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The dimensional multiple integral can be replaced by a single
zero mean Gaussian expectation with variance

as

(B4)

Equation (B4) can be evaluated using Price’s Theorem [11]. Consider
the joint Gaussian expectation

(B5)

(B6)

Then [11]

(B7)

where . Now

(B8)

Completing the square and performing the integration yields

(B9)

Thus, integrating on ,

(B10)

Finally, approximating by , inserting (B11) in (B3) and in-
tegrating on yields

(B11)

for the expectation in (18).
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Adaptive IIR Filtering of Noncircular Complex Signals

Clive Cheong Took and Danilo P. Mandic

Abstract—A recursive learning algorithm for the training of widely linear
infinite impulse response complex valued adaptive filters is proposed. The
use of so called augmented complex statistics makes this algorithm suitable
for the processing of both second order circular (proper) and noncircular
(improper) signals. A closed form solution for the bound on the stepsize
is provided, and the small stepsize assumption in the derivation is used to
reduce the computational complexity. Simulations for both synthetic and
real-world circular and noncircular signals are provided in the prediction
setting, illustrating the benefits of the proposed algorithm when modelling
general complex signals.

Index Terms—Adaptive prediction, augmented complex statistics, infi-
nite impulse response filters, noncircular complex signals, wind modeling.

I. INTRODUCTION

Complex-valued adaptive filtering algorithms are usually considered
as generic extensions of their real-valued counterparts, with the second
order statistics based on the covariance .
However, recent advances in so-called augmented complex statistics
show that for the modelling of general complex signals, this is not
adequate, and the pseudocovariance (also
known as the relation function [1] or the complementary covariance)
should also be taken into account. This additional information proves
crucial when processing second order non-circular (or improper)
signals [2], for which the probability density functions are not rotation
invariant. Thus, for instance, for second order circular (proper) signals

and standard complex filters are adequate, whereas for
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improper signals , and we need to design adaptive filters
which account for this information. To ensure that both and
are catered for, the complex-valued input is “augmented” to
include its conjugate, that is, , and the
second order statistics is based on the augmented covariance matrix

, given by

(1)

Algorithms based on augmented complex statistics have been used in
communications [3], blind source separation [4], adaptive signal pro-
cessing [5], and DOA (direction of arrival) estimation applications for
general complex signals [6], [7].

Complex-valued processes are either complex by design (commu-
nications) or by convenience of representation (directional processes,
radar, sonar, wind) [8]. The signals used in communications are usu-
ally complex circular (with rotation invariant probability density func-
tions), whereas the class of signals made complex by convenience of
representation is more general, and such signals are often noncircular.
For the stochastic modelling of such signals, a widely linear moving
average (MA) model was introduced by Picinbono, and is given by [9]

(2)

where and are filter coefficients. Based on this widely linear
model, an augmented complex least mean square (ACLMS) algorithm
was recently developed in [10] and was employed in adaptive predic-
tion of the improper wind signal.

As finite impulse response (FIR) widely linear models may not al-
ways be adequate, Moreno introduced an autoregressive moving av-
erage (ARMA) widely linear model with fixed coefficients, given by
[11]

(3)

where and , respectively, are the order of the AR and MA part. This
model serves as a theoretical background for the development of the
proposed recursive algorithm for the training of adaptive infinite-im-
pulse-response (IIR) filters.

To introduce a recursive algorithm for “augmented” complex adap-
tive IIR filtering, we extend the complex-valued adaptive IIR filtering
algorithm introduced by Shynk [12] (referred to as CA-IIR), in order to
cater for both proper and improper signals. This way, the coefficients
of the widely linear ARMA model in (3) are made gradient adaptive,
to give the output of a widely linear IIR filter in the form

(4)

where is the order of the feedback and the length
of the augmented tap input. This model can be written in a
compact form as , where

, and . A
stochastic gradient learning algorithm for the widely linear IIR filter
will be referred to as the augmented CA-IIR (ACA-IIR).

The organization of the paper is as follows: in Section II, the
ACA-IIR algorithm is derived. This is followed by the formulation
of less computationally expensive gradient approximations. Next, an
analysis on the bounds of the stepsize for convergence is provided
in Section III. In Section IV, simulations are presented, based on a
synthetic MA and ARMA processes and real world two-dimensional
wind field measurements. Section V concludes the paper.

II. THE ACA-IIR ALGORITHM

The aim of stochastic gradient based complex-valued adaptive fil-
tering algorithms is to process the input signal in order to esti-
mate the desired response , based on the minimization of the cost
function

(5)

Within a stochastic gradient optimization setting, the weights of the
widely linear IIR filter in (4) are updated based on

(6)

The error gradients with respect to the filter coefficients can be com-
puted as [12]

(7)

where

(8)

(9)

The gradient vectors (8) and (9) can be evaluated as

(10)

where the subscripts and denote the real and the imaginary parts of
complex quantities, and . To calculate the gradient in (7), each
term in (8) and (9) has to be evaluated separately. Thus, for instance

(11)

(12)

The presence of feedback within the IIR architecture gives rise to the
recursions on the right-hand side of (11) and (12). These comprise the
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derivatives of the past values of with respect to the present value
of the filter weight , and are not possible to compute. To circum-
vent this problem, for a small learning rate , the following standard
approximation is adopted [12], [13]:

(13)

Subsequently, the computation of (11) and (12) can be made mathe-
matically tractable, to give the sensitivities

(14)

(15)

The terms within the sums on the right-hand sides of (14) and (15) are
now delayed versions of the corresponding terms on left-hand sides.

Thus, the gradients within the widely linear IIR filter in (8) have an
additional term as compared
with the gradients within the standard CA-IIR algorithm [12]. These
gradients are given by

(16)

(17)

(18)

(19)

and similarly for the gradient vector in (9), we have

(20)

(21)

(22)

(23)

In the standard CA-IIR algorithm, gradients (20)–(21) represent un-
forced difference equations which vanish, as they do not depend on ei-
ther the input or the output . However, this is not the case with
the augmented ACA-IIR algorithm due to the dependence of (20)–(21)
on the terms , which are functions of either or . Thus,
no term in (16)–(23) can be considered negligible.

Finally, the filter coefficient update (6) can be expressed in a compact
form as

(24)

This completes the derivation of the recursive stochastic gradient based
learning algorithm for widely linear adaptive IIR filters (ACA-IIR).

A. ACA-IIR as a Generalization of ACLMS

When feedback within the ACA-IIR algorithm is cancelled, that is,
for a widely linear FIR filter, the partial derivatives on the right-hand
side of (17), (19), (21), (21) and (23) vanish, yielding

(25)

(26)

(27)

As desired the ACA-IIR algorithm (24) now simplifies into the ACLMS
algorithm for FIR filters, given by [10]

(28)

where the vector comprises the tap input vector and its complex
conjugate.

B. Reducing the Computational Complexity of ACA-IIR

The weight update in ACA-IIR is computationally demanding, and
it requires recursions for the sensitivities and

, as seen from (16)–(23). However, by using the approximation
(13), this can be simplified to updating only eight sensitivities [12]. For
example, terms

(29)

can be replaced by

(30)

Then, for a small learning rate, for example, the second term in the
original gradient

(31)

can be replaced by

(32)
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and hence . This approximation also applies for all
the other sensitivities.

III. CONVERGENCE OF ACA-IIR

In the analysis so far, it has been assumed that the stepsize is a
small positive constant. We shall next examine the bounds on the step-
size, in order to provide insight into the convergence of the ACA-IIR al-
gorithm. Consider the a priori and a posteriori estimation errors, given
respectively by

(33)

(34)

To estimate the range of stepsize which ensures
[14] and thus convergence, following the approach from [14, p. 344],
perform a first-order Taylor series expansion of around ,
given by

(35)

where is obtained from
(24). The gradient term in (35) can be expressed as

(36)

to yield

(37)

Upon applying the statistical expectation operator, as shown
in the Appendix, the cross-terms and

can be neglected, to give

(38)

Since the error powers and are non-negative, so too

(39)

and the range of the stepsize which preserves the stability of the
ACA-IIR algorithm becomes

(40)

In practice, this upper bound is usually an order of magnitude lower
[14]. The analysis of the mean-square-error surface is given in the
Appendix.

IV. SIMULATIONS

The performance of the proposed ACA-IIR is evaluated based on
three data sets: a proper MA process, an improper ARMA process, and
a real-world improper complex wind field. The linear MA process was
adopted from [11], and is given by

Fig. 1. Geometric view of circularity via “real-imaginary” scatter plot.
(a) Proper MA process; (b) improper ARMA process; and (c) complex wind
signal.

(41)

whereas the widely linear ARMA process was a combination of the
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Fig. 2. Performance comparison between ACA-IIR, CA-IIR, ACLMS, and
CLMS for the prediction of the circular MA signal, obtained from (41)
for . (a) Performance dependence on P and L and (b) performance
dependence on and L.

MA process (41) and the AR process from p. 155 [15], given by

(42)

Fig. 3. Performance comparison between ACA-IIR, CA-IIR, ACLMS, and
CLMS for the prediction of the noncircular ARMA model (42). (a) Performance
dependence on P and L and (b) performance dependence on and L.

with

(43)
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Fig. 4. Learning curves of ACA-IIR, CA-IIR, ACLMS, and CLMS for the pre-
diction of the noncircular ARMA model (42).

where is doubly white circular noise [8]. The circular MA
model is obtained for , whereas for the noncircular

Fig. 5. Performance comparison between ACA-IIR, CA-IIR, ACLMS, and
CLMS for the prediction of a 2-D wind field. (a) Performance dependence on
P and L and (b) performance dependence on and L.

ARMA model . The 2-D wind field data1 was collected
from measurements of the wind speeds in the north-south and east-

1The wind data was provided by Prof. Aihara’s team at the Institute of Indus-
trial Science, University of Tokyo.
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(48)

west direction. Fig. 1 shows the scatter plots of the complex signals
considered; observe the circular symmetry (properness) for the circular
MA signal and the non-circularity of the improper ARMA process and
wind signal.

Simulations were conducted in a -step ahead prediction setting.
Thus, for instance, the -step ahead prediction of the widely linear
ARMA process (42), , was based on the delayed outputs

, and the corresponding filtered driving widely linear
noise. The filter order was set to , where is the order
of the feedback and is the order of the tap input of the filter (4). The
performance of the ACA-IIR was compared with those for the widely
linear augmented CLMS (ACLMS) [10], and the linear complex LMS
(CLMS) [16] and the CA-IIR [12]. For a quantitative assessment of the
performance, the standard prediction gain was
employed, where and denote respectively the variance of the
input and output error [15].

Fig. 2 compares the performances of all considered algorithms on the
prediction of the circular MA process (41), over a range of stepsizes and
prediction horizons. As the MA process exhibits a circularly symmetric
distribution (Fig. 1), it is therefore expected that all the four algorithms
would have similar performances, as illustrated in Fig. 2.

Fig. 3 illustrates the prediction performance for the improper ARMA
process (42), whereas Fig. 4 shows the learning curves for all the al-
gorithms considered. The ACA-IIR exhibited best performance, fol-
lowed by the CA-IIR, ACLMS, and CLMS. Similar observations as
for the improper ARMA case can be made for the simulations on the
real-world complex wind signal, shown in Fig. 5.

V. CONCLUSION

We have introduced a recursive learning algorithm for widely linear
adaptive IIR filtering. The proposed ACA-IIR algorithm has been de-
rived based on augmented complex statistics, thus making it suitable
for both circular and noncircular complex signals. Convergence anal-
ysis has provided the bound on the stepsize which preserves stability of
the ACA-IIR. Further, computational complexity has been reduced by
making use of the redundancy in the state vector of the filter. The pro-
posed algorithm has been shown to exhibit superior performance over
the ACLMS, CA-IIR, and CLMS on the multi-step ahead prediction of
both synthetic and real world noncircular complex signals.

APPENDIX

To show that the cross-terms
in (37) can be neglected, notice that

and .
Also, denote the products of the cross-term sensitivities by

and , and
and . Then

(44)

and the cross-terms in (37) are equal to . As the terms and
are complex conjugates, the imaginary part of is always zero.
In MMSE estimation, our aim is to obtain doubly white circular output
error, for which and , and thus upon applying the
statistical expectation operator the real part of also vanishes.
This can also be shown using the standard independence assumptions.

A. Analysis of the Mean-Square-Error Surface

The relationship between the mean square error and the coefficients
of the widely linear ARMA input will be illustrated for the process (42)
considered in the simulations, which has a general form

(46)

where
and the teaching signal

(47)

The MSE now becomes (48), shown at the top of the page, where
and

are weight error vectors. Similarly to the
analysis above, upon applying the statistical expectation operator the
cross-terms in (48) vanish, and

(49)

The mean-square-error surface is therefore expressed in terms of the
weight error vectors and the covariance matrix of the input and can be
analyzed using standard MSE analysis for IIR filters [17]
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On the Arbitrary-Length -Channel Linear
Phase Perfect Reconstruction Filter Banks

Zhiming Xu and Anamitra Makur

Abstract—This correspondence extends the theory and lattice factoriza-
tions for -channel linear phase perfect reconstruction filter banks (LP-
PRFBs). We deal with FIR FBs with real-valued filter coefficients in which
all filters have the same arbitrary length
and same symmetry center, in contrast to traditional constrained length
profile . First, refined existence conditions on this larger class
of FBs are given. Then, lattice structures are developed for both odd and
even-channel FBs, and their relationship with time-domain lapped trans-
forms is explained. These structures are more general compared to con-
ventional design methods, and cover them as special cases. Furthermore,
we discuss how to structurally impose the regularity onto the lattice struc-
ture to ensure the smoothness of the basis function, which is very desirable
in high performance image compression. Finally, these lattice structures
are proven to be minimal in terms of the number of delay elements used in
implementation, and to completely span the class of LPPRFBs with length

and the whole class of linear phase paraunitary filter banks
(LPPUFBs).

Index Terms—Completeness, filter bank, lattice structure, linear phase,
minimality, perfect reconstruction, regularity.

I. INTRODUCTION

The -channel critically sampled uniform filter banks (FBs), which
act as a powerful tool in linear time-frequency signal analysis, have
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been studied extensively and employed in various signal processing
applications [1]. Denote the analysis and synthesis polyphase matrices
by and , respectively [1]. It is well known that the FB has
perfect reconstruction (PR) property if is the inverse of ,
i.e., . In addition, if all the analysis and synthesis fil-
ters and have linear phase (LP) (very desirable in image/
video processing), such FB is called LP FB. The theory, design and im-
plementation of LPPRFBs were studied extensively [2]–[8]. However,
most previous works imposed an unnecessary a priori condition on the
filter length for simplification of the factorization and de-
sign.

In this correspondence, we systematically investigate the factoriza-
tions of LPPRFBs with arbitrary filter lengths

and the same symmetry center. The motivation for such work is to
design more flexible FBs which can give more possible choices and
offer better trade-off between the filter length and the performance of
FBs than traditional methods. The existence conditions of such class of
LPPRFBs in terms of filter lengths and filter symmetry polarities were
explored thoroughly in [3]. However, most existing design methods [2],
[4]–[8] concentrated only on the special case . As far as the case

is concerned, some works have been reported before. The gen-
eral arbitrary-length cosine-modulated FBs were studied in [9] and in
[10] for a class of even-channel LP FBs. Another design method was
discussed in [3] for the class of restrictive even-channel LP paraunitary
(PU) FBs. Later, it was also extended to even-channel LPPRFBs [11].
The case of even has been further studied in [12] for both even and
odd-channel systems. In addition, a subclass of such LPPRFBs, i.e.,
LPPUFBs with both odd and , was considered in [13]. Besides
these, Tran et al. have contributed a lot for this class of LPPRFBs under
the framework of time-domain lapped transforms (TDLTs) via pre and
postfiltering [14]–[16]. Later, we will show that our derived structure is
essentially equivalent to theirs. However, different from their presenta-
tion, we study such FBs in a unifying manner based on the systematic
investigation of the necessary constraints held on , which can lead
us to derive lattice factorizations and show their connections with other
works and some theoretical properties. For simplicity, we only consider
the class of causal FIR FBs with anticausal FIR inverses (CAFACAFI)
[17] in this correspondence.

Notations: Bold-faced quantities with uppercase and lowercase let-
ters denote matrices and vectors, respectively. Subscripts indicate the
size of a matrix if it is not clear from the context. , and
denote the identity matrix, reversal matrix and null matrix, all with
size . The rank of a matrix is denoted by . For a real
number , and denote the integer floor and ceiling of , re-
spectively. A special matrix useful for linear phase property of FBs
is . In addition, and are

and butterfly-like orthogonal matrices,
respectively, as follows:

II. EXISTENCE CONDITIONS AND LATTICE STRUCTURES

In [3], some necessary conditions for LPPRFBs with lengths
were derived. In particular, for the class of

LPPRFBs with equal filter length, i.e., for
, some further refined existence conditions can be obtained and listed

in Table I, where and denote the number of symmetric and anti-
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