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a b s t r a c t

Widely linear estimation for complex-valued data allows for a unified treatment of both
second order circular (proper) and non-circular (improper) signals. We propose the
complex dual channel (CDC) estimation technique as an alternative to widely linear
estimation to both gain further insights into complex valued minimum mean square error
(MMSE) estimation and to design computationally efficient adaptive filtering algorithms.
This is achieved by finding two sets of optimal weights that minimize the mean square
error (MSE) in estimating the real and imaginary parts of the signal independently. The
concept is used in a stochastic gradient setting to design the dual channel complex least
mean square (DC-CLMS). The analysis shows that any one of the sub-filters within the
DC-CLMS can be used to estimate strictly linear models while the DC-CLMS is equivalent
to widely linear estimation. This results in a reduction of computational complexity of
complex-valued adaptive filters by a half, while providing enhanced physical insight and
control over complex-valued estimation algorithms.

& 2014 Elsevier B.V. All rights reserved.
Notation: Lowercase letters are used to denote scalars,
boldface letters for vectors and boldface uppercase letters
for matrices. The symbol ð�Þn denotes complex conjugation,
ð�ÞT and ð�ÞH – transposition and conjugate transposition,
ð�Þ�1 – matrix inversions and Tr½�� is the trace of a matrix.
The operators R½�� and I½�� are used to extract respectively
the real and imaginary parts of a complex variable and
j¼

ffiffiffiffiffiffiffiffi
�1

p
. The subscript k is used as a time index and E½��

represents the statistical expectation operator.
1. Introduction

Complex-valued linear minimum mean square error
(MMSE) estimation is an important statistical technique in
communications and signal processing. It has now been
accepted that the standard strictly linear model for
complex data is not guaranteed to capture the complete
second-order statistical relationship between the input
(regressor) and the output (observations) as generic
strictly linear extensions of real-valued estimators cater
only for data with rotation invariant probability distribu-
tions [1–3]. To account for general complex data, we have
to employ the widely linear framework [4,5], whereby by
using an augmented input vector, xa ¼ ½x; xn�T , that con-
tains the input vector and its conjugate, the widely linear
model is equipped with the sufficient degrees of freedom
to fully exploit the second order statistics in the data [6].

Consequently, widely linear estimators are able to achieve
a lower mean square error (MSE) for estimating second order
circular and non-circular signals. This has inspired the
development of widely linear adaptive filtering algorithms
such as the augmented complex least mean square (ACLMS)
[7], widely linear recursive least squares (WL-RLS) [8] and
augmented affine projection algorithm (AAPA) [9].

However, owing to the use of augmented variables,
widely linear algorithms require twice the number of
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coefficients to update compared to their standard strictly
linear counterparts. This adds to both higher computa-
tional complexity and a larger excess mean square error
(EMSE). To deal with these issues, efficient formulations of
widely linear adaptive filters have been proposed – these
formulations typically make use of the duality between
the complex and real domain to cast the computations into
the real domain [10,11]. An efficient implementation of the
ACLMS in [12] is one such approach. However, in this way,
the input vector no longer resides in the original complex
domain and any physical meaning or performance advan-
tage inherent in working in the complex domain might
disappear.

To help circumvent these problems and at the same
time provide greater insight into complex-valued MMSE
estimation, we propose an estimation technique that (i)
has the two degrees of freedom necessary to capture the
complete second order statistics and (ii) provides physi-
cally meaningful estimates at a low computational com-
plexity. The analysis shows that the operation of widely
linear models is over-parameterized and that the proposed
combination of two complex strictly linear models is
sufficient for second order optimality. We refer to the
proposed method as the complex dual channel (CDC)
estimator and show that it can not only be used as an
alternative to the strictly and widely linear frameworks for
processing proper and improper data but also that it
provides additional insights into the physical parameters
of such data. Finally, stochastic gradient adaptive filters
based on the CDC framework, referred to as the CLMSr,
CLMSi (for proper signals) and the dual channel-CLMS
(DC-CLMS) (for improper signals), are introduced and their
convergence and stability properties are analysed. The CDC
framework is shown to give physically meaningful para-
meters which is also confirmed through simulations.

2. Complex dual channel estimation

2.1. Problem with strictly linear estimation in C

Minimum mean square error (MMSE) estimation aims
to find the optimal second order estimate of a desired
signal dkAC given the regressor vector xkACN�1. For
strictly linear MMSE estimation, the data model is con-
strained to be strictly linear, yk ¼ hHxk, where yk is the
estimate of the desired signal, hACN�1 the coefficient
vector, and the estimation error is given by ek ¼ dk�yk.
The optimal second order mean square error (MSE) fit for
the data is obtained by using the cost function

JMSE ¼ E½jekj2� ¼ E½jdk�ykj2� ð1Þ
and the optimal weight vector, denoted by ho, that mini-
mizes the cost function in (1) is given by the Wiener
solution

ho ¼ R�1r ð2Þ
where R¼ E½xxH� is the covariance matrix of the input and
r¼ E½xdn� is the cross-covariance vector of the desired
signal and the input.

Of particular importance to this work is the (often
overlooked) observation that the MSE for estimating
complex-valued signals combines two separate compo-
nents: (i) the proportion of MSE in estimating the real part
of the signal, and (ii) the proportion of MSE corresponding
to estimating the imaginary part of the signal. This
becomes immediately clear when the error, ek, is rewritten
in terms of its real and imaginary components as
ek ¼ er;kþ jei;k, so that the cost function in (1) can be
written as the sum of two real-valued cost functions as

JMSE ¼ E½e2r;k�þE½e2i;k� ¼ Jrþ Ji ð3Þ

Remark #1. The linear MMSE estimator aims to minimize
two real-valued cost functions, Jr and Ji, using a single
complex-valued weight vector ho. However, one weight
vector in general does not have enough degrees of free-
dom to minimize both Jr and Ji, and the class of signals that
admit such an MMSE estimator is very restrictive. The
analysis in Section 2.3 shows that the standard strictly
linear estimation problem is well posed only when the
input vector xk is jointly circular with the desired signal dk.
To cater for a general class of complex-valued signals,

a widely linear model was proposed in [4], and is given by

yk ¼ ðwa
kÞHxa

k wa
k ¼

hk

gk

" #
xa
k ¼

xk

xn

k

" #
ð4Þ

where the estimator uses an augmented input vector, xa
k ,

formed by concatenating the input, xk, and its conjugate,
xn

k , resulting in the augmented weight vector, wa
k , that has

two degrees of freedom. Based upon the augmented vector
xa
k , the sufficient second order statistics is obtained

through the augmented covariance matrix

Ra ¼ E
xxH xxT

xnxH xnxT

" #
¼ R P

Pn Rn

� �
ð5Þ

and the augmented cross-covariance vector

ra ¼ E
xdn

xndn

" #
¼ r

un

� �
: ð6Þ

Observe that the standard covariance matrix R¼ E½xxH�,
and cross-covariance vector r¼ E½xdn� do not have the
sufficient degrees of freedom to explain the complete
second order information, and to capture the second
order statistics we also need the pseudocovariance
matrix, P¼ E½xxT �, and the pseudocross-covariance vector,
u¼ E½xd�. The input and desired signal pairs which exhibit
a vanishing pseudocovariance, P¼ 0 and pseudocross-
covariance, u¼ 0, are referred to as jointly circular (in
terms of second order statistics) [4,13]. In this work, we
show that the advantage offered by widely linear estima-
tors can also be obtained by using two strictly linear
estimators that minimize Jr and Ji independently, thus
reducing the computational cost of widely linear
algorithms.

2.2. Proposed solution: complex dual channel estimation

Based on the MSE cost function in (3), we propose to
use two strictly linear estimators that minimise the cost
functions Jr ¼ E½e2r;k� and Ji ¼ E½e2i;k� independently. This
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makes it possible to have individual Wiener solutions,
with the corresponding optimal weights wo

cr and wo
ci that

minimize the cost functions Jr and Ji independently, and
therefore JMSE in (3).

Remark #2. By minimising Jr and Ji independently, the
estimator is no longer required to compromise between
minimising Jr and Ji. Such an estimator has the desired two
degrees of freedom, and performs optimal estimation for
both second order circular and non-circular complex-
valued signals.
The proposed CDC estimator is formed by combining the

real part of ycr;k ¼wH
crxk and imaginary part of yci;k ¼wH

cixk.
Notice that sincewo

cr minimizes the error in the real part of
an estimator, it is natural to use only the real part of ycr;k.
The same reasoning also applies for the imaginary part of
yci;k.
The optimal weights wo

cr and wo
ci are next derived using

a standard gradient methodology. The mean square error
in estimating the real part of the signal, Jr, can be written
as

Jr ¼ E½e2r;k� ¼ E½ðRfdkg�RfwH
crxkgÞ2� ð7Þ

Upon finding the minimum of (7) with respect to wcr ,
a closed form solution for the optimal weights is obtained
in the form

wo
cr ¼ 2½R�PRn�1Pn��1½prx�PRn�1pn

rx� ð8Þ
where P¼ E½xxT � is the pseudocovariance matrix of the
input, R¼ E½xxH � is the covariance matrix, prx ¼ E½xdr� is
the cross-covariance between the real part of the desired
signal and the complex input vector xk and pix ¼ E½xdi� is
the cross-covariance between the imaginary part of the
desired signal and the input.
Similarly, the mean square error in estimating the

imaginary part of the signal, Ji, is given by

Ji ¼ E½e2i;k� ¼ E½ðIfdkg�IfwH
cixkgÞ2� ð9Þ

and the corresponding optimal estimator weights are

wo
ci ¼ �2j½R�PRn�1Pn��1½pix�PRn�1pn

ix� ð10Þ

Remark #3. Observe from (8) and (10) that, in general, the
weights that minimize Jr in (7) are not those that minimize
Ji in (9). This justifies the proposed individual minimisa-
tion of the contributing terms in the total MSE cost
function, JMSE in (3), and also plays a major role in the
analysis of convergence of complex-valued adaptive filters.

2.3. Degrees of freedom in complex MMSE

To further illustrate the limitations of using a strictly
linear model to minimize JMSE ¼ E½jekj2�, we shall now set
wcr ¼wci in order to find the condition for one set of
weights to be able to minimize both Jr, Ji (and therefore
JMSE). Upon equating (8) and (10), we obtain

½prx�PRn�1pn

rx� ¼ � j½pix�PRn�1pn

ix�
prxþ jpix ¼ PRn�1ðpn

rxþ jpn

ixÞ:
Recognising that pn

rxþ jpn

ix ¼ E½xnd� ¼ rn is the complex
valued cross-covariance and prxþ jpix ¼ E½xd� ¼ u is the
pseudocross-covariance, we arrive at the condition

u¼ PRn�1rn: ð11Þ

Remark #4. When estimating the real and imaginary
parts of a signal with one set of complex weights, optimal
performance is only possible when the desired signal dk,
and the regressor vector, xk are jointly circular, that is, the
pseudocovariance P¼ 0, and the pseudocross-covariance,
u¼ 0. This is a well known result, but is addressed here
from a different viewpoint.

2.4. Equivalence of complex dual channel and widely linear
estimators

The equivalence of the proposed complex dual channel
(CDC) model and the widely linear model can be estab-
lished by factorising the output of the CDC estimator as

ŷ ¼RfwH
crxgþ jIfwH

cixg ð12Þ

ŷ ¼ wcrþwci

2

� �H
xþ wcr�wci

2

� �T
xn ¼ hHxþgHxn ð13Þ

where h9 ðwcrþwciÞ=2 and gn9ðwcr�wciÞ=2. This form is
equivalent to the widely linear model in (4), for more
detail see also [11].

3. The design of adaptive filters using the CDC framework

We now provide a new framework to derive complex-
valued adaptive filtering algorithms using the CDC estima-
tion model. Our focus is on the stochastic gradient descent
type of algorithms, and on benchmarking the CDC frame-
work against the complex least mean square (CLMS) and
augmented CLMS (ACLMS), which both minimize the
global mean square error cost function JMSE ¼ E½jekj2�. The
CLMS uses a strictly linear model of the data [14] and is
given by

yk ¼wH
k xk

ek ¼ dk�yk
wkþ1 ¼wkþμenkxk ð14Þ
The ACLMS, proposed in [7], uses a widely linear model
that employs both xk and xn

k , and is given by

yk ¼ hH
k xkþgHk x

n

k

ek ¼ dk�yk
hkþ1 ¼ hkþμenkxk

gkþ1 ¼ gkþμenkx
n

k ð15Þ
where hk and gk are complex-valued coefficient vectors.

3.1. Proposed algorithm: dual channel CLMS

The dual channel-CLMS (DC-CLMS) is formed by
a combining two stochastic gradient descent algorithms:
the CLMSr and CLMSi. The CLMSr uses a strictly linear
model ycr;k ¼wH

cr;kxk and aims to find the minimum of the
instantaneous cost function Jr;k ¼ ðR½dk�ycr;k�Þ2 that corre-
sponds to the error in estimating the real part of the signal.
The gradient is found using the conjugate derivative, ∇wn ,
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of Jr;k [15,16,10] to give

wcr;kþ1 ¼wcr;k�μ2∇wn
cr
Jr;k ð16Þ

that results in the weight update

wcr;kþ1 ¼wcr;kþμ2R½ecr;k�xk ð17Þ
where ecr;k ¼ dk�ycr;k.

Similarly, the CLMSi uses a strictly linear model
yci;k ¼wH

ci;kxk and aims to find the minimum of the instan-
taneous cost function Ji;k ¼ ðI½dk�yci;k�Þ2 that corresponds
to the error in estimating the imaginary part of the signal.
The CLMSi weight update is therefore given by

wci;kþ1 ¼wci;k�μ2jI½eci;k�xk ð18Þ
where eci;k ¼ dk�yci;k.

Remark #5. Notice that both the weight vectors wcr and
wci are complex-valued, and do not represent the real or
imaginary parts of the CLMS or ACLMS weights.

The DC-CLMS is summarized in Algorithm 1 and
depicted in Fig. 1, and operates in a collaborative fashion
by combining the real output of CLMSr with the imaginary
output of CLMSi to obtain an output identical to that of the
ACLMS.

Algorithm 1. The Dual Channel CLMS (DC-CLMS).

CLMSr

ycr;k ¼wH
cr;kxk

ecr;k ¼ dk�ycr;k
wcr;kþ1 ¼wcr;kþμ2R½ecr;k�xk

CLMSi

yci;k ¼wH
ci;kxk

eci;k ¼ dk�yci;k
wci;kþ1 ¼wci;k� jμ2I½eci;k�xk

Output
yk ¼R½ycr;k�þ jI½yci;k�
Fig. 1. Architecture of the DC-CLMS.
3.2. Equivalence of the CLMSr/i and CLMS

Following on Remark 5, we next establish the relation-
ship between the optimal CLMSr and CLMSi weight
estimates and the optimal CLMS weights, in order to show
that either the CLMSr or CLMSi sub-filter can replace the
traditional CLMS filter when estimating strictly linear
models. This results in a computationally efficient imple-
mentation of CLMS. To show this, observe that in steady
state, the CLMSr and CLMSi sub-filters satisfy

CLMSr: lim
k-1

E½wcr;kþ1� ¼ E½wcr;k� ¼wcr;opt

CLMSi: lim
k-1

E½wci;kþ1� ¼ E½wci;k� ¼wci;opt: ð19Þ

The steady state condition for the CLMSr weight update is
satisfied when

E½R½ecr;k�xk� ¼ 0: ð20Þ
From R ecr;k

� �¼ 1
2 ecr;kþencr;k
� �

and substituting for
ecr;k ¼ dk�wH

cr;kxk, we arrive at

E½xkdk��E½xkxT
k �E½wn

cr;k� ¼ E½xkxH
k �E½wcr;k��E½xkd

n

k �

which allows us to express the condition for an unbiased
estimate for the CLMSr in the form

u�PE½wn

cr;k� ¼ RE½wcr;k��r: ð21Þ

Next, upon substituting E½wcr;k� ¼ R�1r into (21), the con-
dition for the mean weight vector of the CLMS in steady
state to be also a valid CLMSr weight vector becomes

u¼ PRn�1rn: ð22Þ
Notice that this condition is identical to (11) and estab-
lishes the equivalence of the CLMSr and CLMSi weights in
the steady state. The condition for steady state equivalence
between the CLMSr, CLMSi and CLMS is identical to that
introduced by Picinbono in [4] which addresses the suit-
ability of strictly linear models to estimate general com-
plex signals.

Remark #6. The above result shows that for jointly
circular signals (u¼ 0 and P¼ 0), the traditional CLMS
algorithm can be replaced with the more efficient CLMSr
or CLMSi filters. In other words, when identifying strictly
linear models, the CLMSr or CLMSi algorithms will achieve
the same steady state mean square error while requiring
only half the operations.

3.3. Equivalence of the ACLMS and DC-CLMS

By finding a recursive expression for R½yk� and I½yk� in
ACLMS and comparing it with the recursive expression for the
outputs R½ycr;k� and I½yci;k� of the DC-CLMS, we now show
that the ACLMS and DC-CLMS perform the same operation.

The output of the ACLMS is first written in terms of its
real and imaginary parts where the operator O½�� takes the
form of either the real operator R½�� or imaginary operator
I½��, so that

O½yk� ¼O½hH
k xk�þO½gHk xn

k�
¼O½ðhH

0 þμ1e0x
H
0 þ⋯þμ1ek�1xH

k�1Þxk�
þO½ðgH0 þμ1e0x

T
0þ⋯þμ1ek�1xT

k�1Þxn

k�: ð23Þ



Table 1
Computational requirements for the complex LMS algorithms considered,
where N is the length of the complex-valued input vector xk .

Algorithm Multiplications Additions

Identification of strictly linear models
CLMS 8Nþ2 8N
Proposed: CLMSr 4Nþ1 4N
Proposed: CLMSi 4Nþ1 4N

Identification of widely linear models
ACLMS 16Nþ2 16N
DCRLMS [11] 8Nþ4 8N
RC-WL-LMS [12] 8Nþ2 8N
Proposed: DC-CLMS 8Nþ2 8N
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Similarly, for the DC-CLMS, we have

O½yO� ¼O½wH
O;kxk�

¼O½ðwH
O;0þμ2ηO½e0�xH

0 þ⋯þμ2ηO½ek�1�xH
k�1Þxk�

ð24Þ
where yO;k ¼ ycr;k, wO;k ¼wcr;k for O½��¼R½�� and yO;k ¼ yci;k,
wO;k ¼wci;k for O½��¼I½��, and η¼ f1; jg for O½�� ¼ fR½��;I½��g

From (23) and (24), the output of ACLMS is equivalent
to that of DC-CLMS, subject to μ2 ¼ 2μ1 and h0 ¼ g0 ¼
wcr;0 ¼wci;0.

3.4. Comparison with the existing reduced complexity
algorithms

For rigour, we now compare the CLMSr/i and DC-CLMS
algorithms with the two existing reduced complexity aug-
mented complex least mean square (ACLMS) algorithms:
(a)
 Dual-channel real-valued LMS (DCRLMS) algorithm,
a real-valued algorithm that exploits the duality
between R2 and C [11].
(b)
 Reduced complexity widely linear LMS (RC-WL-LMS),
a complex-valued algorithm which employs a complex-
valued weight vector and a real-valued input vector
(constructed by augmenting the real and imaginary parts
of the original complex-valued input vector) [12].
Although DCRLMS [11] has sufficient degrees of freedom to
model complex-valued signals, its parameters reside in R,
and any physical insight that can be gained from the signal
model is obscured. On the other hand, the RC-WL-LMS [12]
does operate in the complex domain but has a limitation
since its aim is only to reduce the computational complexity.
In contrast to the DCRLMS and RC-WL-LMS, the framework
presented in this paper allows for a unified and efficient
formulation of both the strictly linear CLMS algorithm in the
form of the CLMSr/i sub-filters and the ACLMS algorithm by
combining the CLMSr/i sub-filters. Table 1 compares the
number of operations required per iteration for all the
complex LMS algorithms considered in this paper.

4. Transient performance of the DC-CLMS

The weight error vectors, ~wcr;k9wo�wcr;k and
~wci;k9wo�wci;k for the CLMSr and CLMSi respectively
are given by

CLMSr: ~wcr;kþ1 ¼ ~wcr;k�μ2R½ecr;k�xk ð25Þ

CLMSi: ~wci;kþ1 ¼ ~wci;kþ jμ2I½eci;k�xk: ð26Þ
These recursions can be simplified by expanding the out-
put errors in terms of the weight error. The output error of
CLMSr can be expressed as ecr;k ¼ ~wH

cr;kxkþηk, where ηk is
complex-valued white Gaussian noise, η�N ð0; s2η Þ, so that

CLMSr: ~wcr;kþ1 ¼ ~wcr;k�μ2xkR½xH
k ~wcr;kþηnk�

CLMSi: ~wci;kþ1 ¼ ~wci;kþ jμ2xkI½xT
k ~wn

ci;kþηk�: ð27Þ

Upon applying the statistical expectation operator and
using the standard independence assumptions, we have

CLMSr: E½ ~wcr;kþ1� ¼ ðI�μ2RÞE½ ~wcr;k��μ2PE½ ~wn

cr;k�
CLMSi: E½ ~wci;kþ1� ¼ ðI�μ2RÞE½ ~wci;k�þμ2PE½ ~wn

ci;k� ð28Þ

where R¼ E½xxH� is the covariance matrix and P¼ E½xxT �
the pseudocovariance matrix of the input data. Recall that
the weight error recursion for the CLMS is given by [1]

CLMS: E½ ~wkþ1� ¼ ðI�μRÞE½ ~wk�: ð29Þ

Remark #7. By comparing the weight error recursions for
DC-CLMS in (28) and the CLMS from (29), observe that the
evolution of the weight vectors will be identical if the data is
proper (i.e. when P¼ 0). This is supported by the simulation
result in Fig. 2, which shows the average weight trajectories
along the error surfaces of the CLMSr, CLMSi and CLMS.
An important property of the DC-CLMS algorithm, which

will be instrumental in the transient analysis, is that
when the data is improper, the CLMSr and CLMSi weights
follow opposite paths, forming a mirror image (see (28)
and Fig. 3(a)). Fig. 3(b) illustrates that although the cost
functions of the CLMSr and CLMSi have the same mini-
mum, the corresponding error surfaces are affected by the
impropriety of the data.

4.1. Convergence in the mean of the DC-CLMS

For the DC-CLMS to be stable, both its sub-filters, CLMSr
and CLMSi, must also be stable. To analyse the stability of
CLMSr and CLMSi, we shall first split the recursions given in
(28) into their real and imaginary parts. Assuming that the
real and imaginary parts of the input data are uncorrelated,
the covariance and pseudocovariance matrices are expressed
in terms of the covariances of the real and imaginary parts of
the input vector as

R¼ E½xkxH
k � ¼ RrrþRii

P¼ E½xkxT
k � ¼ Rrr�Rii: ð30Þ

Upon expressing the weight error recursion for the
CLMSr in terms of its real and imaginary parts, we have

E½R½ ~wcr;kþ1�� ¼ ½I�μRrr �E½R½ ~wcr;k�� ð31Þ

E½I½ ~wcr;kþ1�� ¼ ½I�μRii�E½I½ ~wcr;k��: ð32Þ
For the CLMSr to be stable in the mean, both the real and
imaginary parts of its weights must converge. These
recursions are stable if the maximum eigenvalues of the



Fig. 2. Averaged weight trajectories along the error performance surface
for the estimation of a strictly linear MA(1) system driven by circular
white Gaussian noise.
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matrices ½I�μRrr� and ½I�μRrr � are less than unity, which
gives the condition on the learning rate

CLMSr: 0oμo 2
maxðλi; λrÞ

ð33Þ

where λi and λr are respectively the maximum eigenvalues
for the covariance matrices Rrr and Rii.

Remark #8. Unlike the CLMS, for improper data where
the statistics of R½xk� are different from the statistics of
I½xk� (λiaλr), the CLMSr has different convergence rates
for the real and imaginary components of the weights. As
a consequence, the learning curve of the CLMSr will
exhibit two different regions converging at different rates.
Similarly, for the CLMSi sub-filter, the recursion

E½R½wci;kþ1�� ¼ ½I�μRii�E½R½wci;k�� ð34Þ

E½I½wci;kþ1�� ¼ ½I�μRrr�E½I½wci;k�� ð35Þ
gives the same stability bound as in (33). Observe that the
real component of the weight vector of CLMSr has the
same convergence rate as the imaginary component of
the weight vector of CLMSi.
It was previously stated that the ACLMS is equivalent to

the DC-CLMS when the step size of the DC-CLMS is twice
that of the ACLMS (see Section 3.3). Therefore for the
ACLMS to converge, both the CLMSr and CLMSi must
converge, and thus for the convergence of ACLMS in the
mean, the step-size must be bounded by

0oμACLMSo
1

maxðλi; λrÞ
ð36Þ

Remark #9. By analysing the stability range for the ACLMS
from the transient characteristics of the DC-CLMS, we no
longer require the strong uncorrelating transform (SUT)
[17,18]. The simplicity of the DC-CLMS approach also proves
to be more insightful in evaluating the mean behaviour
ACLMS.

5. Steady state performance of the DC-CLMS

Following the standard analysis, the steady state mean
square error is given by

MSE¼ lim
k-1

E½jekj2� ¼ EMSEþ Jmin

where the EMSE (excess mean square error) results from
the mismatch between the filter weights and the true
system model while Jmin ¼ s2η is the power of the measure-
ment noise, ηk. Since the measurement noise is not
influenced by the adaptive filter, we will only analyse the
excess mean square error (EMSE) to quantify the perfor-
mance of the DC-CLMS in steady state.

5.1. Excess mean square error of CLMSr

Since the CLMSr only lends the real part of its output to
the DC-CLMS, we shall estimate the EMSE with this in
mind. The EMSE is defined as the power of the a priori
error, ea;k, and its steady state value is [19]

EMSE: lim
k-1

E½e2a;k�: ð37Þ

Since EMSE is caused by a mismatch between the filter
weights wcr;k and the optimal system coefficients, wo, this
error is given by

ea;k9R½xT
k ðwo�wcr;kÞn� ¼R½xT

k ~wn

cr;k�: ð38Þ

Upon conjugating the weight error recursion in (25), we have

~wn

cr;kþ1 ¼ ~wn

cr;k�μR½ecr;k�xn

k ð39Þ

and pre-multiplying both sides by xT
k gives xT

k
~wn

cr;kþ1 ¼
xT
k
~wn

cr;k�μR½ecr;k�xT
kx

n

k . Next, we define ep;k9R½xT
k
~wn

cr;kþ1�
as the a posteriori error which gives us

ep;k ¼ ea;k�μR½ecr;k�Jxk J2 ð40Þ

where ea;k ¼R½xT
k
~wn

cr;k�. Thus, the term R½ecr;k� becomes

R ecr;k
� �¼ ea;k�ep;k

μJxk J2
ð41Þ

and by substituting for R½ecr;k� in (39), we obtain

~wcr;kþ1þ
ea;k

Jxk J2
xk ¼ ~wcr;kþ

ep;k
Jxk J2

xk ð42Þ

Squaring both sides and applying the statistical expectation
operator gives

E J ~wcr;kþ1 J2
h i

þE
e2a;k

Jxk J2

" #
¼ E J ~wcr;k J2

h i
þE

e2p;k
Jxk J2

" #
:

ð43Þ
At the steady state we can use the energy conservation
principle [19], which states that E½J ~wcr;kþ1 J2� ¼
E½J ~wcr;k J2�, to obtain

E
e2a;k

Jxk J2

" #
¼ E

e2p;k
Jxk J2

" #
ð44Þ



Fig. 3. Averaged weight trajectories for the estimation of a strictly linear MA(1) process driven by non-circular white Gaussian noise. (a) Trajectories for the
CLMS, CLMSr and CLMSi for improper input data. (b) Individual error surfaces for the CLMSr and CLMSi for improper input data.
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Inserting the relationship between the a posteriori error and
the a priori error, ep;k ¼ ea;k�μR½ecr;k�Jxk J2, from (40) gives

E
e2a;k

Jxk J2

" #
¼ E

ðea;k�μR½ecr;k�Jxk J2Þ2
Jxk J2

" #
: ð45Þ

To find an expression that includes only ea;k as the error term,
we expand the real part of the error from the CLMSr,
R½ecr;k� ¼R½dk�ycr;k�, where the desired signal is, dk ¼
wH

o xkþηk. The error term R½ecr;k� and the apriori error, ea;k,
are then related as

R½ecr;k� ¼R½ðwo�wcr;kÞHxkþηk� ¼ ea;kþηr;k ð46Þ
where ηr;k is the real part of the system noise. Replacing (46)
into (45) gives

E
e2a;k

Jxk J2

" #
¼ E

ðea;k�μea;k Jxk J2�μηr;k Jxk J2Þ2
Jxk J2

" #
: ð47Þ

Assuming that the noise term ηk is statistically independent
from the a priori error, ea;k, expression (47) simplifies into

E e2a;k
h i

¼ μ

2
E e2a;k Jxk J2
h i

þμ

2
Tr R½ �s2ηr ð48Þ

where s2ηr is the power of the real part of the system noise.
For a small step size μ we can assume that the term
ðμ=2ÞJxk J2E½e2a;k� is negligible compared to ðμ=2Þ Tr½R�s2ηr
and hence

EMSEsmall μ
CLMSr : lim

k-1
E e2a;k
h i

¼ μ

2
Tr R½ �s2ηr : ð49Þ

For a large step size, the term μ=2Jxk J2E½e2a;k� is not negli-
gible. Instead, we make a further assumption that at steady
state Jxk J2 is statistically independent from e2a;k [19], to
obtain

EMSElarge μ
CLMSr : lim

k-1
E e2a;k
h i

¼
μ Tr½R�s2ηr
2�μ Tr½R�: ð50Þ

5.2. Excess mean square error of CLMSi

The analysis for the EMSE of the CLMSi is similar to that
for the CLMSr. The difference is in the definitions for the
a priori and a posteriori errors, which for the CLMSi are
respectively ea;k ¼ I½xT

k
~wn

ci;k� and ep;k ¼I½xT
k
~wn

ci;kþ1�. Then,
the EMSE of the CLMSi takes the form

EMSEsmall μ
CLMSi : lim

k-1
E e2a;k
h i

¼ μ

2
Tr R½ �s2ηi

for small step sizes, and

EMSElarge μ
CLMSi : lim

k-1
E e2a;k
h i

¼
μ Tr½R�s2ηi
2�μ Tr½R�

for large step sizes, where s2ηi is the power of the imaginary
part of the system noise.

5.3. Excess mean square error of the DC-CLMS

Since the DC-CLMS is formed from the real part of
CLMSr and imaginary part of CLMSi, the EMSE of the
DC-CLMS is EMSEDC�CLMS ¼ EMSECLMSrþEMSECLMSi and
s2η ¼ s2ηr þs2ηi , and consequently

EMSEsmall μ
DC�CLMS ¼

μ

2
Tr R½ �s2η ¼ EMSEsmall μ

CLMS ð51Þ

for small step-sizes. For large step-sizes, this becomes

EMSElarge μ
DC�CLMS ¼

μ Tr½R�s2η
2�μ Tr½R� ¼ EMSElarge μ

CLMS : ð52Þ

When the step-size of the DC-CLMS is equal to that of the
CLMS, they achieve the same steady state excess mean
square error.

5.4. Excess mean square error of the ACLMS

We have shown that the ACLMS behaves like the DC-
CLMS if the corresponding learning rates satisfy the con-
dition μDC�CLMS ¼ 2μACLMS. This makes it possible to write
the EMSE for ACLMS in the form

EMSEsmall μ
ACLMS ¼ μ Tr½R�s2η ¼ 2� EMSEsmall μ

CLMS ð53Þ
for small step sizes, and

EMSElarge μ
ACLMS ¼

μ Tr½R�s2η
1�μ Tr½R�4EMSElarge μ

CLMS

for large step sizes. This result reveals that when model-
ling a strictly linear system, the ACLMS has a larger steady
state error compared to the CLMS. This is attributed to the
gradient noise introduced by the additional filter coeffi-
cients needed by the ACLMS.

6. Simulations

To verify the analyses, all the filters considered were
evaluated in the system identification setting with the
step-size μ¼ 0:02. The mean square error (MSE) of the
algorithms was calculated at each time instant, k, by
averaging the error power from 100 independent trials
to give

MSEk ¼
1

100
∑
100

ℓ ¼ 1

			dðℓÞk �yðℓÞk

			2 ð54Þ

where dðℓÞk is the desired signal and yðℓÞk is the estimate
given by the algorithms considered at trial (realisation) ℓ.
The performances of CLMS, CLMSr and CLMSi were
assessed for identifying a strictly linear MA(4) model
described by

yk ¼ b0xkþb1xk�1þb2xk�2þb3xk�3þηk ð55Þ
for which the coefficients were

b0 ¼ 6�6j; b1 ¼ 0:5þ j; b2 ¼ �2þ j; b3 ¼ 2þ3j ð56Þ
and the statistics of the data and noise

x�N ð0;1Þþ jN ð0;1Þ; η�N ð0;0:1Þþ jN ð0;0:1Þ: ð57Þ
Fig. 4 shows that CLMSr and CLMSi achieved the same

steady state mean square error as the CLMS while requir-
ing only half the operations of the CLMS. This is consistent
with Remark 6 and implies that the more efficient CLMSr
or CLMSi filters can substitute the standard CLMS in
strictly linear estimation.

Fig. 5 shows the performances of the DC-CLMS, CLMS
and ACLMS when estimating a widely linear system, in



Fig. 4. The proposed CLMSr and CLMSi have the same steady state mean
square error as the conventional CLMS.

Fig. 5. Mean square error curves of the CLMS, ACLMS and the proposed
DC-CLMS, show that the DC-CLMS and ACLMS have the same mean
square error performance when modelling widely linear systems.

Fig. 6. Number of multiplications as a function of the filter length.

Table 2
MSE and EMSE for the CLMS and ACLMS for the identification of a strictly
linear MA(4) system.

Jmin CLMS ACLMS

MSE EMSE MSE EMSE

Simulations 0.1 0.1085 0.0085 0.1195 0.0195
Theory 0.1 0.1080 0.0080 0.1160 0.0160

Fig. 7. Mean square error of the DC-CLMS for noncircular signals (top
panel) shows two distinct regions in the transient regime due to the
difference in the convergence rates of the CLMSr and CLMSi subfilters
(bottom panel).
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terms of the mean square error (MSE). The widely linear
MA(4) system used to generate the signal is given by

yk ¼ b0xkþb1xk�1þb2xk�2þb3xk�3

þb0xnkþb1xnk�1þb2xnk�2þb3xnk�3þηk ð58Þ

where the same system coefficients bi, fi¼ 0;…;3g
described in (56) and b0 ¼ 0:2�0:2j, b1 ¼ 0:1þ0:1j,
b2 ¼ 2, b3 ¼ 0:4j, were used. The statistics of the input data
and noise are described in (57).

Conforming with the analysis, the CLMS exhibited
a bias due to the inherent under-modelling (see [20])
while the DC-CLMS and ACLMS were able to model the
underlying widely linear system correctly. It is important
to re-emphasize that the DC-CLMS was able to achieve the
same mean square performance as the ACLMS by using the
half the number of operations required by the ACLMS.

The computational complexity of the algorithms con-
sidered, represented by the number of multiplications per
iteration, is shown in Fig. 6. The number of multiplications
of the CLMSr and CLMSi are half of that of the CLMS
making the CLMSr or CLMSi more efficient than the CLMS
for estimating a strictly linear system. Similarly, the DC-
CLMS requires approximately half the number of opera-
tions of the ACLMS, and is more efficient than the ACLMS
at modelling widely linear systems.

Table 2 compares the steady state MSE of the CLMS to
that of the ACLMS for estimating the strictly linear MA(4)
model in (55) when both filters have the same step-size.
Notice how the CLMS achieves lower steady state MSE
than the ACLMS, thus supporting the analysis in Section 5.
Note the close match between the theoretical EMSE, as
measured by (53), and the simulated EMSE and how, as
expected, the simulated EMSE for the ACLMS is approxi-
mately twice that of the CLMS.

Finally, the behaviour DC-CLMS was analysed for mod-
elling strictly linear systems driven by noncircular inputs.
A strictly linear MA(1) signal given by

yk ¼ b0xkþηk; b0 ¼ 6þ4:8j
x� 0:5N ð0;0:9Þþ j0:15N ð0;0:9Þ ð59Þ
was driven by a noncircular driving noise, xk, as shown
in (59).

Fig. 7 shows that the learning curve for the DC-CLMS
has two distinct regions: Region 1 in the MSE evolution,
shown in the top panel, has a steeper gradient compared
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to Region 2. To explain this phenomenon, we also show
the convergence rates of the real and imaginary parts of
the weights of the CLMSr/i in the bottom panel of Fig. 7.

Taking the CLMSr as an example, we can observe that in
Region 1, the real part of the CLMSr weight adapts more
rapidly compared to its imaginary part. This causes the
average adaptation rate to be higher in Region 1. Region 2
begins after the real part of the CLMSr weight has
converged and the average adaptation rate is lower
because of the slower adaptation of the imaginary part
of the CLMSr weight. A similar behaviour is observed for
the CLMSi filter, where the imaginary part of the CLMSi
weight adapts more rapidly compared to its real part.
7. Conclusion

We have introduced an alternative formulation for
widely linear estimation and have developed a corre-
sponding adaptive filter referred to as the DC-CLMS. The
CDC estimation framework splits the MSE cost function
into the contributions from estimating the real and ima-
ginary parts of the signal. By optimizing individually for
those parts, the CDC estimator obtains the degrees of
freedom necessary for widely linear estimation. The adap-
tive DC-CLMS has been shown to be identical to the
ACLMS, while only requiring approximately half the math-
ematical operations. For jointly circular signals, the CLMSr
and CLMSi have been shown to provide the same steady
state solution as the CLMS, while requiring half the
number of numerical operations. In addition, the analysis
of the two sub-filters (CLMSr and CLMSi) has allowed us to
derive expressions for the stability range and EMSE of the
ACLMS which are simpler and physically more intuitive
than the existing analyses. Simulations in the system
identification setting support the approach.
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