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ABSTRACT

A novel hybrid filter combining the complex least mean

square (CLMS) and augmented CLMS (ACLMS) algorithms

for complex domain adaptive filtering is introduced. The

ACLMS has been shown to have improved performance in

terms of prediction of non–circular complex data compared to

that of the CLMS. By taking advantage of this along with the

faster convergence of the CLMS, the hybrid filter is shown to

give improved performance over both algorithms for both cir-

cular and non–circular data. Simulations on complex–valued

synthetic and real world data support the effectiveness of this

approach.

1. INTRODUCTION

Complex–valued signals can be either complex by design

(communications) or by convenience of representation (radar,

sonar). In fact representations in the complex domain provide

a natural processing platform, for example processing real

domain signals in C allows the inclusion of phase compo-

nents, resulting in multidimensional solutions with benefits

over real domain solutions [1]. One example of a real–valued

signal which is best analysed in C is wind, where the fusion

of the speed and direction creates a single complex–valued

wind signal (see Fig. 7).

For adaptive filtering in the complex domain the complex

least mean square (CLMS) algorithm [2] is a natural extension

of the LMS algorithm [3] and benefits from the stability and

robustness of the LMS while allowing simultaneous filtering

of the real and imaginary parts of the complex-valued data.

The CLMS is described by

e(k) = d(k) − x
T (k)w(k),

w(k + 1) = w(k) + µe(k)x∗(k), (1)

where d(k) and e(k) denote respectively the desired signal

and output error at time instant k. For a filter of length,

N , x(k) = [x(k − 1), x(k − 2), . . . , x(k − N)]
T

is the input

signal vector, w(k) = [w1(k), w2(k), . . . , wN (k)]
T

the filter

weight coefficient vector and µ the learning rate. However,

in general, the extensions of adaptive filters from R to C are

non-trivial. For instance, in the design of nonlinear filters, it

should be taken into account that the only continuously differ-

entiable function in C is a constant (Liouville’s theorem) and

the differences between the statistics in R and C should be

taken into account. Frequently though statistics in the com-

plex domain are assumed to be straightforward extensions of

those in the real domain. For example the covariance matrix

of a zero mean complex vector, z, is usually assumed to be an

extension of the real covariance E{xx
T } replacing the trans-

pose operator (·)T with the Hermitian operator (·)H to give

E{xx
H} [4]. This however is only strictly true for circular

complex data and does not hold true in many applications [5].

The use of so called augmented complex statistics takes into

account not only the usually defined covariance matrix but

also the pseudo–covariance matrix, whereby for any complex

random vector x ∈ C
m with E{x} = 0, the two covariance

matrices are defined as

Cxx = E{xx
H}, Pxx = E{xx

T } (2)

where Cxx and Pxx are the covariance matrix and pseudo–

covariance matrix respectively [6]. For circular complex data

the pseudo–covariance matrix Pxx is zero, but for any non–

circular data taking into account only the covariance matrix

and not the pseudo–covariance matrix results in undermod-

elling.

By defining an augmented complex vector xa as

xa =

[

x

x
∗

]

(3)

where (·)∗ is the complex conjugate. Then the covariance

matrix Cxaxa
is given by

Cxaxa
=

[

Cxx Pxx

P∗

xx
C∗
xx

]

(4)

and contains information from both the covariance and

pseudo–covariance matrices of x. To utilise the full sec-

ond order statistical information available within the signal

the recently introduced augmented CLMS (ACLMS) [7] uses

the augmented complex vector as the input to an FIR filter.
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The ACLMS is given by

xa(k) =
[

x
T (k),xH(k)

]T

e(k) = d(k) − x
T
a (k)w(k)

w(k + 1) = w(k) + µe(k)x∗a(k). (5)

In this paper we propose a hybrid filter which following the

approach from [8] combines the output of the CLMS with that

of the ACLMS in a convex manner. Hybrid filters have been

introduced to improve the performance of adaptive filters [9]

and their convex combinations have been shown to always

perform at least as well as the better of the two constituent

subfilters and to offer improved stability as should one subfil-

ter fail to converge the output of the hybrid filter follows that

of the other subfilter [10]. By combining the ACLMS and

CLMS our aim is to produce a filter with better overall char-

acteristics for both circular and non–circular complex signals

than either of the individual algorithms. This is supported

with simulations on both synthetic and real world data.

2. HYBRID FILTER STRUCTURE

One of the keys to designing a hybrid filter is the method in

which the subfilters are combined, for a hybrid filter contain-

ing only two subfilters one natural solution is to combine the

outputs of the subfilters in a convex manner, where convexity

is described by [11]

λx + (1 − λ)y where λ ∈ [0, 1]. (6)

If x and y are two points on a line, as shown in Fig. 1, their

convex mixture (6) will lie on the same line between x and y.

The hybrid filter, shown in Figure 2, consists of two subfilters,

yλx + (1−  )yλx

Fig. 1. Convex combination of two points x and y.

each being adapted independently, with a convex combination

of the two filters then taken as the output of the hybrid fil-

ter. The two subfilters within the hybrid filtering architecture

operate in the prediction setting, sharing the common input

vector x(k) = [x1(k), . . . , xN (k)]T for filters of length N ,

where to preserve its inherent characteristics each subfilter is

updated by its own error e1(k) and e2(k), using a common

desired signal d(k). The convex combination of the subfilter

outputs y1(k) and y2(k) forms the overall system output y(k),
given by

y(k) = λ(k)y1(k) + (1 − λ(k))y2(k), (7)

where λ(k) is the mixing parameter. The mixing parameter

λ(k) is made adaptive, and is updated by minimising the cost

filter 2

filter 1

x(k)

∑

d(k)

∑

e(k)

y(k)
∑

∑

-

-

-
λ(k)

1 − λ(k)

e1(k)

y1(k)

y2(k)

e2(k)

w1(k)

w2(k)

Fig. 2. Hybrid filter structure

function

E(k) =
1

2
|e(k)|2 =

1

2
|d(k) − y(k)|2. (8)

We can obtain the update for λ(k) using a stochastic gradient

based adaptation, such as the LMS, whereby

λ(k + 1) = λ(k) − µλ∇λE(k)|λ=λ(k) (9)

and µλ is the step size. Note that since the input to the filters

is complex, the error e(k) is also complex, and therefore [12]

∇λE(k)|λ=λ(k) =

{

e(k)
∂e∗(k)

∂λ(k)
+ e∗(k)

∂e(k)

∂λ(k)

}

. (10)

The two gradient terms from (10) can be evaluated as

∂e(k)

∂λ(k)
=

∂er(k)

∂λ(k)
+ 

∂ei(k)

∂λ(k)
, (11)

∂e∗(k)

∂λ(k)
=

∂er(k)

∂λ(k)
− 

∂ei(k)

∂λ(k)
, (12)

where (·)r and (·)i denote respectively the real and imaginary

part of a complex number. Rewriting (7) in terms of its real

and imaginary part and substituting into (8) yields

∂e(k)

∂λ(k)
= y1(k) − y2(k), (13)

∂e∗(k)

∂λ(k)
= (y1(k) − y2(k))

∗

. (14)

Finally, the gradient (10) becomes

∇λE(k)|λ=λ(k) = ℜ
{

e(k) (y1(k) − y2(k))
∗
}

, (15)

where ℜ(·) denotes the real part of a complex number. This

yields the mixing parameter update as

λ(k + 1) = λ(k) + µλℜ
{

e(k) (y1(k) − y2(k))∗
}

. (16)

To ensure the hybrid filter remains a convex function a hard

limit is put on the adaptation of λ resctricting the values to the

range [0, 1].
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3. SIMULATIONS

For all simulations conducted the hybrid filter described in

the previous section was used with filter 1 being trained by

the ACLMS and filter 2 being trained by the CLMS. Initial

simulations were performed to illustrate the behaviour of the

subfilters of the hybrid filter for both circular and non–circular

data, Fig. 3 and highlight the advantages of using the hybrid

filter over either of the constituent subfilters. The circular sig-

nal used was a stable AR(4) process given by

x(k) = 1.79x(k − 1) − 1.85x(k − 2) + 1.27x(k − 3)

− 0.41x(k − 4) + n(k), (17)

where n(k) is a random uniform circular variable given by

n(k) = ρ(k) cos (θ(k)) + jρ(k) sin (θ(k)) (18)

and ρ and θ are random variables uniformly distributed on the

unit interval and [0, 2π] respectively. The non–circular data

used was the Ikeda map, a well known benchmark signal in

chaos theory [13]

x(k + 1) = 1 + u [x(k) cos t(k) − y(k) sin t(k)]

y(k + 1) = u [x(k) sin t(k) + y(k) cos t(k)] (19)

where u is a parameter and

t(k) = 0.4 −
6

1 + x2(k) + y2(k)
. (20)

All simulations were averaged over a set of 1000 independent

trials for filters of length N = 100. From Fig. 4 it can be

seen that both the CLMS and ACLMS perform well on the

circular data, with the CLMS converging slightly faster than

the ACLMS. This is to be expected as the ACLMS is in effect

twice the length of the CLMS and therefore takes longer to

converge. The key point to note here is that in this instance

the hybrid filter outperforms both of its constituent subfilters

converging slightly faster and with an improved steady state

error.

For the non–circular data shown in Fig. 5 the CLMS again

converges faster than the ACLMS but in this instance does

not perform as well in the steady state as the ACLMS. Again

the hybrid filter outperforms both subfilters by following first

the CLMS and then the slower ACLMS when it surpasses the

CLMS to give a better combined output.

The evolution of the mixing parameter λ for both data sets

is illustrated in Fig. 6. In this case one represents the output

of the hybrid filter is purely that of the ACLMS and zero indi-

cates it is purely the CLMS. For both sets of simulations the

initial value of the mixing parameter was set to be 0.5 and it

can clearly be seen that for the circular data the value of λ

tends slightly towards that of the CLMS but there is no dis-

tinct advantage gained from either algorithm. In the case of

the non–circular data the value of λ initially moves quickly
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(a) A circular AR(4) process (17)
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Fig. 3. Distributions of the circular and non–circular bench-

mark signals

towards that of the CLMS before it eventually settles towards

that of the ACLMS. In both cases the value of the λ is as ex-

pected and supports the observed outputs of the hybrid filter.

3.1. Prediction of Wind Data

A set of wind data was analysed to illustrate the performance

of the hybrid filter for real world applications. Wind is usually

measured as a bivariate process of its speed and direction [14]

or even just the speed is taken into account (despite clear inter-

dependence between the components). Figure 7 shows wind

represented as a vector of speed and direction in the north–

east coordinate system. It is clear that the wind vector v can

be represented in the complex domain as

V = v · ejθ, (21)

where v is the speed and θ the direction modelled as a single

complex value.
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Fig. 4. Convergence curves of the hybrid filter and constituent

subfilters for a circular AR(4) process (17)

AR(4) Ikeda ‘Calm’ wind ‘High’ wind

CLMS 5.25 0.65 7.03 3.26

ACLMS 4.73 3.77 6.87 4.35

Hybrid 5.66 3.73 7.33 4.48

Table 1. Prediction gain for the CLMS, ACLMS and hybrid

filters for wind data and circular and non–circular synthetic

data

The wind data used was measured over a 24 hour period

sampled at 50Hz in an urban environment. The wind speed

readings were taken in the north–south (VN ) and east–west

(VE) directions where

v =
√

V2
E + V2

N , θ = arctan
(

VN

VE

)

(22)

were used to give the complex signal (21). To reduce the

effects of high frequency noise a moving average filter with

window length 10s was applied to the data before resampling

at 1Hz. The magnitude of the wind signal is shown in Fig. 8,

to best assess the performance of the hybrid filter two periods

of approximately 90 mins were assessed one from the ‘calm’

period between 04:00-05:30 and one from the ‘high’ wind

state between 16:00-17:30.

The prediction gains Rp = 10 log10
σ2

y

σ2
e

of the subfilters

and hybrid filters in the steady state were used as a quanti-

tative measure of performance. Table 1 lists the prediction

gains for the calm and high wind periods along with those for

the circular AR(4) signal and non–circular Ikeda map. For the

wind data it can be seen from Table 1 that in the calm wind

state the CLMS performs better than the ACLMS in the steady

state but for the high wind state where there are large varia-

tions in the signal dynamics the ACLMS performs better than

the CLMS. It should also be noted that more significantly in

all but one case the hybrid filter outperforms both of the sub-
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Fig. 5. Convergence curves of the hybrid filter and constituent

subfilters for a non–circular Ikeda map (19)

filters regardless of which subfilter is responding best to the

current input. In the case of the non–circular Ikeda map the

hybrid filter only fractionally under performs the ACLMS in

terms of steady state prediction gain and as illustrated in Fig.

5 has a faster convergence curve than the ACLMS.

4. CONCLUSIONS

A hybrid filter consisting of a convex combination of the

CLMS and ACLMS algorithms has been introduced. The

hybrid filter takes advantage of the faster convergence speeds

of the CLMS and the improved performance in the steady

state for non–circular data of the ACLMS. It has been shown

that the hybrid filter can outperform both of the subfilters for

synthetic circular and non–circular data. A real world wind

signal has been used to demonstrate that for signals where

the nature may be changing the hybrid filter will perform

consistently well regardless of which subfilter has the better

performance for the current input signal.
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