the Kalman

filter requires that the model parameters to be an accurate rep-

resentation of the system. These statistical model parameters

for complex valued signals are, however, not straightforward

extensions of their real valued counterparts.

The second order statistical properties of a complex signal

z is usually characterised by its covariance r = E{zz∗}.

However, this is not sufficient for a complete second-order

description, and it is necessary to consider another moment

called the pseudocovariance p = E{zz}. It is only for the

special class of complex signals known as second order circu-
lar or proper, that is, those with rotation invariant probability

distributions and have vanishing pseudocovariance, that the

their covariance function suffices to give the complete second-

order description. However most real world processes are

noncircular, either due to the different signal powers in the

real and imaginary parts, or due to nonstationarity.

Several augmented or widely linear adaptive filtering algo-

rithms have been developed by accounting for the information

in both the covariance and pseudocovariance. These include

the augmented complex least mean square [2], the augmented

complex IIR filter [3], the augmented complex recursive least

squares [4] and the augmented complex affine projection

algorithm [5]. These are all based on the widely linear model

y = hTx+ gTx∗ (1)

where y is the output, h and g are complex coefficient vectors,

whereas x is the input vector and x∗ is its complex conjugate.

The second order statistics of a complex random vector z
are not fully described by its covariance, Rz = E{zzH}, as is

the case for a real random vector. A second moment function

called the pseudocovariance Pz = E{zzT } (also known as the

relation function or complementary covariance) is also needed

in order to fully capture the second order statistics [6]. A

complex-valued signal is said to be non-circular (or improper)

if z and ejθz have different probability density functions for

any value of θ; otherwise it is circular (or proper) [7]. A

circular signal, for which Pz = 0, is fully described by its

covariance alone. However for a non-circular signal, Pz �= 0,

the pseudocovariance can not be ignored as it contains crucial

information [8]. To cater for both Rz and Pz we can use

the augmented signal vector za =
[
zT zH

]T
for which the

covariance matrix becomes

Rza =

[
Rz Pz

P∗
z R∗

z

]
(2)

Hence, the use of widely linear (or augmented) signal models

are expected to offer better second order performance and

modelling capabilities for non-circular systems.

In this paper we consider the augmented complex Kalman

Filter (ACKF), which uses both the pseudocovariance matrix

and the covariance matrix in its statistical model parameters in

order to achieve increased performance gains for noncircular

signals. We show that the augmented complex Kalman filter

always has the same or better performance than the conven-



tional complex Kalman filter (CCKF), for the generality of

complex signals, both circular and noncircular.

II. ANALYSIS OF THE ACKF

A Kalman filter is an optimal sequential state estimator

for linear dynamical systems, in the sense that it achieves

the minimum mean squared error (MMSE). It is essentially

a recursive filter that estimates the state of a linear dynamic

system from a series of noisy observations. Its applications

include state estimation for vehicular navigation systems,

training of recurrent neural networks (RNNs) and time varying

channel estimation. Consider a state space model given by [9]

xn = Fn−1xn−1 +wn (3)

yn = Hnxn + vn (4)

where xn is the state to be estimated (of dimension p×1) and

yn is the noisy observation (of dimension q× 1). The vectors

wn and vn are respectively the state noise and measurement

noise. They are zero mean with covariance matrices Qn and

Rn respectively. The matrix F is the state transition matrix

(of dimension p× p) whereas H is the observation matrix (of

dimension q×p). Based on the widely linear model in (1) the

augmented state space model can be written as [1]

xa
n = Fa

n−1x
a
n−1 +wa

n (5)

ya
n = Ha

nx
a
n + va

n (6)

where xa
n =

[
xn

x∗
n

]
, ya

n =

[
yn

y∗
n

]
, wa

n =

[
wn

w∗
n

]
, va

n =

[
vn

v∗
n

]
,

Fa
n =

[
Fn 0

0 F∗
n

]
and Ha =

[
Hn 0

0 H∗
n

]
.

The covariance matrices of the augmented system and

measurement noises, wn and vn, then become

Qa
n =

[
Qn Pn

P∗
n Q∗

n

]
(7)

Ra
n =

[
Rn Un

U∗
n R∗

n

]
(8)

where Pn and Un are the pseudocovariance matrices of wn

and vn.

The MMSE estimator x̂a
n|n = E[xa

n|ya
0 ,y

a
1 , ...,y

a
n] of xa

n

based on {ya
0 ,y

a
1 , ...,y

a
n} can then be computed sequentially

using the following recursion:

Prediction:

x̂a
n|n−1 = Fa

n−1x̂
a
n−1|n−1 (9)

Minimum Prediction MSE Matrix:

Ma
n|n−1 = Fa

n−1M
a
n−1|n−1(F

a
n−1)

H +Qa
n (10)

Kalman Gain Matrix:

Gn = Ma
n|n−1(H

a
n)

H [Ha
nM

a
n|n−1(H

a
n)

H +Ra
n]

−1 (11)

Correction:

x̂a
n|n = x̂a

n|n−1 +Gn(y
a
n −Ha

nx̂
a
n|n−1) (12)

Minimum MSE Matrix:

Ma
n|n = (I−GnH

a
n)M

a
n|n−1 (13)

The minimum MSE estimate of xn is x̂a
n|n and can be

expressed as

x̂a
n|n = (Fa

n−1 −GnH
a
nF

a
n−1)x̂

a
n−1|n−1 +Gny

a
n (14)

For x̂a
0|0 = E{x0} = 0 we have the following time

evolution for x̂a
n|n

x̂a
0|0=0

x̂a
1|1=G1y

a
1

x̂a
2|2=(Fa

1 −G2H
a
2F

a
1)G1y

a
1 +G2y

a
2

x̂a
3|3=(Fa

2 −G3H
a
3F

a
2)(F

a
1 −G2H

a
2F

a
1)G1y

a
1

+(Fa
2 −G3H

a
3F

a
2)G2y

a
2 +G3y

a
3

x̂a
4|4=(Fa

3−G4H
a
4F

a
3)(F

a
2−G3H

a
3F

a
2)(F

a
1−G2H

a
2F

a
1)G1y

a
1

+(Fa
3 −G4H

a
4F

a
3)(F

a
2 −G3H

a
3F

a
2)G2y

a
2

+(Fa
3 −G4H

a
4F

a
3)G3y

a
3 +G4y

a
4

...

x̂a
n|n=WnYn (15)

where

Yn = [ya
n
T ,ya

n−1
T ,ya

n−2
T , . . .,ya

1
T ]T

and

Wn=

⎡⎢⎢⎢⎢⎢⎢⎣

[Gn]
T

[(Fa
n−1−GnH

a
nF

a
n−1)Gn−1]

T

[(Fa
n−1−GnH

a
nF

a
n−1)(F

a
n−2−Gn−1H

a
n−1F

a
n−2)Gn−2]

T

...

[(
∏m=n

2
(Fa

m−1 −GmHa
mFa

m−1))G1]
T

⎤⎥⎥⎥⎥⎥⎥⎦

T

The length of the vector Yn and columns of the matrix

Wn increase with n. The weight matrix Wn can be seen as

a function of the current and all the previous Kalman gains.

If the state and observations noises have a Gaussian distri-

bution, then the Kalman filter is optimal in the MMSE sense

and the weight matrix Wn is hence the minimum variance

linear weighting matrix. The mean square error of any linear

estimator,W
′
nYn, may be compared with the mean square

error for the optimal widely linear estimator x̂a
n|n = WnYn

by writing [10, p. 327]

E{(xn −W
′
nYn)(xn −W

′
nYn)

H}
= E{(xn −WnYn)(xn −WnYn)

H}
+E{(WnYn−W

′
nYn)(WnYn−W

′
nYn)

H}
≥ E{(xn −WnYn)(xn −WnYn)

H} (16)

The cross-terms on the right-hand side vanish because the error

xn − WnYn is orthogonal to every measurable function of

Yn.

For an initialisation with Ma
0|0 = E{x0x

H
0 } = 0, the

Kalman gain can be shown to be a recursive function of Qa
n



and Ra
n. The optimal weight matrix Wn, which is a function

of the Kalman gain, is therefore also a function Qa
n and Ra

n. A

particular choice for a potentially suboptimal weight matrix,

W
′
n, is a weight matrix that is a function of QL

n and RL
n ,

where

QL
n =

[
Qn 0

0 Q∗
n

]
(17)

RL
n =

[
Rn 0

0 R∗
n

]
(18)

which corresponds to the conventional complex Kalman filter

that does not take into account the pseudocovariances Pn and

Un. Hence the augmented complex Kalman filter always has

the same or better performance than the conventional complex

Kalman filter, because of its utilisation of the pseudocovari-

ances and consequently the full available augmented complex

statistics.

III. SIMULATIONS

The performances of CCKF and ACKF were examined for

their ability to track an autoregressive AR(4) process

xn = 1.79xn−1 − 1.85xn−2 + 1.27xn−3

−0.41n−4 + un, n ≥ 1 (19)

with the driving noise defined as

E{un−iu
∗
n−l} = cuδi−l

E{un−iun−l} = puδi−l (20)

Where δ is the discrete Dirac delta function. We used the

ratio of the magnitude of the pseudocovariance (p) to the

variance (c) as measure for the circularity of the complex

random variables, that is

K =
|p|
c

The driving noise u(n) is circular if its pseudocovariance

is zero (i.e. K = 0) and noncircular for all other values of K.

Figure 1 shows a real-imaginary scatter plot for two different

realisations of u(n) with different levels of circularity. Note the

circular symmetry for the circular signal and the non-circular

shape for K = 0.95.
The performance of ACKF was assessed for the one-step

ahead prediction of an AR(4) process, the noncircular Lorenz
attractor, the chaotic Ikeda map and some real world Wind data

using different AR models. The Wind data1 was collected from

measurements of the wind speeds in the north-south and east-

west directions. These were then used to form the real and

complex parts of a signal.
The Kalman filter was used to track the output of a noisy

auto regressive process of order q, AR(q), that is generated

according to the equation

xn =

p∑
k=1

akxn−k + un (21)

1The wind data was provided by Prof. Aihara’s team at the Institute of
Industrial Science, University of Tokyo, Japan.

where un is the driving noise. It is assumed that xn is observed

in the presence of complex white noise vn such that

yn = xn + vn (22)

The Kalman filter state space and observation equations then

become [11]

xn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 ... ap−1 ap

1 0 ... 0 0

0 1 ... 0 0

...
...

. . .
...

...

0 0 ... 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xn−1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

un

0

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(23)

yn = [1, 0, ..., 0]xn + vn (24)

where xn = [xn, xn−1, ..., xn−p+1]
T is the state vector. We

can then augment the Kalman filter parameters as in (3) and

(4), to obtain the augmented complex Kalman filter.

For a quantitative assessment of the performance, the stan-

dard prediction gain Rp = 10 log(σ2
y/σ

2
e) was used, where

σ2
y and σ2

e are the variances of the input signal and the

output error. Figure 2 shows a comparison of the performance

of the CCKF and the ACKF for the AR(4) process. Figure

2a illustrates the results for a circular observation noise of

unit variance and a driving noise of unit variance but with

various degrees of non-circularity, while Figure 2b shows the

performance for a noncircular observation noise with a circular

state noise. For both sets of results the two filters gave the same

performance for the circular signals, i.e. K = 0. However, for

noncircular noises, the ACKF outperformed the CCKF; the

performance of the ACKF relative to CCKF, increased as the

degree of non-circularity of the signals increased.

Table I summarises the prediction gains of CCKF and

ACKF for the one-step ahead prediction of an AR(4) process,

the Lorenz attractor, the Ikeda map and real world Wind data.

In conformance with the analysis, in all the cases, the ACKF

had the better prediction gain.

TABLE I
ONE-STEP AHEAD PREDICTION GAINS Rp FOR THE VARIOUS CLASSES

SIGNALS

Signal Rp(dB) (CCKF) Rp(dB) (ACKF)

AR(4)(K=0) 11.97 11.97

AR(4)(K=0.9) 11.97 13.08

AR1(Lorenz) 67.46 70.07

AR4(Lorenz) 79.18 79.66

AR2(Ikeda) 1.22 2.27

AR4(Ikeda) 4.90 5.73

AR1(Wind) 22.13 22.98

AR2(Wind) 23.01 23.67

AR4(Wind) 23.33 23.64

AR6(Wind) 23.72 23.76



(a)

(b)

Fig. 1. A geometric view of circularity via a real-imaginary scatter plot. (a)
a circular signal (K = 0); (b) a non-circular signal (K = 0.95).

IV. CONCLUSION

We have introduced an augmented complex Kalman filter

(ACKF) algorithm and have examined its performance in

relation to the conventional complex Kalman filter (CCKF).

The analysis has shown that it have the potential to offer

significant performance gains over the CCKF for noncircular

signals and similar performance to the CCKF for circular

signals. Simulations for both synthetic and real world signals

support the analysis.
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