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ABSTRACT

The method of partial least squares (PLS) has become a preferred tool for ill-posed linear estimation prob-
lems in the real domain, both in the regression and correlation analysis context. However, many modern
applications involve complex-valued data (e.g. smart grid, sensor networks) and would benefit from cor-
responding well-posed latent variable regression analyses. To this end, we propose a PLS algorithm for
physically meaningful latent subspace regression with complex-valued data. For rigour, this is achieved
by taking into account full complex second-order augmented statistics to produce a robust widely lin-
ear estimator for general improper complex-valued data which may be highly correlated or colinear. The
so-derived widely linear complex PLS (WL-CPLS) is shown to allow for effective joint latent variable de-
composition of complex-valued data, while accounting for computational intractabilities in the calculation
of a generalised inverse. This makes it possible to also determine the joint-subspace identified within the
proposed algorithm, when applied to univariate outputs. The analysis is supported through both simula-
tions on synthetic data and a real-world application of frequency estimation in unbalanced power grids.
Finally, the ability of WL-CPLS to identify physically meaningful components is demonstrated through
simultaneous complex covariance matrix diagonalisation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Developments in sensor technology and the increasing avail-
ability of computational power and computer memory have made
it possible to obtain and process very large and often high-
dimensional datasets. Such real-world datasets, typically have a
rich structure which creates an opportunity for physically mean-
ingful analysis, at the expense of computational tractability. For
example, data from high-density sensor networks are frequently
highly-correlated (colinear), which renders traditional regression
methods ill-posed. It is therefore of particular interest to develop
signal processing techniques that both account for these numeri-
cal issues and at the same time take advantage of any structure
present in the data.

For many applications a widely accepted method to exploit
structure in bivariate data is through complex-valued signal pro-
cessing. The complex representation transforms complicated ex-
pressions in R2, such as rotations, into compact and easy to inter-
pret forms in C. This has led to advances in analysis of wind pro-
files [1], power systems [2,3], acoustics [4], and communications
[5,6]. More recently, advances in so-called “augmented” statistics
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[7] have shown that a full second-order description of a complex-
valued random variable, z, includes both the pseudocovariance ma-
trix, P = E[zz"], and the standard covariance matrix, C = E[zz"].
Therefore, only the consideration of such “augmented” complex
statistics can yield signal analysis tools which make use of fea-
tures intrinsic to the complex domain, such as complex second-
order noncircularity [8-10].

When it comes to determining the relationship between two
sets of variables, linear regression is probably the most common
data analysis method, whereby the variable y e R is estimated
through a linear combination, j = a'x, of the independent vari-
ables, x e R™<1, by the vector of coefficients, a € R™*!, The vec-
tor a is calculated so as to minimise the mean square error (MSE)
between the observation, y, and its prediction, y. An extension to
the complex domain has been developed by Picinbono and Cheva-
lier [11], whereby the optimal estimate, y, for complex-valued
data, y € C, is given by j = hHx + g"x*, where the coefficient vec-
tors, h e C™1 and g e C™*!, describe the relation with the inde-
pendent variables x e C™*1 and their conjugate x*. This so-called
widely linear estimator is linear in both x and x*, and has found
use in numerous applications including adaptive estimation of sys-
tem frequency in distributed power systems [12].

A direct application of linear regression to dense sensor arrays
has a very limited scope, as such solutions become ill-posed when
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the data are highly-correlated or colinear [13]. This can cause the
covariance matrix, the inverse of which is inherent to regression
methods, to have a large condition number or to become sub-rank
which makes it difficult to compute its inverse. As a remedy, reg-
ularisation methods, such as Ridge-Regression [14], add a constant
to the matrix diagonal to enforce well-posedness, however, this in-
cludes spurious information in the calculation. An alternative ap-
proach is to use the class of component analysis methods to fac-
torise the original variables, which in addition to extracting the rel-
evant information also provides a representation that is straightfor-
wardly invertible. One such technique is principal component re-
gression (PCR), which uses principal component analysis (PCA) to
describe the original data matrix of regressors, X, through orthog-
onal latent components [15]. This allows for the separation of the
desired information from noise related latent variables and admits
a straightforward calculation of the generalised inverse of X, thus
stabilising linear regression [16].

It is important to note that the so-obtained PCR solution cre-
ates a latent variable decomposition based only on the information
in the independent variables, X, which means that it may contain
erroneous information for use in the prediction of the dependent
variables, Y. To this end, the partial least squares (PLS) regression
algorithm integrates component analysis into the regression cal-
culation. This is achieved by finding latent variables that explain
only the joint input-output relation between the variables, X and
Y, thus rendering the problem well-posed [13]. Real-world appli-
cations of the PLS are found in chemometrics and are emerging in
signal processing [17-19].

The original real-valued PLS has been established as a robust
data-analysis methodology [20]. The several types of PLS can be
broadly split into two groups: i) those used for regression cal-
culations (PLS1/2 in [20]) and ii) those used for dataset cross-
covariance analysis (PLS Mode-A, PLS-SB in [20]). The PLS algo-
rithms that aim to calculate a regression (NIPALS' and SIMPLS
[21]) produce an orthogonal decomposition of the independent
variable data block X. This leads to the most parsimonious model
of the data for a regression calculation, because dimensionality re-
duction is at the heart of this approach. On the other hand, for
dataset cross-covariance analysis it is often desirable that the la-
tent variable decomposition is symmetric between the X and Y
blocks, in which case the scores are not generally orthogonal. In
the latter format, there are strong similarities to canonical correla-
tion analysis (CCA), however, these type of methods are not usu-
ally used for prediction. The PLS framework therefore offers an in-
depth data analysis tool through a combination of a linear regres-
sion and its latent variable decomposition.

It is crucial that the derived latent variables provide a useful
and physically meaningful interpretation of the data, which can be
further enhanced through constraints on the components such as
non-negativity or sparseness [22]. Component analysis tools based
on augmented complex statistics have recently been developed for
complex-valued data and include the Strong Uncorrelating Trans-
form (SUT) [23,24] and the Approximate Uncorrelating Transform
(AUT) [25], while an extension of the PLS to complex-valued data
has been proposed [26]. However, this version of PLS is struc-
turally equivalent to the real-valued PLS-SB method in [20] and
is presented from the viewpoint of dataset cross-covariance anal-
ysis. Such a decomposition therefore inherits the properties of the
data-covariance analysis class of methods: the latent variables are
not in general orthogonal and the relation between the X and Y
block is symmetric. On the contrary, the proposed WL-CPLS algo-
rithm is designed as a generic extension of the NIPALS algorithm

1 Throughout the paper we refer to the NIPALS algorithm for the PLS-regression
method known as PLS1/2 in [20]

for PLS-regression [13,27] to complex-valued data, taking into ac-
count full second-order augmented statistics. This generates the
desirable property of the orthogonality of the obtained latent vari-
ables, unlike that proposed in [26], and naturally incorporates the
calculation of a widely-linear regression. This important feature is
shown to be useful beyond the field of regression for complex data
and, in Section 4.2, its use is demonstrated to yield an uncorre-
lating transform. The analysis shows that the WL-CPLS algorithm
caters for non-circular data without any restriction and in a generic
way, unlike existing algorithms.

Our main technical contributions are threefold. We provide a
method to calculate the widely linear regression coefficients akin
to the real-domain PLS algorithm. Next, the properties of the WL-
CPLS model residuals are determined and the algorithm conver-
gence is proved for a univariate output. Finally, the WL-CPLS is ver-
ified on practical applications of complex-valued covariance matrix
diagonalisation and for smart grid frequency estimation.

The paper is structured as follows. The background on PLS and
widely linear regression is given in Section 2. We then derive the
WL-CPLS algorithm in Section 3 based on a critical review of the
PLS algorithm. The WL-CPLS algorithm is analysed in Section 4 and
its application for simultaneous complex covariance matrix diago-
nalisation is introduced. The utility of WL-CPLS for complex-valued
regression is illustrated through simulations on synthetic data in
Section 5. The WL-CPLS is then applied to the real-world appli-
cation of estimating the frequency of an unbalanced multi-nodal
power grid in Section 6, confirming its capabilities over existing
techniques.

Boldfaced capital letters denote matrices, A, lower case bold-
faced letters vectors, a, and lightfaced italic letters scalars, a. The
superscripts (1)*, ()T, ()" and (- )* denote respectively the gener-
alised inverse, transpose, Hermitian transpose and conjugate oper-
ators respectively. The operator Eigmax{-} returns the eigenvector
corresponding to the largest eigenvalue of the matrix in the argu-
ment.

2. Background and review
2.1. Partial least squares regression

Consider the linear regression problem of predicting a matrix of
p dependent variables, Y € RN*P, from a matrix of m independent
variables, X e RN*™M through a matrix of coefficients, B € R™*P, de-
scribed by

Y = XB, (1)

where Y denotes the estimate of Y and N denotes the number of
observations. The general solution for the regression coefficients, B,
has the form

B =X'Y, 2)

which requires the calculation of the generalised matrix inverse X*
[28]. The ordinary least squares solution is then given by

Xt = X"X)"'X". (3)

If the variables in X (its columns) are highly-correlated or colinear,
then X is sub-rank, which is prohibitive to the calculation of the
inverse of the matrix X"X. To counteract this issue, the method of
Partial Least Squares (PLS) produces a latent variable decomposi-
tion of the matrix X from which a generalised inverse is straight-
forwardly calculated [13,17,29]. The advantage of PLS compared to
other component analysis regression methods (e.g. PCR) is that the
latent components are selected so as to explain the joint dynamics
(shared latent variables) between X and Y, while the PCR solution
produces a decomposition of X without consideration of Y, thus
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yielding a less parsimonious, and typically less physically mean-
ingful, model than PLS.
The PLS decomposition is performed through the factorisations

[17]

X=TP", (4)
Y =TC", (5)
Y=UQ", (6)

where T € RN*T is the matrix which comprises r latent variables in
X with the loadings given by the matrix P ¢ R™*" while U ¢ RN*"
is the corresponding matrix of r latent variables in Y with load-
ings given by the matrix Q € RP*". The matrix C € RP*" describes
the “inner-relation” of PLS, that is, the regression between Y and
T, and indicates the extent to which the latent variables, T, are
good descriptors of both X and Y. These relations demonstrate the
utility of the PLS solution as both a regression and a component
analysis tool, which offers new data analysis opportunities. For ex-
ample, Abdi [30] shows that plotting the latent variables against
one another (through biplots) reveals information about different
groups within data.

Algorithm 1 The NIPALS algorithm for PLS.
1: Initialise: X; =X, Y; =Y

2 fori=1,..., r do

3 Wi = Eigmax{X;rYiY;rxi}

4: ti = XiWi

50 =Yttt

6: u; = YC;

7. pi=Xt/4L

8 q =Y u/uly

9 X=X —tp/, Y =Y - tic]

10: Store t;, u;, p;, q;, ¢; and w;
11: end for

The multivariate PLS solution is typically calculated by the iter-
ative NIPALS algorithm? [17], outlined in Algorithm 1. Each itera-
tion calculates and stores a rank-1 approximation of X and Y, and
on completion of the algorithm, this results in the relations (4)-(6).
In order to calculate these rank-1 approximations, a score vector t
is found as the component in X which has the maximum cross-
covariance with Y. This is achieved by finding a weight vector, w,
that yields the maximal projection of the cross-covariance matrix
XTY. In other words, the solution, w, arises from the optimisation
problem

w = arg max ||w'X"Y|[2, (7)

[lwl=1

and is given as the eigenvector which corresponds to the largest
eigenvalue of the matrix XTYYTX. This matrix is symmetric and
positive-semidefinite, hence its eigenvectors are orthogonal and
represent a valid basis for the cross-covariance between X and Y
[20]. The “score” of this vector is given by

t = Xw, (8)

and represents a latent variable in X, which is optionally nor-
malised to t"t =1 so that T'T = L. The NIPALS algorithm next cal-
culates the regressions of X and Y to the computed t, resulting in
the rank-1 approximations X = tpT and Y = tc”. The score vector
in Y corresponding to t is u=Yc and the rank-1 approximation

2 Other multivariate PLS algorithms do exist, such as the SIMPLS [21].

Y =uq" is then calculated. Before proceeding to the next itera-
tion, the data matrices X and Y are “deflated”, that is, the rank-
1 contribution of the current score t is removed from X and Y,
which makes the components calculated in the following iteration
orthogonal to the already extracted components. The vectors w, t,
p, ¢, u and q are stored in the columns of their respective matri-
ces and form the PLS decompositions in (4)-(6). The algorithm is
iterated until all significant components are found, with the stop-
ping criterion typically based on a negligible contribution of a new
component to the variance in the prediction of Y.

In summary, the NIPALS PLS-regression algorithm provides an
approximation of X, denoted by X, in the form

X=TPTW)WT, (9)

which is based on a linear combination of columns (given by each
vector w) from a repeatedly deflated X, accounted for by the ma-
trix (PTW) which has an upper-triangular form [29]. The gener-
alised inverse of the matrix X is now straightforward to calcu-
late due to its structure, as it is an orthogonal matrix multiplied
by an upper-triangular matrix multiplied by orthogonal matrices,
which are all straightforwardly invertible. Hence, the generalised
inverse is calculated as X+ = W(PTW)~!TT to give the PLS solu-
tion ﬁPLS = XtY.

Remark 1. The PLS-regression calculates a joint decomposition (in
a second-order statistical sense) of variables X and Y in order to
produce a solution of a regularised generalised inverse problem.

2.2. Widely linear regression

Prior to introducing a complex domain extension of the PLS
algorithm, we shall provide a brief review of complex-valued re-
gression. The aim is to find an estimate, ¥, of dependent variables,
Y € CN*P, from independent variables X e CN*™ through the min-
imisation of the mean square error (MSE)

MSE = Tr{E[(Y - )" (Y = )]}. (10)

When X and Y are complex-valued, the general solution should ac-
count for second-order noncircularity (improperness) of the data,
this is achieved through a widely linear form [11]

Y = XH + X*G, (11)

with coefficient matrices H e C™P and G € C™*P. Such an opti-
mal estimator of Y is, in general, linear in terms of both X and
X*, in contrast with the strictly linear result in (1). Observe that
the widely linear regression coefficient matrices, H and G, cannot
be calculated through a generalised inverse of only X. In order to
derive the solution, we observe that the residual (Y — Y) is orthog-
onal to both X and X*, which yields the expectations

E[Y'X] = E[Y'X],  E[Y"X*] = E[Y'X"], (12)
leading to
H'C+G'P=R  H"'P +G'C =§" (13)

where R=Y"X, S=Y'X, C=X"X and P=X"X are respec-

tively the empirical cross-covariance, cross-pseudocovariance, co-

variance and pseudocovariance matrices. A simultaneous solution

of (13) yields the widely linear regression coefficients given by

H = [C - P*C!'P|'[R" — P*C*IST]

G = [C" —PC'P*|"![ST — PC"'R"]. (14)
The augmented forms, X = [X, X*] and Y =[Y,Y*], provide a

compact representation for the widely linear regression in (11) as

Y = XB, (15)
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where
H &
B- [G H*].
The widely linear regression coefficients in B are consequently ob-
tained as B = X"Y. The generalised inverse in this context is given

Xt = (K‘X)*XH (akin to the linear least squares solution in (3))
which leads to

A direct application of block matrix inversion [31] yields a deriva-
tion of the widely-linear estimation in augmented form which re-
quires the same calculations for the regression coefficient matri-
ces G and H as those derived in (14). This highlights that the aug-
mented form in (15) allows a representation of complex-valued re-
gression in the same form as a standard real-valued linear regres-
sion in (1).

Remark 2. Widely linear regression is solved through a gener-
alised inverse of the augmented complex matrix X, which is a
generic extension of standard regression based on a generalised in-
verse of the matrix X. This is equivalent to the solution in (14).

2.3. Duality between complex-valued processing and processing in R2

Complex valued data can be equivalently represented and pro-
cessed in R% [7,32]. To illustrate this duality, consider a matrix,
X e CN*m_ which can be written in terms of its real and imagi-
nary parts as X = (Xg + jX;). The individual parts, Xz € RN*™ and
X; € RN*™M_ can be represented as

Xre = [2XR, 2X]. (16)

where Xg, € RN*2™, The isomorphism between this representation
in RN*2m and the augmented form of complex-valued data, given

by
X=[X X",

is described by the transform matrix, I'y;, given by

_|Im —ilm
where I; € R™™ is the identity matrix of appropriate dimensions.

The transform matrix, I';, is unitary with a scale factor of 2 so
that TH Ty = 2I,, and the mapping in (16) then becomes

[2Xg, 2X;] = [X, X*|Th,.
2.4. The notion of circularity

Widely linear regression is optimal for second-order non-
circular® (improper) data, which is a more general case than cir-
cular rotation invariant (proper) data [7,33]. The concept of circu-
larity admits an insightful geometric interpretation of a Complex
Random Variable (CRV) [8]. The degree of circularity can be de-
scribed by the circularity coefficient, the absolute value of the ratio
of pseudocovariance, p = E[z2], to covariance, ¢ = E[z*z], given by
[34]

|p|

P=T~

For a proper variable p =0, while for a maximally non-circular
variable (i.e. a real number represented as complex-valued) p = 1.

3 Note that propriety is a second-order property whereas circularity accounts for
all statistical moments.

Moreover, the circularity quotient (the fraction %) reveals whether
the non-circularity arose due to the power imbalance or correla-
tion between the data channels. A CRV z =z, + jz; has pseudo-
covariance p = E[z2 — 7 + jz:z;] and covariance ¢ = E[z? + Z?], and
therefore, the real part of their ratio quantifies power imbalance
between z- and z; whereas the imaginary part quantifies their cor-

relation [7].
3. Widely linear complex partial least squares

Since the fundamental aim of the PLS algorithm is to provide
a linear regression estimator, an extension for general complex-
valued data should be based on a widely linear model of the form
Y = XH + X*G. The solution is then created through a latent vari-
able decomposition of X and based on full joint second-order com-
plex statistics. The so-obtained latent variable decomposition, ow-
ing to its structure, will admit a straightforward calculation of the
generalised inverse of the augmented data matrix X, and in doing
so, yield a regularised widely linear regression solution. In general,
the requirements for the widely linear complex PLS (WL-CPLS) are
to:

R1 Create a joint latent variable decomposition of the data ma-
trices, X and Y, that describes the complete complex second-
order statistics;

R2 Account for a widely linear relationship between the X and
Y data blocks;

R3 Obtain approximations X and Y that admit a straightforward
and tractable computation of a widely linear regression Y =
XH + X*G.

3.1. A complex-valued PLS algorithm

The proposed complex PLS algorithm for widely linear re-
gression (WL-CPLS) is next derived as an extension of Wold’s
real-valued NIPALS PLS-regression algorithm [17], outlined in
Algorithm 1. To extend NIPALS for a general complex-valued input
X e CV*M and output Y € CN*P, we must find the components in X
that represent the maximal joint second-order information with Y,
in the form of vectors, w, which give “score” vectors t = Xw. The
augmented representation is then given by

" alw 0
[t,t]:[X,X]|:0 w*]'

This structure is required as the vectors w must form an orthog-
onal basis for the inputs X. To find the vector w that meets this
criterion and produces the required structure we shall employ the
isomorphism between R? and C, given in (16), to transform X and
Y as

XRe = er, YRe = Xrn,

where Ty, and T, are defined in (17). The matrices Xi € RN*™,
Yi € RN*P X; e RN*™ and Y; € RN*P denote the real and imaginary
parts of X and Y respectively. The cross-covariance criterion for the
real-valued PLS in (7) is then extended to the complex domain as

Wge = arg max | |wi, X7, Yre||3. (18)
[IWge[|=1

The solution, wg, € R?™, is found as the eigenvector of

XEEYR?YEeXRe which cgrresponds to its largest eigenva}ue. The

resulting vector, Wg,, is of the form [w], —w[]|T and is trans-

formed back to the complex domain through

(W', wH]T = Ty Wee. (19)
Notice that the computation of the vector, w, in the real domain

before converting it back to the complex domain does not affect
any benefit gained by the complex representation.
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We have seen that the augmented form of a complex-valued
variable makes it possible to capture the full second-order statistics
for complex-valued data. However, in this case, an SVD of the aug-
mented cross-covariance matrix does not provide the orthogonal
basis for the X block in the structure required for the WL-CPLS al-
gorithm, and the result would not be usable for the NIPALS exten-
sion. On the other hand, the proposed calculation of w does fulfil
this structural requirement. The problem of an appropriate struc-
ture for a complex-valued PLS is also addressed in [26], where the
computation is performed in the real-domain before transforming
back to the complex-domain. This process, therefore, is implicitly
complex-valued and is not equivalent to an application of the NI-
PALS algorithm on complex data transformed to the real domain.

The so-obtained complex-valued vector w e C™*! caters for full
joint second-order statistics between the input X and the output
Y. The corresponding component vector, t, is then calculated as

t = Xw.

Remark 3. The latent variable, t, is obtained through a considera-
tion of both cross-covariance and cross-pseudocovariance between
the input X and output Y, this fulfils Requirement R1 for a WL-
CPLS.

The joint approximations of the input X and the output Y
are produced by regressing the so-obtained t onto X and Y. For
complex-valued data, these regressions now become widely lin-
ear in terms of t and t*, which results in the approximations* X =
tp! +t*pt and Y = tc!! + t*c!, calculated in an augmented form

p=t X" =@t (20)

where p = [p1, p2]. t=[t, t"] and ¢ =[cy, ¢3].
The latent variables in Y, denoted by the vectors u that corre-
spond to the latent variables t in X, are obtained as

u=Yc; +Yc,. (21)

Similarly, the regression of u to Y is an approximation Y = uqﬁ‘ +
u*qg' which can be represented in an augmented form as

q= (uy)"

where q =[qq,qy] and u = [u, u*]. The above steps describe the
WL-CPLS decomposition for the latent variable t in each PLS itera-
tion. Before the next latent variable can be calculated, the impact
of the currently extracted component, t,, must be removed from
the data matrices X and Y. This is achieved by deflating (subtract-
ing) the respective approximations (23) and (24) from X and Y to
give

X1 =X —tpl, — t7pY, Yi =Yi—ticl!, - tich, (22)
or in an augmented form
&41 =X;— L-gi“ s Xprl =Y - LE;-‘ s

where the subscript i indicates the iteration number with X; =X
and Y; =Y. In the next iteration, the matrices X;,; and Y;,; are
used in place of X; and Y;, which ensures that the new extracted
score (latent variable) will be orthogonal to the component ex-
tracted in the previous iterations. As such, the information ex-
pressed by each extracted component is accounted for separately,
that is

X =TP! + T*PY, (23)

Y =T} + T4, (24)

4 This is a rank-2 approximation unless a strictly linear regression of the compo-
nent t to X and Y is sufficient.

X T Y

T2 to Yo
€T3 o —
(
)
_/
> L1 > 1 > Y1
x5 t5 Y
5 //’\
3 f
B L
—— —— \ “
\\,/
.
> >3 > Y1

Fig. 1. Geometric view of WL-CPLS regression.

which gives the WL-CPLS decomposition corresponding to (6), in
the form

Y=UQ} +UQ} (25)
The complete WL-CPLS algorithm is outlined in Algorithm 2 and
is iterated until r latent components have been found. The required

number of components is determined based on a stopping crite-
rion, described in Section 5.2.1.

Algorithm 2 The NIPALS algorithm for widely linear complex PLS
(WL-CPLS).

1: Initialise: X; = [X, X*], Y; = [Y, Y]
2. fori=1,..., r do

3 Xige = X;I'm, and Y; g = Y,y

4 Wige = Eigmax{X{ geYireY] geXi.re)
50w, wH]T = Trw g

6t =Xjw, t; =[t;, tf]

7 C= (E,-* )

g pi=(t X)H

90w =Yier; +Yicy uy = [u;, uf]

10: g = (uf YpH
o X =X —tpl, ¥y =Y -t

12 Store t;, W, Py, P2,i» Q1.ir 2.5 €1i» €25 and W;
13: end for

Remark 4. For a regularised regression application it is desirable
to identify a latent subspace within the regressors, X, that is used
to predict the dependent variables, Y. The matrix W within the
proposed WL-CPLS in Algorithm 2 provides such a basis, which is
then used to sequentially calculate the score vectors in the ma-
trix T. Owing to the optimisation process in (18), this subspace is
chosen so as to contain the full joint complex second-order infor-
mation. The widely linear regression of the scores, T, to the data
matrices X and Y described in (23) and (24) then give the WL-
CPLS approximations of the identified subspace and account for
the required degrees of freedom needed in complex-valued esti-
mation. As such, the WL-CPLS algorithm is a generic extension of
the real-valued NIPALS algorithm described in Section 2.1 for PLS-
regression.

Remark 5. The complex-valued WL-CPLS takes into account the
widely linear relationship between the X and Y components and
thus satisfies Requirement R2 for a WL-CPLS.

Fig. 1 shows a geometric interpretation of WL-CPLS. In contrast
to real-valued PLS, the scores T in WL-CPLS define a regression
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subspace in both X and X*. This subspace is then used to provide
a widely linear regression to predict dependent variables Y.

Remark 6. An important aspect of the WL-CPLS algorithm is
that the scores T are fully uncorrelated in terms of augmented
complex-valued second order statistics, that is, the score covari-
ance and pseudocovariance matrices, THT and T'T, are diagonal.
For normalised score vectors, t, their covariance matrix becomes
THT =L This, in turn, means that the diagonal elements of the
score pseudocovariance matrix, T'T, readily give the circularity
quotient (as defined in Section 2.4), thus further highlighting the
physical insight of WL-CPLS. This would not be available using the
NIPALS algorithm on complex data cast into the real domain.

3.2. Alternative WL-CPLS algorithms

The WL-CPLS described in Algorithm 2 can serve as a basis for
a class of WL-CPLS results, as the vector, w, chosen to reflect the
maximum cross-covariance and cross-pseudocovariance between
the input X and the output Y, can be replaced by a different crite-
rion. For example, we can choose w to reflect only the maximum
cross-covariance between the input X and the output Y. This is
achieved by the following optimisation
w = argmax ||w"X"Y||2.

[lwl|=1

The solution, w, is the largest eigenvector of the matrix, X"YY"X.
This alternative WL-CPLS is summarised in Algorithm 3. It is im-
portant to note, however, that this alternative vector, w, is not ca-
pable of detecting a latent variable, t, that represents only cross-
psuedocovariance between X and Y.

Algorithm 3 The WL-CPLS NIPALS algorithm with an alternative
cross-covariance criterion.

1: Initialise: X; = [X, X*], Y; = [Y, Y]

2. fori=1,....,rdo

3 Wi = Eigmax{xi‘—'YiY,Hxi}

4 =Xw;, =t t7]

500 ¢ =(tf Y

6 p,=(tf X"

7w =YCp i+ Y6 1 = [uy, uf]
g q = Y)!

o X=X —tp!', Y =Y -t

10:  Store t;, W, Pqj, P2,i» A1i» 92.i» €1,i> €2,; and w;
11: end for

4. Analysis of the WL-CPLS

The focus of our analysis of the WL-CPLS algorithm is on the
calculation of the widely linear regression coefficients, in (11),
based on the structure of the WL-CPLS decomposition of X and
Y, so as to satisfy Requirement R3. This also highlights the abil-
ity of the WL-CPLS algorithms to produce a regularised widely
linear regression solution. Next, the application of the WL-CPLS
algorithm as a complex covariance matrix diagonalisation trans-
form is demonstrated, including a special case where the result is
equivalent to an existing technique, the strong uncorrelating trans-
form (SUT) [23]. The orthogonality between the latent variables,
t, and the model residuals is then examined. Finally, the conver-
gence of the WL-CPLS algorithm is proven for a univariate output,
y, through a recurrence relation for the latent variables, t.

4.1. PLS For regularised widely linear estimation

We have already shown that the PLS method calculates a joint
latent variable decomposition of both the input X and output Y.

In real-valued PLS, this property is used to calculate a regularised
regression solution in scenarios where the input matrix X is sub-
rank. We next show that the WL-CPLS algorithm allows a straight-
forward calculation of the coefficient matrices H and G in the
widely linear regression model

Y = XH + X*G,
where X is the WL-CPLS approximation of the input X given
X = T(PHYW)W" 4+ T+ (PYW)WH. (26)

This is a rigorous generalisation of the real-valued NIPALS algo-
rithm, where the matrix W is unitary and the matrices P;‘W and
P;W are upper triangular [29]. Upon substituting (26) into (14),
the WL-CPLS solutions for H and G are calculated as

Hycpis = [C— P*CP]*[RY — PC+#8T]

Gwi-cpis = [C* — PCTP]F[ST — PCRY], (27)
where R=YHX, $=Y"X, C=X"X, P=X"X and Y is given by the
decomposition in (24). Therefore, the computation of H and G re-

quires calculation of the generalised inverses® of € and € — P*C*P,
which requires special attention.

Lemma 1 (Miller [35]). Consider a matrix M =N + 0, where N ¢
C™" is invertible and O € C"™*" can be split into rank-1 matrices,
O =E; +E, +---+E;, with r denoting the rank of O. Then M can
be inverted iteratively as

-1 -1
M, E;M,

—k k| (28)
1+Tr(M, "Ey)

-1 -1
M, =M +

where My = N. The iteration is terminated at k =r.

Proposition 1. The inverses of the matrices C and C — P*C**P can be
calculated through the exploitation of their special structure and with
the aid of Lemma 1.

Proof. The proof consists of two parts, the calculation of C+ and
the calculation of (C — P*C*tP)*.

In order to calculate the generalised inverse of C, the WL-CPLS
approximation (26) can be used to give
C=W(F; +F, + F; + F)WH, (29)
with Fq, F,, F3 and F,4 defined as the LDU decompositions
F; = (PYW)"(PYW) = L, LY
F, = (P{W)"D*(P}/W) = L, D*LY
F; = (PYW)"D(P{'W) = L,DLY
F; = (PAW)H(PYW) = L,LY, (30)
where D =T'T is diagonal, and the implicit assumption of nor-
malised scores, THT = I was employed. Since W is unitary, a gener-
alised inverse for C is then given by
Ct =W(F; + F, + F5 + Fy) W, (31)

which boils down to the problem of inverting the matrix (F; +
F, + F3 + F4). Although this matrix is non-singular, we show that
it is possible to calculate its inverse using only its structure. This is
equivalent to the real-domain NIPALS algorithm, where the neces-
sary generalised inverses for a regularised regression are calculated
solely due to the decompositions’ structure [29].

From the LDU decompositions of F,, n =1, 2, 3,4 given in (30),
we further factorise (F; + F, +F3 +Fy) as

Fi +F, +F; +F; = Li (LY + D'LY) + Ly (LY + DLY)
=LUy +L,Up

5 Note that if the matrices in (14) are generally invertible then C* and C* — PC+P*
are also generally invertible.
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=A+B.

Upon substituting N=A and O =B into Lemma 1, this form
permits the calculation of the inverse whereby the LU structure of
A guarantees that the generalised inverse of € is readily obtained.

We next consider the inversion of € — P*C**B. Similarly to C,
the matrix P can be factorised using the WL-CPLS approximation
in (26), to yield

P=W(K; + K, + K3 + K,)WH, (32)
where

K; = (P{'w)"D(P{'W) = L:DLY

K, = (PW)T (P{w) = LiLY

K; = (PYW)T(P'w) = L;LY

Ky = (PYW)'D* (PYW) = L;D*LY. (33)
Denote K; +K; + K3 +K4 =K and F; +F, + F3 + F; =F, we can
now obtain C = WFW" and P = W*KWH". The generalised inverse
of C— P*C**P can therefore be obtained as

(€ —P*CP)* = W(F — K*F *K)~'WH.

To calculate the inverse of (F— K*F~1*K)~! we can employ again
Lemma 1 with N=F and O = —K*F "*K. The inverse of F is
retained from the calculation of the generalised inverse of C
which satisfies the requirements of Lemma 1. The so obtained
generalised inverses of € and € — P*C**P conclude the proof of
Proposition 1. O

The steps in the calculation of the WL-CPLS regression co-
efficient matrices, Hw.cprs and Gwi-cpis, are summarised in
Algorithm 4.

Algorithm 4 Calculation of HWL—CPLS and GWL—CPLS-
1: Use the WL-CPLS in Algorithm 2 to obtain: T, Py, P, and W

2: Calculate  WL-CPLS  approximation X= T(P{W)WH +
T (PYW)WH

3: Obtain C=X"X, P=X"X, R=¥"X and §T = Y'X

4: Obtain Ly = (PYW)H, L, = (PYW)" and D=T'T

5: Obtain Uy = (LY + D*LY) and Up = (L} + DLY)

6: Define F = LU, + L, Up

7: Calculate F~! using Lemma 1 with N=L;Uy and O = L,Ug

8: Calculate C+ = WF-1wH

9: Define K = LiDLY + LiLY + ;LY + L;D*LY

10: Obtain (F — K*F~*K)~! using Lemma 1 with N=F and O =
—K*F-*K

11: Calculate [C — P*C*+P]t = WH (F — K*F-*K)~'W

12: Calculate HWL—CPLS = [C — ﬁ*t*+f,]+[RH — f)*c*+§T]

13: Calculate Gwi-cpLs = ([C - 13*C*+f’]+)*[§T - 136+RH]

Remark 7. The widely linear complex PLS algorithm in
Algorithm 2 provides an approximation of the matrix X, de-
noted by X, which admits a regularised widely linear regression
Y = XHw_cpis + X*Gwi.cpis. The regression coefficients are ob-
tained from Algorithm 4, owing to the inherent structure of the
WL-CPLS decomposition. As a result, the final Requirement R3 for
the WL-CPLS is met. We note that the required generalised in-
verses can also be calculated through other methods, not utilising
the matrix structures.

4.2. WL-CPLS as a covariance matrix diagonalisation transform
Diagonalisation of covariance matrices is an essential data anal-

ysis tool, and for real-valued data this is accomplished through
PCA/SVD. However, for the applications in the complex domain

[24], both the covariance and pseudocovariance matrices must be
simultaneously diagonalised. This can be achieved through the
strong uncorrelating transform (SUT) [23], given by

Xsur = X®, (34)

where ® ¢ C™™ is a transform, obtained through Algorithm 5,
which maps the measured variables, X e CN*™, on to the un-
correlated SUT variables, Xgyr € CN*™, The transformed covari-
ance matrix Cxg;, = X'S“UTXSUT is an identity matrix, and the pseu-
docovariance matrix Px. =XI,:Xsyr is diagonal and with real-
valued entries which represent the circularity quotient (defined in
Section 2.4) of each component (column vector) in Xgyr.

Algorithm 5 The SUT algorithm.

: Initialise: The data matrix X is provided

: Calculate empirical covariance matrix C = X"X

: Apply the SVD to give C = UAUH

: Obtain new variables X = XUA~1/2

: Calculate empirical psuedocovariance matrix P = XTX
: Apply the Takagi factorisation to give P = VAVT

. Obtain SUT variables Xg;7 = XUA~1/2V* = X®

N A W N =

We now show that the WL-CPLS result can be viewed, similarly
to the SUT, as an uncorrelating transform by considering the aug-
mented form of the decomposition of X, given by

o/ (PEWH)WH  (PHW)WH )=\ T
T=X(phww  (ww)-) G5)
The matrix T"T is block diagonal, and hence, the transformed co-
variance matrix, THT, and the pseudocovariance matrix, T'T, are
both diagonal. Therefore, the matrix

(PIW)WH  (PHYW)WH)*\*
((PEW)W” ((PE'W)W“)*)’

obtained by the WL-CPLS solution from regressing X to itself can
be considered as an uncorrelating transform.

To validate the performance of the so-obtained WL-CPLS uncor-
relating transform for dimensionality reduction, we consider a case
where a data matrix

X=Z+N, (36)

contains a low-rank “signal” subspace component, denoted by the
matrix Z, and a full-rank “noise” subspace component, denoted by
the matrix N. This is a common real-world scenario and if the sig-
nal accounted for the majority of the total variance in X then a
practical uncorrelating transform would clearly identify the low-
rank subspace. To this end, we generated N = 1000 samples of 20
independent, identically distributed (i.i.d.), non-circular, Gaussian
sources which were mixed to give a matrix Z e C1000x50_ A noise
source, N € C1000x50 " was added to the matrix, Z, to give the data
matrix X =Z + N, in (36), drawn from a circular, Gaussian i.i.d. dis-
tribution with an SNR=26dB, where the SNR is defined as

Tr{E[Z"Z]}
Tr{E[NHN]}’
The SUT and WL-CPLS transforms were then performed. Fig. 2
shows the percentage of the total variance in X that is explained

by the approximation obtained from each score described by the
metric

SNR = 101og;, (37)

Tr{A"A}
VE =100 ——- 38
Tr{AHA} (38)
For the WL-CPLS result A = LB:—" where i is the iteration num-
ber for the respective WL-CPLS score and loading and for the SUT
result A = xqy7;®;", where Xgyr; is the ith component (column of
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Percentage of total variance explained
by component for WL-CPLS and SUT

— WL-CPLS with noise

-~ SUT with noise
WL-CPLS no noise

--=-SUT no noise

Variance explained (%)

25 30 35 40 45 50
Component number

Fig. 2. Proportion of the variance (in %) explained by each component in the SUT
and WL-CPLS transform, VE in (38).

Xsyr) and <I>I.Jr is the ith row of the pseudoinverse of the SUT trans-
form ®. The metric VE was calculated for both the WL-CPLS/SUT
results obtained from both the data matrix A=X and for the
noiseless case A = Z from above in (36).

Fig. 2 indicates that the uncorrelating transform performed by
the WL-CPLS is more powerful for subspace identification than the
SUT. Observe that the WL-CPLS concentrates the energy in the sig-
nal into as few components as possible, owing to the fact it se-
lects a component in each iteration which explains the maximum
variance in X (due to the cross-covariance optimisation problem in
(18)). On the other hand for the SUT, owing to the inherent whiten-
ing, each element accounts for a similar amount of variance. This
is more clearly seen for the results of the data matrix, X, com-
pared to those for just the low-rank signal matrix, Z. Clearly, in the
absence of noise (which increases the rank), the SUT can identify
well a low-rank subspace. For even a small amount of noise, how-
ever, the signal power is spread amongst all components, which
makes it diffcult for the SUT to identify a subspace. On the other
hand, the WL-CPLS performs similarly in both cases. Note that the
computational requirements of the SUT are only two SVDs whereas
the WL-CPLS transform requires one SVD per latent component ex-
tracted.

4.2.1. Duality with SUT

A special case where the application of the WL-CPLS algorithm
as a transform and the SUT yield identical results exists for a uni-
tary input, X, that has an empirical covariance matrix C = XX =L
For such data, both methods result in the transform matrix V*
obtained from the Takagi factorisation of the matrix P=X"X =
VAV, In other words, for “white” data, the SUT transformed vari-
ables, Xgyr in (34), are equal to the scores matrix, T, produced by
the WL-CPLS algorithm.

To prove this equivalence, observe first that the whitening
transform in the SUT calculation (outlined in Steps 3 and 4 of
Algorithm 5) is no longer required, and so the required Takagi fac-
torisation can be calculated directly from the empirical pseudo-
covariance matrix P. On the other hand, for the WL-CPLS result,
the input and output deflations (Step 11 of Algorithm 2) are sym-
metric and are achieved by a strictly linear regression. This means
that p; = ¢; =w and p, = ¢, = 0. The WL-CPLS solution can now
be calculated in a closed form through the SVD of SgS}, (where
Ske :X}eYRe) as the first m (where m is the number of columns
of X) singular vectors are cast into the complex domain according
0 (19). To demonstrate the equivalence to the Takagi factorisation
of the empirical pseudocovariance matrix, P, consider the link be-
tween the SVDs of X} Xg, = Ug XU}, and X"X = UcZcUH. It is
well known that Xz, = 2¥ [36] and hence, the transformed sin-
gular vectors I';,Ug, produce the same diagonalisation of the ma-
trix X"X as the SVD, up to a factor of 2.

Lemma 2 (Horn [37]). Let A € C™" be a square matrix. There ex-
ists a unitary matrix, X, a diagonal matrix, A, with non-negative en-
tries, and a matrix Y with orthonormal rows such that A = XAY. The
columns of matrix X are the eigenvectors of AAH and the diagonal en-
tries of the matrix A are the square root of the corresponding eigen-
values of AAY. If AA" has distinct eigenvalues, then X is determined
up to a right diagonal factor D = diag(ei®1, ..., e) with all ¢ R
and |d;j| = €] = 1; that is, if A = X;AY; = XAY; then X, = X;D.

Lemma 2 (which is a property of the SVD and is proved in [37])
states that if a square matrix A can be represented as A = X;AY; =
X5 AY;, (where Xy, X5, Y; and Y, are unitary matrices) then X; =
X;D where D = diag(e!®1, ... ei), 6 e R and |d;j| = [e?| = 1. Us-
ing Lemma 2 we can now derive the relationship

IUge = v2UcD. (39)

Therefore, the latent vectors obtained by the WL-CPLS are identical
to those obtained from the SVD of X"X, each rotated to be of the
form

_ (Us1  Ug
x/iUCD_(U;] Uzz)’ (40)

where the matrix [U],, UY, |7 represents the matrix of the first m
(of 2m) eigenvectors of SRESEe transformed to the complex do-
main (as in (19)) and the matrix [UL, US| represents the re-
maining m eigenvectors of Sg.SJ,. The matrix Us; is then iden-
tical to the matrix W for the WL-CPLS result. In order for the
matrix +2UcD to diagonalise X"'X in this special case, the sum
UE P*U}, + UL PUg; + UY, Us; + U], U%, must be diagonal. This con-
dition (the derivation is given in Appendix A) is satisfied if Ug; =
V* from the Takagi factorisation of the matrix P = VAVT. There-
fore, the WL-CPLS result for X serving as both the input and output
is equivalent to that of the SUT for data for which the empirical
covariance matrix is given by C =1

4.3. The convergence of the WL-CPLS algorithm

The convergence analysis of real-valued PLS algorithms has
proved a difficult task [38]. For a univariate output, y, it has been
shown by Helland [39] that the vectors w span a space defined by
the vectors in a Krylov sequence K; = (s, Ss, ..., S"1s) (defined as
the Krylov space K;(S, s) = span(K;)) where s = X"y, S = X"X and
i is the number of components, while the t vectors span a Krylov
sequence, K;, where s = XXy and S = XXT [38,40]. Furthermore,
the work of Bro [38] highlights that the residuals for X and y are
orthogonal to the space defined by the obtained T, an important
property for a regression algorithm.

4.3.1. The orthogonality of the model residuals
Consider the WL-CPLS approximation with i components of X
in (23). We can write the residual of X as

—H
Xii1 =X-TP;, (41)

where P; = [Py ;,P,;]. Note that X; 4 is equivalent to the deflation
step in (22) at the ith iteration. The matrix P; can be obtained
(from (23)) as

P =X'T,(T'T) ",
and the residuals from (41) can be expressed as
Xiy1 = I-Pr)X, (42)

where P, ; = T;(T'T;)~'T" is a projection onto the space spanned
by T;. A similar relationship can be derived for the output Y using
the WL-CPLS model (24), where the model residuals are given as
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\ ' =Y—Lf,-H with C; = YNT;(T'T;)~". As above, this leads to a
relationship of the form

Y= (A-P)Y. (43)

From (43) and (42), the residuals for both multivariate X; and Y;
must be orthogonal to the subspace defined by the augmented la-
tent variables T; as P ; is a projection matrix, verified by the com-
putation of P} P ; =P .

4.3.2. Proof of WL-CPLS convergence to a Krylov space

Consider the univariate output y. In this case we can derive a
recurrence relation for the augmented scores t = [t;, t7] obtained in
the alternative form of WL-CPLS described in Algorithm 3, where
the vector w; in each iteration is obtained as the largest eigenvec-
tor of the matrix XMy;y!'X;. This eigenvector is given by [39]

w, X/'y
ClIXtyI

and is proportional to the vector XiHy. The score vector is then
given by t; = X;w; which is proportional to XiXiHy. Utilising the re-
lation obtained in (42) we can now write

tig oc (1= P )XXH (1 - Py y)y.

This can be written in the form of a recurrence relationship of the
augmented scores vector

t o [(I=P)XXNA =Py, A= P ) XX (=P i)yl
(44)

Proposition 2. The augmented scores matrix, T; = [T;, T;], obtained
from the WL-CPLS in Algorithm 3, form a basis for the space defined
by the vectors K; = [s, SK;_q, SK¥ ] and its conjugate K;, where s =
XXMy, § = XXH and K; = [s].

Proof. In order to show that the columns of T; form a basis of
the space spanned by the columns of [K; K{], it is sufficient to
show that they can be created through a linear combination of the
columns. The proof is obtained by induction, in the same way as
the proof of Proposition 3.1 in [39]. It has been shown that t; «
[s.s*] = [Kq.K3] and therefore our hypothesis is true for the base
case i = 1. We then assume that it is true that the columns of the
matrix T; are a linear combination of the column vectors in K; and
K;. The matrix P;; is therefore also a combination of the vectors
in K; and K}. The recursion in (44) represents the composite of the
vector

tiy1 ¢S —SPriy — PriS + PriSP:y,

and the vector

t s —S"PLy — PSS+ P SPLY.

Since the matrix P;; is a linear combination of the columns of
[K;, K;]. the vectors t;;; and t; , are then a linear combination
of the columns of [K;,;, K; ;] which is [s,s*, SK;, S*K;, SK}, S*K¢]
and so if T; is a linear combination of the columns of [K;, K;] then
the columns of T; ; are a linear combination of the columns of
[Kis1, K, ;] which proves Proposition 2. O

5. Simulation results

The performance of the proposed WL-CPLS algorithm is verifed
in a variety of scenarios. The performance metric used was the
prediction mean square error (MSE), defined as

MSE = E[||Y - Y|12]. (45)

where Y are the original “correct” output variables and Y are their
predictions from the WL-CPLS model, Y = XH + X*G, calculated
from the approximation X = T(P{W)W" + T+ (PYW)WH. For rigour,

10 MSE of WL-CPLS over a range of SNRs

Prediction MSE (%)

0 5 10 15 20
SNR (dB)

Fig. 3. Prediction MSE for ¥ (as a percentage of total variance) against the SNR in
Y.

MSE of WL-CPLS over a varying
number of components

40 T
[~ --=-Test Data MSE

30 s —Training Data MSE |

10

Prediction MSE (%)
n
o

30 35 40
Number of PLS components

Fig. 4. Performance, in terms of MSE, of the prediction of Y (as a percentage of
total variance) for a varying number of WL-CPLS components, in both training and
test data.

we examined the key factors that affect the performance of the
WL-CPLS algorithm: the number of WL-CPLS components selected
and the noise level in X and Y.

5.1. Prediction MSE for a varying SNR in Y

The performance of the WL-CPLS estimator of the output, Y,
was assessed for a varying SNR in Y. This is a classical linear re-
gression scenario which assumes that the input variables, X, are
accurate, whereas the output variables, Y, are corrupted by noise.
The data were generated as described in Table 1 with N = 1000,
r=20, m=p=100, ox =0 while oy was varied to give a range
of SNRs defined as in (37) where Z =Y and N = Ny.

The WL-CPLS estimator was obtained for 20 components from
training data and the average prediction MSE was then calculated
for an ensemble of 100 realisations. The results are shown in Fig. 3
and the prediction MSE was calculated as a percentage of the total
variance in Y. Observe that even for negative SNRs the WL-CPLS
produced a regularised regression estimator with less than a 10%
error.

5.2. Prediction MSE for a varying number of WL-CPLS components

The WL-CPLS solution was next examined over a varying num-
ber of components, in order to reflect the rank of the approxima-
tion for X. In this set of simulations, the average prediction MSE
was calculated over an ensemble of 100 trials, for a varying SNR
and a number of components in WL-CPLS. The data was generated
as described in Table 1, with N =1000, r =40, m = p = 100 and
no noise added (ox = oy = 0). The MSE (as a percentage of the to-
tal variance) between the training data and the corresponding WL-
CPLS estimate is shown by the solid red line in Fig. 4. Observe a
characteristic “elbow” when more than 40 components are used
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Table 1
Generation of synthetic test data matrices X and Y.

Initialise inputs : N, r, m, p, ox and oy
Define 0, as a vector of N zeros

Create matrix X = [$1,S2,...5r, 07,0,

0N U WN =

Create matrix Ny = [ny, ..., ny|
9: Create matrix Y = XH + X*G + Ny

Generate matrix M € R™™ such that MTM =1

,,,,, 0, ]M

Generate matrices H e C™*? and G € C™*? such that H"H =1 and GN'G =1

Define n, € CV*! as vector of N samples generated as %{n,} = N'(0,0¢) and 3{n,} = N'(0, 0¢)

Define s, € C¥*! as vector of N samples generated such that %{s,} = A’(0, 1) and 3{s;} = M'(0, 1)

10 :  Define n, € CN*! as vector of N samples generated as %{n,} = N'(0,0¢) and 3{n,} = N'(0,02)

11: Create matrix Nx = [ny, ..., np]
12 : Create matrix X = X + Nx

to calculate the WL-CPLS solution, beyond this point there was no
significant information added by further components and the WL-
CPLS model “over-fits”. This is demonstrated by the ensemble av-
erage prediction MSE for test data using the WL-CPLS estimator
and shown by the dashed blue line in Fig. 4. The MSE was lowest
for 40 WL-CPLS components, which confirms that the number of
WL-CPLS latent variables selected should be the number of inde-
pendent components used to create the joint process.

5.2.1. Stopping criteria for WL-CPLS algorithm

Notice that the WL-CPLS formulations in Algorithms 2 and 3 are
iterated until r components are found. The value of r is often not
known a priori but can be determined based on a stopping crite-
rion. For example, the WL-CPLS solution is computed for a range
of component numbers, r, then the prediction MSE for both train-
ing and test data is determined, and the variable r is selected as
the index of the last component after which adding a new compo-
nent to the data no longer significantly improves the MSE. This is
indicated by the “elbow” in Fig. 4.

5.3. Prediction MSE for a varying SNR in X and Y

We next assessed the performance of the WL-CPLS in the pres-
ence of noise in both X and Y. The data were generated as shown
in Table 1 with N =1000, r =40, m = p = 100, while oy and oy
were varied so as to give a range of SNRs, defined as in (37), where
Z is either X or Y and N is Ny or Ny, respectively.

Remark 8. The ordinary least squares (OLS) regression model as-
sumes that the input variables, X, are accurate and only the output
variables, Y, may contain error, however, this is not generally the
case in real-world scenarios. The PLS aims to improve the estimate
by using only the relevant subspace shared between the variables
X and Y, so as to eliminate spurious correlations from erroneous
variables from the regression calculation.

Fig. 5 shows the average prediction MSE (as a percentage of the
total variance) of an ensemble of 100 realisations for the WL-CPLS
solution obtained from training data (generated as before) with
varying noise levels for X and Y (the noise level for X was defined
similarly to the noise in Y above) where the training data X had 40
independent components mixed over m = 100 variables and trans-
formed to 100 variables in Y. For comparison, we used the Moore-
Penrose pseudoinverse [28] to provide the inversions required in
Section 4.1, and Fig. 6 shows the average prediction MSE for the
same ensemble as in Fig. 5. Observe that the MSE of WL-CPLS was
lower, especially for higher noise levels in input data X.

6. Distributed frequency estimation in power grids

The problem complex-valued of frequency estimation in multi-
node systems is important in modern smart grids [12,41,42], where

MSE of WL-CPLS prediction over a varying SNR in X and Y

SNR X = 3dB
254 |SNR X = 9dB SNR Y = 3dB
w SNRY = 3dB MSE = 8.8%
n 27 o P
2 MSE = 4.9% L
c 154
S
2107 SNRX:sdB
2 ~-|SNRY =9dB
o 5
MSE = 6.1%
0
0 5 — 5 0
° 15 15
SNRY (dB) SNR X (dB)

Fig. 5. Prediction MSE against the noise level in Y (as a percentage of total vari-
ance), with noise also present in X.

MSE of pseudoinverse prediction over a varying SNR in Xand Y

SNR X = 3dB
251 |SNRX=9dB SNRY = 3dB
w SNRY = 3dB MSE = 10.6%
0 27 o
2 MSE = 5.8%
g 15 4 N
% 104 SNR X = 3dB
g ~/SNRY =9dB
o 5
MSE = 6.4%
0 h 0
5 5
10 15 15 10
SNRY (dB) SNR X (dB)

Fig. 6. Prediction obtained from the Moore-Penrose pseudoinverse against the
noise level in Y (as a percentage of total variance), with noise also present in X.

any imbalance is indicated by a noncircular behaviour of a voltage
phasor.

6.1. Frequency estimation: Problem specification

Consider a network of M voltage sensors where each node has
access to sampled three-phase voltage measurements, at the dis-
crete time instant k, given by [12]

Vg cos(wk + ¢q)
Ua,k 2
Se=|Up | = Vj, cos <a)k + ¢y — 23> ) (46)
Vek Ve cos (a)k + ¢+ %)

The amplitudes of the phase voltages vg k. Uy, V. are Ve, Vp, Ve,
while the phase values are denoted by ¢q, ¢}, ¢ and the angular
frequency is w = 27 fT, with f the fundamental power system fre-
quency. Observe that both the frequency w and phasors (amplitude
and phases) are assumed to be identical over a local area.
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The three-phase representation of the s, in (46) is over-
parametrised and is routinely represented as a compact “two-
phase” Clarke voltage, v, ; and vg , via the Clarke transform, given
by [3]

1 1 Vak
Vy ki| def 2 |:1 2 2 i| ’
Y 3 NEY V3 Ubk |- (47)
|:U/3_k 3(0 5 -5 Vek

(%)

Clarke matrix

Moreover, the Clarke transform enables, v, and vg, to be con-
veniently represented jointly as a complex-valued scalar,

def .
Sk =< Vo k + JVB k- (48)

The complex af voltage in (48) therefore admits a widely linear
auto-regressive (WLAR) representation given by Xia et al. [2,3]

Sk =h's_1 + 8754, (49)

where the WLAR coefficients h and g contain the information of
the system frequency, w;, and level of imbalance in the system,
that is, the degree of improperness. The system frequency is then
calculated as [3]

e/ = Re{h} + jy/Im?{h} — |g| (50)

Sw= angle{Re{h} + jy/im2{h} — |g|2}. (51)

Note that if the system is in a balanced condition, only a single pa-
rameter, h, is required to estimate the system frequency (a strictly
linear system).

An important task in electricity grids is to estimate the system
frequency, w, given noisy observations of the Clarke voltage s, in
(48), which can be expressed

Zix = Sk+Nik (52)

where 1;, is a zero-mean complex-valued white Gaussian noise

process, with variance o = E|n; |*.

6.2. Balanced multiple node case

The noisy voltage measurements in (52) at each node are given
by
Zi k+1»

def T
Zj, = [Zi‘k’ Zi,k+N—l] .

To construct a classical strictly linear least squares problem, while
exploiting all the measurements in the network, we fold a collec-
tion of voltage measurements at each node into a single column
vector

T
s ZM,k—]] ,
) ZM,IC]T7 (53)

where the subscript “—1” indicates that the sample at a given time
index is delayed by one time instant compared to the vector z. This
gives the formulation of the strictly linear least squares solution in
the form

zZ,= [21,k—1,

Z= [z],k,

h=(z"z1) 2"z (54)
from which the system frequency is calculated as

&s. = angle{h}.

6.3. Unbalanced multiple node case

Three-phase systems under unbalanced conditions require a
widely linear solution [3], given by
Zi = hizj 1 + &2z}, (55)

where the regression can be represented through the augmented
matrix of the vector of delayed system voltages, z_;, in (53), de-
fined as

z,=[z1 z]

such that the widely linear model of the voltage in (55) assumes
an augmented form

z=z_;h% (56)
where h? = [h, g]". The WL-LS solution is then given by
h'=[n g]" =2z,

where the frequency can be obtained from (51).
6.4. Exploiting redundancy with a WL-CPLS solution

The formulations proposed so far rearrange the data from each
node into a single composite vector and, hence, destroy any spatial
information. Alternatively, consider the following matrix of regres-
sion variables

Z,=[2i1 Tkt o Zmge)s
Z = [21,k’ ZZ,kv ey ZM.k]'
The problem now assumes a multivariate WL-LS form
z=[ 2, 1z, |B.
Note that Z_; is a rank-1 matrix (as the system voltage signal at
each node should be the same) corrupted by noise, a natural sce-
nario for the WL-CPLS algorithm as the widely linear OLS solu-
tion is computationally intractable. The augmented regression co-
efficient matrix can now be expressed as
by o -
- hy .
B¢ hM

&1 :
: 82

&m
From (49), the elements hq, hy, ..., hy and g1,8....,8y are the
coefficients of the WLAR model, for each node, while the matrix
B? can be estimated using the WL-CPLS algorithm with a single
component. This admits a new estimator of the grid frequency in
the form

1Y .
w=0 l;:angle{Re{h,-} + jy/Im*{h;} — |g,-|2}.

6.5. Simulation comparison of estimators

The performance of the three system frequency estimators was
evaluated for a power grid in an unbalanced condition. Synthetic
data were generated for a system with 100 nodes over a range of
SNRs. The three phase voltages, vq, v, and v., were generated as
f =50Hz sinusoids sampled at f; = 5kHz for t = 0.3s and with a
ZT” phase difference. The system imbalance was Type B sag which
was caused by a resistive fault on v, causing it to drop to half
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Unbalanced 3-Phase Power System
Frequency Estimation
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Fig. 7. Comparison of MSE for an unbalanced 3-phase power grid frequency esti-
mator, for a range of SNR.

the amplitude of the other phases, and the fault was propagated
over M = 100 nodes corrupted with i.i.d. Gaussian noise to give
the corresponding SNR. An ensemble MSE of the three system
frequency estimators was calculated over 100 realisations over a
range of SNR, and the results are given in Fig. 7. Observe that the
strictly linear estimator did not have enough degrees of freedom
to provide an accurate result. The performance of the widely linear
least squares estimator rapidly degraded for low SNRs, exhibiting a
“blow up” at SNR=12dB. This can be attributed to the fact that au-
toregressive modelling of sinusoids (strictly or widely linear) pro-
duces biased estimates in the presence of measurement noise [43].
The estimator derived from the WL-CPLS algorithm with only one
component, however, provided an accurate estimate even for low
SNRs. This demonstrates the ability of the WL-CPLS to find a com-
mon subspace between noisy data blocks, a common application
in dimensionality reduction [44]. Moreover, the WL-CPLS allows
for spatial information to be maintained and, since all the quan-
tities (e.g. phasors, widely linear auto-regressive model) involved
are complex-valued, the computation is performed in a physically
meaningful manner®.

7. Conclusion

A widely linear complex partial least squares regression algo-
rithm (WL-CPLS) has been derived as a generalisation of the NI-
PALS algorithm in [17,27] to noncircular complex data. It has been
shown that the WL-CPLS provides a latent variable decomposition
of a data matrix, X, which, in turn, admits a tractable computa-
tion of the generalised inverses of the required matrices in order to
calculate a widely linear regression. Moreover, the proposed algo-
rithm has been shown to extend the cross-covariance criterion of
real-valued PLS to suitably select components based on the maxi-
mum joint second-order information between the complex-valued
input and output blocks. In this way, both significant data compo-
nents are prioritised and the subspace containing relevant infor-
mation is identified. The so derived WL-CPLS has been shown to
fulfil the requirements for the PLS class of algorithms and its per-
formance has been analysed in terms of the properties of the resid-
uals and through convergence analysis for the case of a univariate
output. The utility of the WL-CPLS latent variable decomposition
has been demonstrated through its application as a covariance ma-
trix diagonalisation transform, which exhibits useful properties for
dimensionality reduction and physically meaningful data analysis.
Finally, the benefits from the inherent structure of the complex-
valued representation within the WL-CPLS framework have been

6 For example, the variable g; in the WL complex solution indicates whether the
system is balanced or not.

exemplified through real-world multi-node frequency estimation in
unbalanced power grids.
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Appendix A. SUT and WL-CPLS duality proof condition
derivation

To show that both the WL-CPLS transform and the SUT are de-
termined by the conjugate of the matrix V which arises from the
Takagi factorisation of the matrix P = XTX = VAVT, we now derive
the condition that the sum UY,P*Ug, + UJ, PUs; + U Ug; + UL U%,
must be a diagonal matrix. Consider the transform of the original
variables X (in augmented form) to the new variables X by means
of the matrix I';Ug, which, through (40), gives

X = X<Us1 Uiz)
s Ug
This is precisely the result produced by the WL-CPLS transform.

The covariance matrix of the transformed variables is then given
by

XHX _ (Ugl1 HU;—] . ) (I P*) (Us] Usz)
T Ug, Ug,/\P 1 J\Us;  Ug)"
(U5:1 IUs; + Ugl PUs; + Us:l P*Ug, + U;T'—l 1Ug,
U IUg; + Ug, PUsy + Ug, P*UE, + Ug, IUE,
U; IUg, + U; PUs, + Ug'1 PUg, + U5T1 IU;Z)
UG IUs; + UG, PUs; + UG PUG, + UG IUG, )

(A1)

This matrix is known to be diagonal, which gives rise to the condi-
tion that UY, P*U%, + U], PUg; + UH Ugy + U], Uz, must be diagonal.
Through inspection, this is satisfied when Ug; = V*.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.sigpro.2018.06.018
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