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Abstract— The correlation preserving transform (CPT) is
introduced to perform bivariate component analysis via decorre-
lating matrix decompositions, while at the same time preserving
the integrity of original bivariate sources. Specifically, unlike
existing bivariate uncorrelating matrix decomposition techniques,
CPT is designed to preserve both the order of the data channels
within every bivariate source and their mutual correlation prop-
erties. We introduce the notion of intraference to quantify the
effects of interchannel mixing artifacts within recovered bivariate
sources, and show that the integrity of separated sources is
compromised when not accounting for the intrinsic correlations
within bivariate sources, as is the case with current bivariate
matrix decompositions. The CPT is based on augmented complex
statistics and involves finding the correct conjugate eigenvectors
associated with the pseudocovariance matrix, making it possible
to maintain the physical meaning of the separated sources. The
benefits of CPT are illustrated in the source separation and
clustering scenarios, for both synthetic and real-world data.

Index Terms— Augmented complex statistics, bivariate data
analysis, correlation preserving transform (CPT), noncircularity,
widely linear modeling.

I. INTRODUCTION

DECORRELATING (also known as prewhitening) trans-
forms are commonly used in the design and analysis of

complex learning systems, including neural networks, blind
source separation [1], [2], nonnegative principal component
analysis (PCA) [3], Hebbian-type learning techniques [4],
and feature analysis [5]. These almost invariably operate
on real vector-valued data (from univariate data through to
CANDECOMP/PARAFAC tensor decompositions [6]–[8]).
Current prewhitening transforms are not designed to preserve
the inherent couplings that typically exist between the com-
ponents in recovered vector-valued sources; for instance, the
correlation between the real and imaginary parts within every
complex (bivariate) source. The problem we consider is there-
fore generic and very important, especially when the physical
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Fig. 1. Bivariate source separation. Left: current techniques both decorrelate
the original bivariate sources and scatter the data channels within bivariate
sources across the orthogonal component space. Right: we desire to maintain
both the order and correlation properties of data channels within each bivariate
source (integrity), while allowing for the permutation ambiguity of such
coherent bivariate sources. The symbols Snr and Sni denote the real and
imaginary parts of the nth bivariate source while the circumflex denotes the
recovered sources.

meaning in complex learning systems needs to be maintained:
we answer how to perform decorrelation between the sources
while ensuring that the intrinsic correlation structure within the
components of a given source is preserved. The shortcomings
of overlooking the intrinsic correlation within the components
of each bivariate source, while decorrelating the sources from
one another, as is current practice, include the following:

1) Source Integrity: The well-known permutation ambigu-
ity in source ordering after decorrelation means that
the reconstructed sources appear in no particular order.
This, in turn, causes the integrity problem, since the two
univariate data channels belonging to a coherent bivari-
ate source will not be aligned into a coherent bivariate-
independent component (IC). Instead, the constituent
data channels will be scattered anywhere across the
space spanned by the separated data channels (see also
Fig. 1).

2) Indexing: Upon correctly reconstructing every bivariate
source from their mixtures, we need to index the chan-
nels pertaining to a particular source, and to keep track
of the indexing. This is not trivial, as for nonstationary
sources fixed indexing is not appropriate, since the
intermittent new sources arising from the time-varying
statistics are unlikely to be estimated in the original
order.

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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3) Correlations: A prerequisite for correct separation is for
the original correlation structure to be preserved within
each multidimensional recovered source, while at the
same time decorrelating different multivariate signals
(within the same vector space).

To overcome these obstacles, we propose the correlation pre-
serving transform (CPT) that applies across complex learning
systems. For convenience, we introduce it in the context
of source separation, however, the concept straightforwardly
generalizes to any type of complex neural networks. Our
analysis is based on the strong uncorrelating transform (SUT)
[9], [10], an elegant current technique, which is also prone to
the above shortcomings.

Fig. 1 highlights the importance of designing matrix decom-
positions, which would account for the integrity of vector
sources. To an extent, 2-D, 3-D, and 4-D data analyses in the
context of complex- and quaternion-valued source separation
address this issue [11], [12]. However, these do not exploit
the full potential that the multivariate (augmented) statistics
of such sources offer. Most importantly, by their design,
current techniques destroyed the intrinsic cross-correlations
inferring between the constituent source channels (compo-
nents). To introduce the problem, we first consider the SUT
for complex-valued data [9], [10], which has been designed
based on the strong assumption of uncorrelatedness. As such,
it is not suitable to estimate bivariate sources, which exhibit
intrinsic correlation, a typical case in practice.

We first highlight that the problem of phase ambiguity
is related to the treatment of the pseudocovariance matrix,
which within SUT is kept real. Next, the CPT is proposed
to provide a generic solution for bivariate source separa-
tion, which maintains the integrity of individual sources. The
concept of intraference is introduced to quantify the extent
to which the inherent statistical properties within original
bivariate sources are violated. We show that not accounting
for the intraference makes it impossible to associate physical
meaning with recovered bivariate sources, as the intraference is
manifested by the intrinsic mixing of the real and imaginary
parts within every complex (bivariate) source. The analysis
shows that the proposed CPT comprises the existing SUT,
as a special case, highlighting the generality of CPT and the
effects of the intraference present in SUT, which arises from
the equivariant mixing–unmixing model. The performance of
CPT is validated against PCA and SUT both analytically
and through real-world simulation studies in brain computer
interface (BCI) and wind modeling. The proposed statistical
framework is shown to provide an enabling technology for the
rigorous analysis of a wide range of complex-valued learning
systems.

II. BIVARIATE MATRIX DECOMPOSITIONS

FOR SOURCE SEPARATION

For convenience, we introduce the concepts of intraference
and correlation preserving bivariate transforms in the complex
domain, as it is naturally suited to deal with phase information.
The duality with bivariate vectors ensures that the concept
also applies to real bivariate vectors [13]. To that end, basic

notions from the augmented complex statistics and widely
linear modeling are summarized in the following [14], [15].

For a complex-valued zero mean1 random vector x =
xr + ıxi ∈ CN , where ı = √−1. The complete second-
order information is provided only by accounting for both
the covariance C and pseudocovariance P matrices, defined
as [16]

C = E{xxH }
P = E{xxT } (1)

where E{·} is the statistical expectation operator. The covari-
ance matrix C is symmetric and is commonly used to
model second-order statistics of complex variables, whereas
the pseudocovariance matrix P accounts for the correlation
between the real and imaginary components and for a mis-
match in the power between the real and imaginary data
channel. A random vector with a vanishing pseudocovariance
is termed as second-order circular or proper [17]. In general,
the term circular refers to a rotation invariant probability dis-
tribution, while properness (second-order circularity) specif-
ically refers to the second-order statistical properties (equal
powers in data channels). Note that the majority of complex
signals encountered in signal processing applications2 are thus
improper, highlighting the need to have a complete and unified
treatment of such signals when designing complex learning
systems.

A. Bivariate Matrix Analysis

Consider the vector of bivariate data sB , and a general case
where a degree of correlation exists both within and between
the data channels sB R and sB I of the source sB = [sB R, sB I ],
so that the covariance matrix3

�B = E
{
sBsT

B

} =
[

�R �RI

�I R �I

]
(2)

assumes a block diagonal structure. The covariance matrices of
such bivariate real data channels (see real and imaginary) are
denoted by �R , �I , and their cross-covariance by the matrices
�I R and �RI . Note that the symbol � reflects that the real-
valued covariance � is diagonal. Therefore, to preserve the
original correlation properties between the two data channels
within the recovered individual bivariate components, it is nec-
essary to design a procedure, which maintains the integrity of
the block diagonal structure in (2). This is not straightforward
to achieve, as generally the real-valued cross-covariance matrix
�RI between the two constitutive channels is not symmetric.
Notice also the generality of (2), as when �RI = 0 we have
the traditional case of a diagonal covariance matrix �B = �,
for which standard decorrelation and independent component
analysis (ICA) models apply (circular case).

1In independent component analysis and blind source separation [11], it is
common to assume centered sources.

2Either those complex by design, such as communications signals, or
those made complex by convenience of representation, such as wind and
EEG signals [14].

3For convenience, we denote the constituent data channels by sB R and sB I
to facilitate the comparison with its dual complex representation.
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An alternative way to address the block diagonal struc-
ture in (2) is to consider the corresponding complex-valued
augmented covariance matrix CA , given by4

CA = E
{
sAsH

A

} =
[

C P
P∗ C∗

]
(3)

where

sA = sAR + ısAI = sB R + ısB I

C = �R + �I

P = �R − �I + 2ı�RI . (4)

The block diagonal structure (and thus the decorrelation
between data channels) can be imposed on the augmented
covariance matrix in (3) by the SUT [10], which jointly
diagonalizes both the covariance C and the pseudocovariance
P matrix; for more detail on SUT, see [9], [10], and [18].
Within the SUT, the pseudocovariance matrix is constrained
to be real valued due to the use of a special form of singular-
value decomposition, called the Takagi factorization. Thus, the
real-valued bivariate covariance matrix �B becomes strictly
diagonal, causing the real-valued bivariate cross-covariance
matrix �RI to vanish, thus implying uncorrelatedness of the
real and imaginary parts within every bivariate source and
giving rise to the problem of source integrity addressed in
this paper.

Remark 1: The SUT is blind to phase information as it
forces the imaginary part of the pseudocovariance P in (4)
to vanish. Therefore, when using Takagi factorization-based
techniques, such as SUT and its variants [10], [19], [20],
intrinsic mixing occurs within each individual bivariate
recovered source, as the source pseudocovariance is rarely
zero, yielding poor estimates of the sources stemming from
the inherent inability of SUT to preserve source integrity
(see also Footnote 5).

Our aim is therefore to introduce a novel diagonalization
procedure, which preserves the inherent correlation, and thus
physical meaning, within each recovered bivariate source, by
also accounting for the cross-covariance matrix �RI .

B. Bivariate Matrices in the Context of Source Separation

To further illustrate the challenge in maintaining the original
correlation structure (within bivariate sources) in (2), while
decorrelating the sources from their mixtures, observe that
the diagonal structures of the upper right and lower left
submatrices in (2) require that in the dual, complex-valued
space, the diagonal pseudocovariance matrix P in (3) is
inherently complex valued.5 However, the Takagi factorization
within SUT which diagonalizes P enforces the estimated
pseudocovariance to be real valued, leading to a complex-
valued mixing–unmixing model WH, which we formalize by

4This duality is enabled by the isomorphism between R
2 and the augmented

complex field C, see also [14].
5 The pseudocovariance is always complex valued for correlated real and

imaginary parts of a complex number. In addition, since the pseudocovariance
p = E

{
xxT } = E{|x|2eı2θ }, the modulus |x|2 is readily estimated by SUT,

whereas SUT is blind to the phase θ , a subject of this paper.

considering the following ICA model:
Mixing Model: x(n) = Hs(n) (5)

Unmixing Model: y(n) = Wx(n) = WHs(n) (6)

= PDs(n) = P��s(n) (7)

where x(n) is the vector of observed (mixed) bivariate signals,
y(n) is the vector of recovered sources, H represents the
linear mixing model or mixing coefficient matrix, and W is
proportional to the inverse of H and is called the unmixing
matrix. In the real domain, both the permutation matrix P and
the scaling matrix D are trivial ambiguities, which can be over-
looked in the analysis. In the complex domain, the situation is
different, as the Euler representation of the scaling matrix,
D = ��, whose diagonal elements δii = exp(ıθi ) and
λii = |dii |, provides the desired phase and magnitude infor-
mation (and hence the integrity of sources) for the diagonal
elements of D. In other words, our aim is to move beyond the
usual complex-valued mixing matrix and real pseudocovari-
ance model, and consider more physically meaningful real-
valued mixing and complex pseudocovariance, and to show
that this enables us to design a decorrelation technique, which
preserves the integrity of bivariate sources, a key element in
a number of practical applications.

Remark 2: To prevent intrinsic mixing between the real and
imaginary parts of the extracted IC, we need to address the
phase ambiguity, reflected in the matrix �.

The unmixing model in (6) leads to both the phase and
real-valued scaling ambiguities, since

y(n) ∝ δs(n)

∝ (
δRsR(n) − δI sI (n)

)

︸ ︷︷ ︸
real and imaginary parts of s

+ı
(
δRsI (n) + δI sR(n)

)
(8)

where δ denotes the complex-valued scaling ambiguity.
Observe that y(n) is a poor estimate of a source s(n), since
the real part yR(n) comprises of the real and imaginary
parts of s(n); a similar observation can also be made for
the imaginary part yI (n). This problem was highlighted in
[11, pp. 384–385] and [21] stating that it is not possible to
solve this phase ambiguity.

To provide further evidence6 that the phase ambiguity
represented by the matrix � arises due to the real-valued
constraint imposed by the Takagi factorization, consider the
pseudocovariance matrix of independent sources, which can
be expressed as P = �P�P , to give

�P = WHPHT W T (9)

= WH
(
�

1/2
P �P�

1/2
P

)
HT W T (10)

and consequently

WH�
1/2
P = I

WH = �
−1/2
P . (11)

Remark 3: An appropriate mixing–unmixing model
WH ∈ C would require a complex-valued �

−1/2
P , instead of a

6For clarity and without loss of generality, in the following we neglect the
permutation ambiguity.
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real-valued matrix used in current techniques, highlighting that
the existing methods cannot reconstruct adequately general
bivariate sources.

III. CORRELATION PRESERVING TRANSFORM

We shall now address the problem of integrity of bivariate
sources stated in Section II in the complex domain, and
provide a solution through the proposed CPT.

A. On Takagi Factorization and Its Computation

The Takagi factorization of a complex-valued symmetric
matrix A = Q�QT is a special case of the singular-value
decomposition, whereby the diagonal matrix � is restricted
to be real valued and positive. The key to the proposed CPT
solution is to demonstrate that the unitary matrices U and V
within the singular-value decomposition of a symmetric
A = AT are related7 by [18, p. 411]

V∗ = U� (12)

where � = diag(eıθ1 , . . . , eıθn ). For simplicity, it is generally
assumed that � = I, such that U = V∗, however, the matrix
� is not unique and may also depend on the numerical
implementation8 of the singular-value decomposition.

For rigor, we shall compute the Takagi factorization by
exploiting the relationship in (12) as

A = USVH = US�UT (13)

= QSQT (14)

where Q = U�1/2 is a unitary matrix and the matrix
� = UH V∗ is diagonal.

Remark 4: There is a loss of phase information, when the
matrix � is absorbed into U in (13) so as to yield the matrix
Q in Takagi factorization (14).

Remark 5: In addition to the phase ambiguity, since
QH PQ∗ = S ∈ RN×N , we need to address the problem
of finding conjugate eigenvectors (con-eigenvectors), which
satisfy AU∗ = UD. However, con-eigenanalysis is nonunique;
for instance, if μ is a nonnegative con-eigenvalue of A then
so too is μ exp(ıθ), for any θ [18].

B. Strong Uncorrelating Transform

The SUT, formally introduced in [9] and then elaborated
in the context of ICA in [10], performs decorrelation of
multivariate complex data in two stages: 1) by performing
decorrelation between the independent bivariate sources and
2) by subsequently decorrelating the real and imaginary parts
of the bivariate ICs. In this way, the SUT diagonalizes both
the covariance and pseudocovariance matrix as follows:

�C = WCW H = I

�P = WPW T (15)

7The relation between the right and left eigenvector always holds for distinct
singular values, however, when some of the singular values coincide this
relationship may not hold [22].

8Real-valued singular values means that there is at least a phase ambiguity
in the columns of U and V.

where the symbols �C and �P denote, respectively, the real-
valued diagonalized covariance and pseudocovariance matri-
ces, and I and W are, respectively, the identity matrix and the
SUT, given by

W = QH
P C− 1

2 . (16)

The unitary matrix QP can be obtained from the
Takagi factorization of the normalized pseudocovariance
matrix C−(1/2)PC−(1/2)T = QP�P QT

P .

C. Proposed CPT

We have shown in Section II and in Remark 4 that the
estimation of the phase matrix � is a prerequisite for the
correlation preservation within individual ICs, and also to
prohibit the inherent mixing between the real and imaginary
parts within every recovered bivariate source that occurs when
using standard ICA, as stated in (8). A simple yet effective
solution is based on the result in (11), which states that the
SUT can be expressed as

W = �
−1/2
P H−1 (17)

which implies that

W−1 = H�
1/2
P . (18)

Upon dividing each element of W−1 by its magnitude, we
obtain the phase matrix of the form

�P =
⎡

⎢
⎣

± exp(ıθ1) · · · ± exp(ıθn)
...

. . .
...

± exp(ıθ1) · · · ± exp(ıθn)

⎤

⎥
⎦ (19)

whose diagonal square root

�
1/2
P =

⎡

⎢
⎣

exp(ıθ1) · · · 0
...

. . .
...

0 · · · exp(ıθn)

⎤

⎥
⎦.

Observe that, if �P is not of the form in (19), that is, when not
all the elements of the i th column are ± exp(ıθi) but assume
the value of unity, then �

1/2
P = I. For this particular case,

as shown later in (21) that CPT simplifies into SUT.
Additionally, there are many application scenarios, which

only require the multiple bivariate sources to be mutually
decorrelated, while at the same time, it is an imperative to
preserve the cross-covariance structure between the constitu-
tive components of each individual bivariate source. In this
way, we preserve the integrity and physical meaning of the
bivariate-independent components. We can also associate each
diagonal element of �

1/2
P with the square root of its corre-

sponding normalized element pii of the pseudocovariance of
the original data, that is

�
1/2
P =

⎡

⎢
⎣

(p11/|p11|2)1/2 · · · 0
...

. . .
...

0 · · · (pnn/|pnn|2)1/2

⎤

⎥
⎦ (20)

ensuring that the phase information regarding the individual
bivariate components of the original multivariate data are
preserved.
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Remark 6: The form in (20) has the following desired
properties: 1) the ± sign ambiguity problem is completely
bypassed, as we can reconstruct the bivariate sources irrespec-
tive of this ambiguity and 2) the scaling ambiguity is also
bypassed by the normalization of each element of W−1.

The proposed CPT therefore assumes the form

V = �
1/2
P W (21)

where the SUT W can be calculated from (16). Observe that
the computational complexity of the CPT in (21) is effectively
the same as that of SUT, as �

1/2
P is a diagonal matrix and the

cost of premultiplication of the SUT matrix W with �
1/2
P is

negligible compared with the computational complexity of the
two singular values involved in the SUT.

Remark 7: Observe that if the mixing matrix H in (5) is
complex valued, it would not have been possible to perform
the phase estimation accurately. Therefore, CPT generalizes
SUT, as SUT does not cater for the phase ambiguity at all.

The advantages of accounting for phase information by CPT
are supported by the simulation studies in Section V.

IV. INTRAFERENCE ANALYSIS OF SUT AND CPT

The performances of SUT and CPT are next analyzed, based
on the standard small error assumption [18]. The error analysis
is motivated by that in [23], however, our work focuses on the
novel concept of intraference illustrated in (8), instead of the
standard interference analyzed in [23].

A. Error Model

As illustrated above, the error in bivariate ICA arises from:

1) the imperfection of the mixing–unmixing model WH;
2) the misspecification of the assumed statistics of the ICs,

such as the assumption of real-valued nature of their
pseudocovariance matrix.

To quantify those uncertainties, we employ the following error
models:

WH = I + �, Ĉ = I + ξ c, P̂ = P + ξ p (22)

where � is the intraference matrix, and ξ c and ξ p are the
errors in estimating the covariance and the pseudocovariance
matrices. This allows us to formulate the covariance and
pseudocovariance of the estimated ICs in the form

(I + �)Ĉ
(
I + �H ) = I (I + �)P̂

(
I + �T ) = P̃ (23)

where P̃ denotes the pseudocovariance matrix estimated by
either CPT or SUT. Expanding these expressions, we obtain
the following approximations:

I ≈ I + � + �H + ξC

ξC ≈ −(
� + �H )

(24)

P̃ ≈ P + �P + P�T + ξ P

ξ̃ P ≈ −(
�P + P�T )

(25)

where ξ̃ P = ξ P − (P̃ − P).

B. Definition of the Intraference

Based on the error model in (22), the intraference for the
kth bivariate source can be defined in terms of the deviation
of diagonal term [kk] of the mixing–unmixing model in (6)
from unity

E
{
�2[k, k]} = E{|(WH)[k, k] − 1|2}. (26)

This definition is based on the assumption that there is
no permutation. In practice, to circumvent the permutation
ambiguity, sources are sorted in a descending order of the
absolute value of their pseudocovariance (noncircularity). This
is logical because when Takagi factorization is employed,
singular-value decomposition sorts the ICs in a descending
order of their singular values.

C. Analysis of the Intraference

To derive the expression for the intraference �[k, k] from
(24) and (25), we consider all the i th diagonal elements of the
matrices in (24) and (25) and express them as

εk ≈ −	kθ k⎡

⎣
εC R[k, k]
ε̃P R[k, k]
ε̃P I [k, k]

⎤

⎦ ≈ −
⎡

⎣
1 1 0

PR[k, k] 0 −PI [k, k]
PI [k, k] 0 PR[k, k]

⎤

⎦

⎡

⎣
�R[k, k]
�R[k, k]
�I [k, k]

⎤

⎦.

(27)

The vector εk can also be expressed in terms of its complex-
valued counterpart

εk = 1

2
�εk

⎡

⎣
εC R[k, k]
ε̃P R[k, k]
ε̃P I [k, k]

⎤

⎦ = 1

2

⎡

⎣
2 0 0
0 1 1
0 −ı ı

⎤

⎦

⎡

⎣
ξC [k, k]
ξ̃P [k, k]
ξ̃∗

P [k, k]

⎤

⎦. (28)

As E
{
εkε

T
k

} = (1/4)�E
{
εkε

H
k

}
�H , we have9

E
{
εkε

T
k

}

=
⎡

⎣
4ξ2

C 2(ξC ξ̃∗
P +ξC ξ̃∗

P ) 2ı(ξC ξ̃∗
P −ξC ξ̃P )

2(ξ̃PξC +ξ̃∗
PξC ) 2ξ̃P ξ̃∗

P +ξ̃∗
P ξ̃∗

P +ξ̃P ξ̃P ı(ξ̃∗
P ξ̃∗

P −ξ̃P ξ̃P)

2ı(ξ̃∗
PξC − ξ̃PξC ) ı(ξ̃∗

P ξ̃∗
P −ξ̃P ξ̃P) −(ξ̃∗

P ξ̃∗
P +ξ̃P ξ̃P )

⎤

⎦

=
⎡

⎣
ξ2

C ξC ξ̃P R ξC ξ̃P I

ξC ξ̃P R ξ̃2
P R ξ̃P R ξ̃P I

ξC ξ̃P I ξ̃P R ξ̃P I ξ̃2
P I

⎤

⎦ (29)

which can be used to compute the covariances of interest, that
is, E

{
θ kθ

T
k

} = 	−1
k E

{
εkε

T
k

}
	−T

k , where

	−1
k = −1

P2
R[k, k] + P2

I [k, k]

×
⎡

⎣
0 PR [kk] PI [k, k]

−(P2
R[k, k] + P2

I [k, k]) −PR[k, k] −PI [k, k]
0 −PI [k, k] PR [k, k]

⎤

⎦.

(30)

Notice that to measure the intraference, only the knowledge
of E

{
�2

R[k, k]} and E
{
�2

I [k, k]} is required, that is, it is

9For clarity, in the sequel we omit the index [k, k].
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sufficient to calculate just the diagonal elements [1, 1] and
[3, 3] of the matrix E

{
θkθ

T
k

}
, which is achieved by

E
{
�2

R

} =
[
PR ξ̃P R + PI ξ̃P I

]2

[
P2

R + P2
I

]2 when ξC = 0 (31)

E
{
�2

I

} =
[
PR ξ̃P I − PI ξ̃P R

]2

[
P2

R + P2
I

]2 . (32)

The value of intraference is thus given by E
{
�2[k, k]} =

E
{
�2

R[k, k]} + E
{
�2

I [k, k]}, and assumes the value of

E
{
�2[k, k]} = E

{|ξ̃P |2}/|P[k, k]|2. (33)

The so simplified expression for E
{
�2

R

}
in (31) is perfectly

valid, as the misspecification error of the covariance ξC [k, k] =
1 − ( ∑

N si s∗
i

)
/N can be overlooked due to the scaling

ambiguity.
Remark 8: The phase ambiguity arises due to the error

in the estimation of the pseudocovariance matrix and is not
related to the errors in the estimation of the covariance
matrix, highlighting the caveats of the existing bivariate matrix
decorrelation algorithms and the advantages of the proposed
CPT.

Remark 9: The intraference measure is invariant to the
magnitude of the pseudocovariance when |P[k, k]| =
|P̂[k, k]|.

This can be explained as follows. The intraference (33)
arises from both the misspecification error of the pseudoco-
variance of the kth IC and the estimation error during the
demixing process. In a perfect scenario, where the estimated
singular values of the ICs correspond to their exact values,
i.e., |P[k, k]| = |P̂[k, k]|, the error ξ̃P [k, k] can be expressed
in an Euler form as

ξ̃P [k, k] ≈ ∣
∣P[k, k]∣∣E

{[
exp(ıθk) − exp(ı θ̂k)

]}
(34)

where θ̂ is obtained from the pseudocovariance matrix of the
estimated ICs. Thus, (33) can be simplified to

E
{
�2[k, k]} ≈ E

{| exp(ıθk) − exp(ı θ̂k)|2
}
. (35)

In practice, however, |P[k, k]| �= |P̂[k, k]| and therefore the
expression in (33) should be used to measure the intraference.

Remark 10: For the CPT, when the condition in (19)
is satisfied then the estimate of CPT θ̂ ≈ θ leads to
E

{
�2[k, k]} ≈ 0. In the worst case Scenario, where θk �= θ̂k

and the condition (19) is not satisfied, the CPT degenerates
into the SUT, thus consistently performing no worse than the
SUT.

Remark 11: For the standard SUT, θ̂k = 0 always holds.
Thus, if θi �= 2πk, for any integer k, the SUT is uncondi-
tionally biased, since in this particular case the intraference is
given by E

{
�2[k, k]} ≈ 2[1 − E{cos(θk)}].

V. SIMULATIONS AND DISCUSSION

To verify the proposed CPT, comprehensive simulations
were conducted for both synthetic and real-world data. Studies
based on synthetic data were performed to assess: 1) the
behavior of CPT for varying phase angles; 2) the performance

of CPT against the varying number of sources; and 3) the
robustness of CPT in the presence of noise. The experiments
on real-world data were: 1) the removal of ocular artifacts
in electroencephalography (EEG) and 2) clustering analysis
of 3-D wind field to discover hidden patterns. Both classes
of experiments were used to summaries the advantages of
CPT over the existing SUT [9], [10], FastICA [11], BSE [24]
algorithms, as shown in Table II.

A. Experiment 1: Performance Analysis for Synthetic Data

Each simulation was averaged over 100 independent trials,
where the elements of the mixing matrix were generated from
a Gaussian distribution. These experiments also demonstrated
the validity of the theoretical approximation of the intraference
derived in Section IV-C and highlighted the caveats of not
addressing the intrinsic correlation within each bivariate source
and phase ambiguity in complex-valued ICA. The degree of
correlation between the real and imaginary parts of complex-
Gaussian zero mean signals x = xR + ı xI was controlled by
combining two zero mean uncorrelated variables x1 and x2 in
the following way:

xR(t) = x1(t), xI (t) = ρx1(t) + x2(t)
√

1 − ρ2 (36)

where ρ denotes the correlation coefficient used to generate
a signal with nonvanishing phase angle ranging from uncor-
related (ρ = 0) to fully correlated (ρ = 1) phase angle.
To assess the degree of improperness of the so generated
complex-valued signals (with both the nonvanishing variance c
and pseudocovariance p = pR + ı pI , where |pR| + |pI | = 1
for consistency), the correlation coefficient ρ was related to
the pseudocovariance through

ρ = pI

2E
{
x2

1

} (37)

since the pseudocovariance p = E
{
x2

R − x2
I

} + 2ı E
{
xRxI

}
.

Here, the variances of the real and the imaginary parts had to
be chosen so as to satisfy the two constraints pR = E

{
x2

R−x2
I

}

and c = E
{
x2

R + x2
I

}
. For our experiments, the covariance

was set to c = 1.1; for example, given p = −0.1 + ı0.9,
representing a phase angle of 0.45 radians, the following
parameters were used:

E
{

x2
R

} = E
{
x2

1

} = 0.5

E
{
x2

I

} = 0.6

E
{
x2

2

} = 1.1 − E
{
x2

1

}
(1 + ρ2)

1 − ρ2 . (38)

A unit variance was not selected, to avoid singular cases,
such as when the pseudocovariance p = −0.1 + ı0.9.
In this case, the conditions E

{
x2

R

} = 0.45 and E
{
x2

I

} = 0.55
need to be satisfied so that pR = −0.1, however, this also
means that E

{
x2

2

}→∞ in (38), as ρ=1. Clearly, E
{

x2
2

}→∞
cannot be implemented in practice.10 Finally, the sources
were generated from the moving average model y(n) =

10Another potential caveat is when there are multiplicities of singular
values of the pseudocovariance matrix. This can be avoided by selecting a
pseudocovariance of different magnitude for each source.
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Fig. 2. Performance of CPT in terms of the phase angle of the pseudoco-
variance.

x(n) + 0.9x(n − 1) + 0.95x(n − 2), as a complex valued
filtering process would significantly alter the statistics of the
signal x . We considered the mean value of intraference in
the simulations, that is, (1/N)

∑N
i=1 �2[i, i ], with �2[i, i ]

calculated from (26).
Remark 12: The intraference value can be expressed in

terms of the correlation coefficient ρ as

E
{
�2[k, k]} = E

{|ξ̃P |2}/[
P2

R + 4ρ2 E
{

x2
R

}]2
. (39)

This is because using the relationship in (37) derived from the
signal model (36), the imaginary part of the pseudocovariance
can be obtained as P2

I = 4ρ2 E
{
x2

R

}
. This relationship can

then be substituted into (33) to yield (39).
1) Performance as a Function of Phase Angle: In the first

set of simulations, the performance of CPT was assessed
against the phase angle associated with the pseudocovariance,
� (

E{x2}). Without loss of generality, a 2×2 source separation
scenario was considered: one source had a zero phase angle
� (

E{x2}) = 0 and the phase angle of the other source was
nonzero.

Fig. 2 shows the excellent performance of CPT, which for
a range of phase angles decorrelated bivariate sources with
the intraference not exceeding −45 dB. Notice the three dips
in the curve at the phase angles of {0, π/2, π}. The minimum
points at � (

E{x2}) = {0, π} correspond to the trivial scenarios
corresponding to the sign ambiguity of ±1, whereas for the
phase angle � (

E{x2}) = π/2, CPT is required to estimate
only the imaginary part of the pseudocovariance, instead of
both the real and imaginary parts.

2) Performance Analysis for a Varying Number of Sources:
In the second set of simulations, the source separation problem
was considered for a varying number of bivariate sources.
Fig. 3 shows the excellent performance of CPT, which main-
tained the intraference below −60 dB. On the other hand,
the performance of SUT was unconditionally biased in the
region of 0 dB, highlighting the caveat of not addressing the

Fig. 3. Intraference in CPT and SUT as a function of the number of sources.

intraference shown in Remark 11. The theoretical approxi-
mation of the intraference for CPT followed quite closely
the actual intraference; the difference between the theoretical
approximation and the actual intraference decreased as the
number of sources increased indicating that CPT is a consistent
estimator. The estimation of the phase angle for the kth source
was calculated by taking the average of the kth column of the
matrix in (19).

3) Performance Analysis in the Presence of Noise: For
rigor, the robustness of the proposed CPT was further investi-
gated in the presence of additive doubly white Gaussian noise.
Fig. 4 shows that the CPT outperformed the SUT, and that
performance improved as the signal-to-noise ratio increased.
The discrepancy between the theoretical approximation and the
actual intraference at low signal-to-noise ratios stems from
the small error assumption used in theoretical analysis. For
high signal-to-noise ratios of 30 dB in Fig. 4, the small error
assumption holds, the theoretical approximation thus followed
closely the actual intraference.

B. Experiment 2: ICA for the Separation of
Ocular Artifacts From EEG

The usefulness of CPT is next illustrated for the separation
of eye muscle activity electrooculogram (EOG) from real-
world EEG recordings. In real-time BCI it is desired to iden-
tify and remove such ocular artifacts from the contaminated
EEG [25]. In our experiment, the EEG signals were from the
electrodes Fp1, Fp2, while the EOG activity was recorded
from the EOG1 and EOG2 channels with the electrodes placed
above and on the side of the left eye socket [24]. The EEG
data were sampled at 512 Hz and recorded for 12 s. Notice the
pronounced presence of the eye blinks in the EEG mixtures
corresponding to the frontal electrodes Fp1 and Fp2 (Fig. 5),
and the clear presence of two signal components: the eye blink
and the EEG activity.
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Fig. 4. Robustness of performance of CPT in presence of noise.

Fig. 5. Waveforms of EEG and EOG mixtures recorded at a sampling
frequency of 512 Hz. (a) Mixed EEG and EOG. (b) Mixed EEG and EOG.
(c) Pure EOG. (d) Pure EOG.

We adopted the same approach as in [24] and [26] to form
the complex signals

x1 = Fp1 + jFp2

x2 = EOG1 + jEOG2. (40)

The left subplots of Fig. 6 show the separated ocular artifact
(eye blink) is shown. Notice the noisier estimate produced by
the SUT and the less pronounced EOG peaks in real-valued
ICA estimates [11], compared with the reference in Fig. 5.
Although the blind source extraction (BSE) technique in [24]
produced a less noisy source estimate of the eye blink, it
failed to extract an EEG source free from eye blink artifacts.
Excellent and physically meaningful results were produced
using the proposed CPT method (last row in Fig. 6).

Statistical validation of results: an important concept in
BCI is the existence of synchrony between the two EEG
sources [27]. Since the EOG signals can be regarded as the
closest proxy to eye blinks (see Fig. 5), in our statistical
analysis they were used to validate whether the extracted
sources were either eye blinks or EEG activity.

Surrogate data analysis and hypothesis testing were next
employed for statistical validation. Surrogate data are statisti-
cally similar to the original data, with identical mean, variance

Fig. 6. Recovered eye blink (left column) and EEG (right column) sources
estimated by SUT, real ICA, BSE, and CPT algorithms. Observe that the CPT
retained perfect physical meaning of the EOG artifact and useful EEG with
negligible intraference.

TABLE I

STATISTICAL VERIFICATION OF ESTIMATED SOURCES. THE THRESHOLD

SYNCHRONY SCORE WAS 0.55 WITH A CONFIDENCE LEVEL OF 99%

and amplitude spectrum; however, the phase information of
the original data are completely randomized using a uniform
distribution between 0 and 2π . Any phase information is
thus destroyed by the phase randomization step, and the null
hypothesis considered was that there was no phase synchro-
nization between the EOG source and other EEG activities.
We generated 200 surrogates to calculate the synchrony score
threshold (= 0.55), which governed the range corresponding
to the validity of the null hypothesis with a confidence level
of 99%. Table I shows that the synchrony score of test signal
EOG 2 (Fig. 5) was above the threshold of 0.55, meaning
that the null hypothesis was rejected and the recovered source
must be an EOG signal. The rejected null hypothesis was
also confirmed by the high degree of correlation between
EOGs 1 and 2, shown in Table I.

C. Experiment 3: Clustering of 3-D Wind Measurements

3-D wind data were recorded in an urban environment11

by two anemometers located 5 m apart in the North–South

11We thank Prof. Aihara and his team at Tokyo University for providing
the wind dataset.
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TABLE II

COMPARISONS BETWEEN SUT [9], [10], FASTICA [11], BSE [24], AND PROPOSED CPT

Fig. 7. Cluster analysis of 3-D wind data. (a) Original wind data. (b) Real-
valued ICA. (c) SUT. (d) CPT. The red, blue, and magenta clusters correspond,
respectively, to North–South, East–West, and vertical wind directions.

direction; the sampling frequency was 50 Hz. The first
anemometer was located 5 m North from the second one.
As wind speeds in the primary directions were correlated
[28], [29], our aim was to discover the hidden orthogonal
patterns along the three perpendicular wind directions: the
North–South, East-West, and vertical direction. In doing so,
the key was to preserve the correlation between the wind
speeds recorded at different spatial locations, but pointing to
the same direction.

Fig. 7 shows the scatter plots (real-imaginary) of the wind
data, showing (a) the original data, and wind cluster estimates
using (b) real-valued FastICA [11], (c) SUT and (d) CPT.
For a fair comparison, all data were normalized. The original
data in Fig. 7(a) suggests the existence of three distinctive
wind components, partially overlapping. The real-valued ICA
in Fig. 7(b) separated the three wind components, also sug-
gesting three distinct data clusters. On the other hand, the
SUT and CPT estimates correctly indicate only two different
wind components, i.e., the North–South component and either
East–West or vertical component. The overlap of the
East–West and vertical wind components can be explained by
the fact that the East–West wind component arose mainly due
to the vertical wind component (reflection in urban space).
These correct hidden patterns from SUT and CPT estimates

were not obvious from the scatter plots of the original wind
data, the reason being that the wind was blowing predomi-
nantly in the North direction. Indeed, the wind directions at the
two anemometers had bearings of 11.39° and 8.07°, meaning
the North–South wind component was dominant.

Observe two main differences between the PCA/SUT and
CPT of the 3-D wind components. First, the correlation
within any of the bivariate wind components was preserved
in the CPT estimates, as shown in Fig. 7(d) and the bivariate
components lying along the diagonal line y = x ; a similar
observation can be made for the original data in Fig. 7(a).
Second, there was an overlap in the encircled region between
the North–South and East–West components in the SUT esti-
mates in Fig. 7(c). The much improved separation between the
North–South and East–West/vertical components in the CPT
estimates over the PCA/SUT estimates is evident in Fig. 7(d),
facilitating general bivariate pattern classification.

Table II illustrates that our proposed CPT inherits all advan-
tages of SUT and FastICA, and also exhibits two additional
desired properties in rows 1 and 2 in the table. These two
properties are also available in the BSE technique proposed in
[24], however, the noncircular BSE technique is not straight-
forward to use due to its nonparametric nature.

VI. CONCLUSION

This paper has addressed critical open issues arising from
the use of Takagi factorization in decorrelation of complex-
valued matrices, a key step in the analysis of complex-valued
learning systems. We have proposed a solution for preserving
the integrity of bivariate sources; an issue largely overlooked in
both current real-and complex-valued matrix decompositions.
To that end, we have equipped matrix decompositions with
the ability to maintain the correlation between the two data
channels within each recovered bivariate source, thus making
it possible to preserve the integrity of the separated sources.
In doing so, we have solved the phase ambiguity problem,
allowing for more degrees of freedom by accounting for the
complex-valued nature of the pseudocovariance. In addition,
a novel criterion for quantifying the degree to which the
integrity of separated bivariate sources is preserved, referred
to as the intraference, has been introduced highlighting that
current bivariate matrix decompositions are subjected to an
intrinsic mixing between the real and imaginary parts of each
source. It has been further shown that the performance index
of CPT in recovering bivariate sources has followed closely
the theoretical performance, while the current techniques were
inadequate for coupled source channels. Case studies in the
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context of source separation for BCI and cluster analysis for
3-D wind data support the analysis.
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