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a b s t r a c t 

The method of partial least squares (PLS) has become a preferred tool for ill-posed linear estimation prob- 

lems in the real domain, both in the regression and correlation analysis context. However, many modern 

applications involve complex-valued data (e.g. smart grid, sensor networks) and would benefit from cor- 

responding well-posed latent variable regression analyses. To this end, we propose a PLS algorithm for 

physically meaningful latent subspace regression with complex-valued data. For rigour, this is achieved 

by taking into account full complex second-order augmented statistics to produce a robust widely lin- 

ear estimator for general improper complex-valued data which may be highly correlated or colinear. The 

so-derived widely linear complex PL S (WL-CPL S) is shown to allow for effective joint latent variable de- 

composition of complex-valued data, while accounting for computational intractabilities in the calculation 

of a generalised inverse. This makes it possible to also determine the joint-subspace identified within the 

proposed algorithm, when applied to univariate outputs. The analysis is supported through both simula- 

tions on synthetic data and a real-world application of frequency estimation in unbalanced power grids. 

Finally, the ability of WL-CPLS to identify physically meaningful components is demonstrated through 

simultaneous complex covariance matrix diagonalisation. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Developments in sensor technology and the increasing avail-

ability of computational power and computer memory have made

it possible to obtain and process very large and often high-

dimensional datasets. Such real-world datasets, typically have a

rich structure which creates an opportunity for physically mean-

ingful analysis, at the expense of computational tractability. For

example, data from high-density sensor networks are frequently

highly-correlated (colinear), which renders traditional regression

methods ill-posed. It is therefore of particular interest to develop

signal processing techniques that both account for these numeri-

cal issues and at the same time take advantage of any structure

present in the data. 

For many applications a widely accepted method to exploit

structure in bivariate data is through complex-valued signal pro-

cessing. The complex representation transforms complicated ex-

pressions in R 

2 , such as rotations, into compact and easy to inter-

pret forms in C . This has led to advances in analysis of wind pro-

files [1] , power systems [2,3] , acoustics [4] , and communications

[5,6] . More recently, advances in so-called “augmented” statistics
∗ Corresponding author. 
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7] have shown that a full second-order description of a complex-

alued random variable, z , includes both the pseudocovariance ma-

rix, P = E[ zz T ] , and the standard covariance matrix, C = E[ zz H ] .

herefore, only the consideration of such “augmented” complex

tatistics can yield signal analysis tools which make use of fea-

ures intrinsic to the complex domain, such as complex second-

rder noncircularity [8–10] . 

When it comes to determining the relationship between two

ets of variables, linear regression is probably the most common

ata analysis method, whereby the variable y ∈ R is estimated

hrough a linear combination, ˆ y = a T x , of the independent vari-

bles, x ∈ R 

m ×1 , by the vector of coefficients, a ∈ R 

m ×1 . The vec-

or a is calculated so as to minimise the mean square error (MSE)

etween the observation, y , and its prediction, ˆ y . An extension to

he complex domain has been developed by Picinbono and Cheva-

ier [11] , whereby the optimal estimate, ˆ y , for complex-valued

ata, y ∈ C , is given by ˆ y = h 

H x + g H x ∗, where the coefficient vec-

ors, h ∈ C 

m ×1 and g ∈ C 

m ×1 , describe the relation with the inde-

endent variables x ∈ C 

m ×1 and their conjugate x ∗. This so-called

idely linear estimator is linear in both x and x ∗, and has found

se in numerous applications including adaptive estimation of sys-

em frequency in distributed power systems [12] . 

A direct application of linear regression to dense sensor arrays

as a very limited scope, as such solutions become ill-posed when

https://doi.org/10.1016/j.sigpro.2018.06.018
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he data are highly-correlated or colinear [13] . This can cause the

ovariance matrix, the inverse of which is inherent to regression

ethods, to have a large condition number or to become sub-rank

hich makes it difficult to compute its inverse. As a remedy, reg-

larisation methods, such as Ridge-Regression [14] , add a constant

o the matrix diagonal to enforce well-posedness, however, this in-

ludes spurious information in the calculation. An alternative ap-

roach is to use the class of component analysis methods to fac-

orise the original variables, which in addition to extracting the rel-

vant information also provides a representation that is straightfor-

ardly invertible. One such technique is principal component re-

ression (PCR), which uses principal component analysis (PCA) to

escribe the original data matrix of regressors, X , through orthog-

nal latent components [15] . This allows for the separation of the

esired information from noise related latent variables and admits

 straightforward calculation of the generalised inverse of X , thus

tabilising linear regression [16] . 

It is important to note that the so-obtained PCR solution cre-

tes a latent variable decomposition based only on the information

n the independent variables, X , which means that it may contain

rroneous information for use in the prediction of the dependent

ariables, Y . To this end, the partial least squares (PLS) regression

lgorithm integrates component analysis into the regression cal-

ulation. This is achieved by finding latent variables that explain

nly the joint input-output relation between the variables, X and

 , thus rendering the problem well-posed [13] . Real-world appli-

ations of the PLS are found in chemometrics and are emerging in

ignal processing [17–19] . 

The original real-valued PLS has been established as a robust

ata-analysis methodology [20] . The several types of PLS can be

roadly split into two groups: i) those used for regression cal-

ulations (PLS1/2 in [20] ) and ii) those used for dataset cross-

ovariance analysis (PLS Mode-A, PLS-SB in [20] ). The PLS algo-

ithms that aim to calculate a regression (NIPALS 1 and SIMPLS

21] ) produce an orthogonal decomposition of the independent

ariable data block X . This leads to the most parsimonious model

f the data for a regression calculation, because dimensionality re-

uction is at the heart of this approach. On the other hand, for

ataset cross-covariance analysis it is often desirable that the la-

ent variable decomposition is symmetric between the X and Y

locks, in which case the scores are not generally orthogonal. In

he latter format, there are strong similarities to canonical correla-

ion analysis (CCA), however, these type of methods are not usu-

lly used for prediction. The PLS framework therefore offers an in-

epth data analysis tool through a combination of a linear regres-

ion and its latent variable decomposition. 

It is crucial that the derived latent variables provide a useful

nd physically meaningful interpretation of the data, which can be

urther enhanced through constraints on the components such as

on-negativity or sparseness [22] . Component analysis tools based

n augmented complex statistics have recently been developed for

omplex-valued data and include the Strong Uncorrelating Trans-

orm (SUT) [23,24] and the Approximate Uncorrelating Transform

AUT) [25] , while an extension of the PLS to complex-valued data

as been proposed [26] . However, this version of PLS is struc-

urally equivalent to the real-valued PLS-SB method in [20] and

s presented from the viewpoint of dataset cross-covariance anal-

sis. Such a decomposition therefore inherits the properties of the

ata-covariance analysis class of methods: the latent variables are

ot in general orthogonal and the relation between the X and Y

lock is symmetric. On the contrary, the proposed WL-CPLS algo-

ithm is designed as a generic extension of the NIPALS algorithm
1 Throughout the paper we refer to the NIPALS algorithm for the PLS-regression 

ethod known as PLS1/2 in [20] 

o  

l  

(  

p  
or PLS-regression [13,27] to complex-valued data, taking into ac-

ount full second-order augmented statistics. This generates the

esirable property of the orthogonality of the obtained latent vari-

bles, unlike that proposed in [26] , and naturally incorporates the

alculation of a widely-linear regression. This important feature is

hown to be useful beyond the field of regression for complex data

nd, in Section 4.2 , its use is demonstrated to yield an uncorre-

ating transform. The analysis shows that the WL-CPLS algorithm

aters for non-circular data without any restriction and in a generic

ay, unlike existing algorithms. 

Our main technical contributions are threefold. We provide a

ethod to calculate the widely linear regression coefficients akin

o the real-domain PLS algorithm. Next, the properties of the WL-

PLS model residuals are determined and the algorithm conver-

ence is proved for a univariate output. Finally, the WL-CPLS is ver-

fied on practical applications of complex-valued covariance matrix

iagonalisation and for smart grid frequency estimation. 

The paper is structured as follows. The background on PLS and

idely linear regression is given in Section 2 . We then derive the

L-CPLS algorithm in Section 3 based on a critical review of the

L S algorithm. The WL-CPL S algorithm is analysed in Section 4 and

ts application for simultaneous complex covariance matrix diago-

alisation is introduced. The utility of WL-CPLS for complex-valued

egression is illustrated through simulations on synthetic data in

ection 5 . The WL-CPLS is then applied to the real-world appli-

ation of estimating the frequency of an unbalanced multi-nodal

ower grid in Section 6 , confirming its capabilities over existing

echniques. 

Boldfaced capital letters denote matrices, A , lower case bold-

aced letters vectors, a , and lightfaced italic letters scalars, a . The

uperscripts (·) + , (·) T , (·) H and ( · ) ∗ denote respectively the gener-

lised inverse, transpose, Hermitian transpose and conjugate oper-

tors respectively. The operator Eig max { · } returns the eigenvector

orresponding to the largest eigenvalue of the matrix in the argu-

ent. 

. Background and review 

.1. Partial least squares regression 

Consider the linear regression problem of predicting a matrix of

 dependent variables, Y ∈ R 

N×p , from a matrix of m independent

ariables, X ∈ R 

N×m , through a matrix of coefficients, B ∈ R 

m ×p , de-

cribed by 

ˆ 
 = XB , (1) 

here ˆ Y denotes the estimate of Y and N denotes the number of

bservations. The general solution for the regression coefficients, B ,

as the form 

 = X 

+ Y , (2) 

hich requires the calculation of the generalised matrix inverse X 

+ 

28] . The ordinary least squares solution is then given by 

 

+ = (X 

T X ) −1 X 

T . (3)

f the variables in X (its columns) are highly-correlated or colinear,

hen X is sub-rank, which is prohibitive to the calculation of the

nverse of the matrix X 

T X . To counteract this issue, the method of

artial Least Squares (PLS) produces a latent variable decomposi-

ion of the matrix X from which a generalised inverse is straight-

orwardly calculated [13,17,29] . The advantage of PLS compared to

ther component analysis regression methods ( e.g. PCR) is that the

atent components are selected so as to explain the joint dynamics

shared latent variables) between X and Y , while the PCR solution

roduces a decomposition of X without consideration of Y , thus
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yielding a less parsimonious, and typically less physically mean-

ingful, model than PLS. 

The PLS decomposition is performed through the factorisations

[17] 

X = TP 

T , (4)

Y = TC 

T , (5)

Y = UQ 

T , (6)

where T ∈ R 

N×r is the matrix which comprises r latent variables in

X with the loadings given by the matrix P ∈ R 

m ×r while U ∈ R 

N×r 

is the corresponding matrix of r latent variables in Y with load-

ings given by the matrix Q ∈ R 

p×r . The matrix C ∈ R 

p×r describes

the “inner-relation” of PLS, that is, the regression between Y and

T , and indicates the extent to which the latent variables, T , are

good descriptors of both X and Y . These relations demonstrate the

utility of the PLS solution as both a regression and a component

analysis tool, which offers new data analysis opportunities. For ex-

ample, Abdi [30] shows that plotting the latent variables against

one another (through biplots) reveals information about different

groups within data. 

Algorithm 1 The NIPALS algorithm for PLS. 

1: Initialise: X 1 = X , Y 1 = Y 

2: for i = 1 , . . . , r do 

3: w i = Eig max { X 

T 
i 

Y i Y 

T 
i 

X i } 
4: t i = X i w i 

5: c i = Y 

T 
i 

t i / t 
T 
i 

t i 
6: u i = Y i c i 
7: p i = X 

T 
i 

t i / t 
T 
u t i 

8: q i = Y 

T 
i 

u i / u 

T 
i 

u i 

9: X i +1 = X i − t i p 

T 
i 

, Y i +1 = Y i − t i c 
T 
i 

10: Store t i , u i , p i , q i , c i and w i 

11: end for 

The multivariate PLS solution is typically calculated by the iter-

ative NIPALS algorithm 

2 [17] , outlined in Algorithm 1 . Each itera-

tion calculates and stores a rank-1 approximation of X and Y , and

on completion of the algorithm, this results in the relations (4) –(6) .

In order to calculate these rank-1 approximations, a score vector t

is found as the component in X which has the maximum cross-

covariance with Y . This is achieved by finding a weight vector, w ,

that yields the maximal projection of the cross-covariance matrix

X 

T Y . In other words, the solution, w , arises from the optimisation

problem 

w = arg max 
|| w || =1 

|| w 

T X 

T Y || 2 2 , (7)

and is given as the eigenvector which corresponds to the largest

eigenvalue of the matrix X 

T YY 

T X . This matrix is symmetric and

positive-semidefinite, hence its eigenvectors are orthogonal and

represent a valid basis for the cross-covariance between X and Y

[20] . The “score” of this vector is given by 

t = Xw , (8)

and represents a latent variable in X , which is optionally nor-

malised to t T t = 1 so that T T T = I . The NIPALS algorithm next cal-

culates the regressions of X and Y to the computed t , resulting in

the rank-1 approximations ˜ X = tp 

T and 

˜ Y = tc T . The score vector

in Y corresponding to t is u = Yc and the rank-1 approximation
2 Other multivariate PLS algorithms do exist, such as the SIMPLS [21] . 

c  

Y  
˜ 
 = uq 

T is then calculated. Before proceeding to the next itera-

ion, the data matrices X and Y are “deflated”, that is, the rank-

 contribution of the current score t is removed from X and Y ,

hich makes the components calculated in the following iteration

rthogonal to the already extracted components. The vectors w , t ,

 , c , u and q are stored in the columns of their respective matri-

es and form the PLS decompositions in (4) –(6) . The algorithm is

terated until all significant components are found, with the stop-

ing criterion typically based on a negligible contribution of a new

omponent to the variance in the prediction of Y . 

In summary, the NIPAL S PL S-regression algorithm provides an

pproximation of X , denoted by ˜ X , in the form 

˜ 
 = T (P 

T W ) W 

T , (9)

hich is based on a linear combination of columns (given by each

ector w ) from a repeatedly deflated X , accounted for by the ma-

rix (P 

T W ) which has an upper-triangular form [29] . The gener-

lised inverse of the matrix ˜ X is now straightforward to calcu-

ate due to its structure, as it is an orthogonal matrix multiplied

y an upper-triangular matrix multiplied by orthogonal matrices,

hich are all straightforwardly invertible. Hence, the generalised

nverse is calculated as ˜ X 

+ = W (P 

T W ) −1 T T to give the PLS solu-

ion 

ˆ B PLS = 

˜ X 

+ Y . 

emark 1. The PLS-regression calculates a joint decomposition (in

 second-order statistical sense) of variables X and Y in order to

roduce a solution of a regularised generalised inverse problem. 

.2. Widely linear regression 

Prior to introducing a complex domain extension of the PLS

lgorithm, we shall provide a brief review of complex-valued re-

ression. The aim is to find an estimate, ˆ Y , of dependent variables,

 ∈ C 

N×p , from independent variables X ∈ C 

N×m through the min-

misation of the mean square error (MSE) 

SE = T r{ E[(Y − ˆ Y ) H (Y − ˆ Y )] } . (10)

hen X and Y are complex-valued, the general solution should ac-

ount for second-order noncircularity (improperness) of the data,

his is achieved through a widely linear form [11] 

ˆ 
 = XH + X 

∗G , (11)

ith coefficient matrices H ∈ C 

m ×p and G ∈ C 

m ×p . Such an opti-

al estimator of Y is, in general, linear in terms of both X and

 

∗, in contrast with the strictly linear result in (1) . Observe that

he widely linear regression coefficient matrices, H and G , cannot

e calculated through a generalised inverse of only X . In order to

erive the solution, we observe that the residual (Y − ˆ Y ) is orthog-

nal to both X and X 

∗, which yields the expectations 

[ ̂  Y 

H X ] = E[ Y 

H X ] , E[ ̂  Y 

H X 

∗] = E[ Y 

H X 

∗] , (12)

eading to 

 

H C + G 

H P = R , H 

H P 

∗ + G 

H C 

∗ = S ∗, (13)

here R = Y 

H X , S = Y 

T X , C = X 

H X and P = X 

T X are respec-

ively the empirical cross-covariance, cross-pseudocovariance, co-

ariance and pseudocovariance matrices. A simultaneous solution

f (13) yields the widely linear regression coefficients given by 

 = [ C − P 

∗C 

∗−1 P ] −1 [ R 

H − P 

∗C 

∗−1 S T ] 

G = [ C 

∗ − PC 

−1 P 

∗] −1 [ S T − PC 

−1 R 

H ] . (14)

The augmented forms, X = [ X , X 

∗] and Y = [ Y , Y 

∗] , provide a

ompact representation for the widely linear regression in (11) as

 = X B , (15)
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here 

 = 

[
H G 

∗

G H 

∗

]
. 

he widely linear regression coefficients in B are consequently ob-

ained as B = X 

+ Y . The generalised inverse in this context is given

 

+ = ( X 

H X ) −1 X 

H (akin to the linear least squares solution in (3) )

hich leads to 

 

+ = 

[
C P 

∗

P C 

∗

]
X 

H 
. 

 direct application of block matrix inversion [31] yields a deriva-

ion of the widely-linear estimation in augmented form which re-

uires the same calculations for the regression coefficient matri-

es G and H as those derived in (14) . This highlights that the aug-

ented form in (15) allows a representation of complex-valued re-

ression in the same form as a standard real-valued linear regres-

ion in (1) . 

emark 2. Widely linear regression is solved through a gener-

lised inverse of the augmented complex matrix X , which is a

eneric extension of standard regression based on a generalised in-

erse of the matrix X . This is equivalent to the solution in (14) . 

.3. Duality between complex-valued processing and processing in R 

2 

Complex valued data can be equivalently represented and pro-

essed in R 

2 [7,32] . To illustrate this duality, consider a matrix,

 ∈ C 

N×m , which can be written in terms of its real and imagi-

ary parts as X = (X R + jX I ) . The individual parts, X R ∈ R 

N×m and

 I ∈ R 

N×m , can be represented as 

 Re = [2 X R , 2 X I ] , (16)

here X Re ∈ R 

N×2 m . The isomorphism between this representation

n R 

N×2 m and the augmented form of complex-valued data, given

y 

 = [ X , X 

∗] , 

s described by the transform matrix, �m 

, given by 

m 

= 

[
I m 

− jI m 

I m 

jI m 

]
, (17) 

here I m 

∈ R 

m ×m is the identity matrix of appropriate dimensions.

he transform matrix, �m 

, is unitary with a scale factor of 2 so

hat �H 
m 

�m 

= 2 I 2 m 

and the mapping in (16) then becomes 

2 X R , 2 X I ] = [ X , X 

∗] �m 

. 

.4. The notion of circularity 

Widely linear regression is optimal for second-order non-

ircular 3 (improper) data, which is a more general case than cir-

ular rotation invariant (proper) data [7,33] . The concept of circu-

arity admits an insightful geometric interpretation of a Complex

andom Variable (CRV) [8] . The degree of circularity can be de-

cribed by the circularity coefficient, the absolute value of the ratio

f pseudocovariance, p = E[ z 2 ] , to covariance, c = E[ z ∗z] , given by

34] 

= 

| p| 
c 

. 

or a proper variable ρ = 0 , while for a maximally non-circular

ariable ( i.e. a real number represented as complex-valued) ρ = 1 .
3 Note that propriety is a second-order property whereas circularity accounts for 

ll statistical moments. 

N  

b  

a

oreover, the circularity quotient (the fraction 

p 
c ) reveals whether

he non-circularity arose due to the power imbalance or correla-

ion between the data channels. A CRV z = z r + jz i has pseudo-

ovariance p = E[ z 2 r − z 2 
i 

+ jz r z i ] and covariance c = E[ z 2 r + z 2 
i 

] , and

herefore, the real part of their ratio quantifies power imbalance

etween z r and z i whereas the imaginary part quantifies their cor-

elation [7] . 

. Widely linear complex partial least squares 

Since the fundamental aim of the PLS algorithm is to provide

 linear regression estimator, an extension for general complex-

alued data should be based on a widely linear model of the form

 = XH + X 

∗G . The solution is then created through a latent vari-

ble decomposition of X and based on full joint second-order com-

lex statistics. The so-obtained latent variable decomposition, ow-

ng to its structure, will admit a straightforward calculation of the

eneralised inverse of the augmented data matrix X , and in doing

o, yield a regularised widely linear regression solution. In general,

he requirements for the widely linear complex PL S (WL-CPL S) are

o: 

R1 Create a joint latent variable decomposition of the data ma-

trices, X and Y , that describes the complete complex second-

order statistics; 

R2 Account for a widely linear relationship between the X and

Y data blocks; 

R3 Obtain approximations ˜ X and 

˜ Y that admit a straightforward

and tractable computation of a widely linear regression Y =
˜ X H + 

˜ X 

∗G . 

.1. A complex-valued PLS algorithm 

The proposed complex PLS algorithm for widely linear re-

ression (WL-CPLS) is next derived as an extension of Wold’s

eal-valued NIPAL S PL S-regression algorithm [17] , outlined in

lgorithm 1 . To extend NIPALS for a general complex-valued input

 ∈ C 

N×m and output Y ∈ C 

N×p , we must find the components in X

hat represent the maximal joint second-order information with Y ,

n the form of vectors, w , which give “score” vectors t = Xw . The

ugmented representation is then given by 

 t , t ∗] = [ X , X 

∗] 

[
w 0 

0 w 

∗

]
. 

his structure is required as the vectors w must form an orthog-

nal basis for the inputs X . To find the vector w that meets this

riterion and produces the required structure we shall employ the

somorphism between R 

2 and C , given in (16) , to transform X and

 as 

 Re = X �m 

, Y Re = Y �n , 

here �m 

, and �n are defined in (17) . The matrices X R ∈ R 

N×m ,

 R ∈ R 

N×p , X I ∈ R 

N×m and Y I ∈ R 

N×p denote the real and imaginary

arts of X and Y respectively. The cross-covariance criterion for the

eal-valued PLS in (7) is then extended to the complex domain as

 Re = arg max 
|| w Re || =1 

|| w 

T 
Re X 

T 
Re Y Re || 2 2 . (18)

he solution, w Re ∈ R 

2 m , is found as the eigenvector of

 

T 
Re 

Y Re Y 

T 
Re 

X Re which corresponds to its largest eigenvalue. The

esulting vector, w Re , is of the form [ w 

T 
R , −w 

T 
I ] 

T and is trans-

ormed back to the complex domain through 

 w 

T , w 

H ] T = �m 

w Re . (19)

otice that the computation of the vector, w , in the real domain

efore converting it back to the complex domain does not affect

ny benefit gained by the complex representation. 
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Fig. 1. Geometric view of WL-CPLS regression. 
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We have seen that the augmented form of a complex-valued

variable makes it possible to capture the full second-order statistics

for complex-valued data. However, in this case, an SVD of the aug-

mented cross-covariance matrix does not provide the orthogonal

basis for the X block in the structure required for the WL-CPLS al-

gorithm, and the result would not be usable for the NIPALS exten-

sion. On the other hand, the proposed calculation of w does fulfil

this structural requirement. The problem of an appropriate struc-

ture for a complex-valued PLS is also addressed in [26] , where the

computation is performed in the real-domain before transforming

back to the complex-domain. This process, therefore, is implicitly

complex-valued and is not equivalent to an application of the NI-

PALS algorithm on complex data transformed to the real domain. 

The so-obtained complex-valued vector w ∈ C 

m ×1 caters for full

joint second-order statistics between the input X and the output

Y . The corresponding component vector, t , is then calculated as 

t = Xw . 

Remark 3. The latent variable, t , is obtained through a considera-

tion of both cross-covariance and cross-pseudocovariance between

the input X and output Y , this fulfils Requirement R1 for a WL-

CPLS. 

The joint approximations of the input X and the output Y

are produced by regressing the so-obtained t onto X and Y . For

complex-valued data, these regressions now become widely lin-

ear in terms of t and t ∗, which results in the approximations 4 X =
tp 

H 
1 + t ∗p 

H 
2 and Y = tc H 1 + t ∗c H 2 , calculated in an augmented form 

p = ( t + X ) H , c = ( t + Y ) H , (20)

where p = [ p 1 , p 2 ] , t = [ t , t ∗] and c = [ c 1 , c 2 ] . 

The latent variables in Y , denoted by the vectors u that corre-

spond to the latent variables t in X , are obtained as 

u = Yc 1 + Y 

∗c 2 . (21)

Similarly, the regression of u to Y is an approximation Y = uq 

H 
1 

+
u 

∗q 

H 
2 which can be represented in an augmented form as 

q = ( u 

+ Y ) H 

where q = [ q 1 , q 2 ] and u = [ u , u 

∗] . The above steps describe the

WL-CPLS decomposition for the latent variable t in each PLS itera-

tion. Before the next latent variable can be calculated, the impact

of the currently extracted component, t n , must be removed from

the data matrices X and Y . This is achieved by deflating (subtract-

ing) the respective approximations (23) and (24) from X and Y to

give 

X i +1 = X i − t i p 

H 
1 ,i − t ∗i p 

H 
2 ,i , Y i +1 = Y i − t i c 

H 
1 ,i − t ∗i c 

H 
2 ,i , (22)

or in an augmented form 

X i +1 = X i − t i p 

H 
i 
, Y i +1 = Y i − t i c 

H 
i , 

where the subscript i indicates the iteration number with X 1 = X

and Y 1 = Y . In the next iteration, the matrices X i +1 and Y i +1 are

used in place of X i and Y i , which ensures that the new extracted

score (latent variable) will be orthogonal to the component ex-

tracted in the previous iterations. As such, the information ex-

pressed by each extracted component is accounted for separately,

that is 

X = TP 

H 
1 + T 

∗P 

H 
2 , (23)

Y = TC 

H + T 

∗C 

H , (24)
1 2 

4 This is a rank-2 approximation unless a strictly linear regression of the compo- 

nent t to X and Y is sufficient. 

t

 

t  
hich gives the WL-CPLS decomposition corresponding to (6) , in

he form 

 = UQ 

H 
1 + U 

∗Q 

H 
2 (25)

The complete WL-CPLS algorithm is outlined in Algorithm 2 and

s iterated until r latent components have been found. The required

umber of components is determined based on a stopping crite-

ion, described in Section 5.2.1 . 

lgorithm 2 The NIPALS algorithm for widely linear complex PLS

WL-CPLS). 

1: Initialise: X 1 = [ X , X 

∗] , Y 1 = [ Y , Y 

∗] 

2: for i = 1 , . . . , r do 

3: X i,Re = X i �m 

, and Y i,Re = Y i �n 

4: w i,Re = Eig max { X 

T 
i,Re 

Y i,Re Y 

T 
i,Re 

X i,Re } 
5: [ w 

T 
i 
, w 

H 
i 

] T = �m 

w i,Re 

6: t i = X i w i , t i = [ t i , t 
∗
i 
] 

7: c i = ( t + 
i 

Y i ) 
H 

8: p i = ( t + 
i 

X i ) 
H 

9: u i = Y i c 1 ,i + Y 

∗
i 
c 2 ,i , u i = [ u i , u 

∗
i 
] 

10: q 

i 
= ( u 

+ 
i 

Y i ) 
H 

11: X i +1 = X i − t i p 

H 
i 

, Y i +1 = Y i − t i c 
H 
i 

12: Store t i , u i , p 1 ,i , p 2 ,i , q 1 ,i , q 2 ,i , c 1 ,i , c 2 ,i and w i 

13: end for 

emark 4. For a regularised regression application it is desirable

o identify a latent subspace within the regressors, X , that is used

o predict the dependent variables, Y . The matrix W within the

roposed WL-CPLS in Algorithm 2 provides such a basis, which is

hen used to sequentially calculate the score vectors in the ma-

rix T . Owing to the optimisation process in (18) , this subspace is

hosen so as to contain the full joint complex second-order infor-

ation. The widely linear regression of the scores, T , to the data

atrices X and Y described in (23) and (24) then give the WL-

PLS approximations of the identified subspace and account for

he required degrees of freedom needed in complex-valued esti-

ation. As such, the WL-CPLS algorithm is a generic extension of

he real-valued NIPALS algorithm described in Section 2.1 for PLS-

egression. 

emark 5. The complex-valued WL-CPLS takes into account the

idely linear relationship between the X and Y components and

hus satisfies Requirement R2 for a WL-CPLS. 

Fig. 1 shows a geometric interpretation of WL-CPLS. In contrast

o real-valued PLS, the scores T in WL-CPLS define a regression
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5 Note that if the matrices in (14) are generally invertible then ˜ C ∗ and ˜ C ∗ − ˜ P ̃ C + ˜ P ∗

are also generally invertible. 
ubspace in both X and X 

∗. This subspace is then used to provide

 widely linear regression to predict dependent variables Y . 

emark 6. An important aspect of the WL-CPLS algorithm is

hat the scores T are fully uncorrelated in terms of augmented

omplex-valued second order statistics, that is, the score covari-

nce and pseudocovariance matrices, T H T and T T T , are diagonal.

or normalised score vectors, t , their covariance matrix becomes

 

H T = I . This, in turn, means that the diagonal elements of the

core pseudocovariance matrix, T T T , readily give the circularity

uotient (as defined in Section 2.4 ), thus further highlighting the

hysical insight of WL-CPLS. This would not be available using the

IPALS algorithm on complex data cast into the real domain. 

.2. Alternative WL-CPLS algorithms 

The WL-CPLS described in Algorithm 2 can serve as a basis for

 class of WL-CPLS results, as the vector, w , chosen to reflect the

aximum cross-covariance and cross-pseudocovariance between 

he input X and the output Y , can be replaced by a different crite-

ion. For example, we can choose w to reflect only the maximum

ross-covariance between the input X and the output Y . This is

chieved by the following optimisation 

 = arg max 
|| w || =1 

|| w 

H X 

H Y || 2 2 . 

he solution, w , is the largest eigenvector of the matrix, X 

H YY 

H X .

his alternative WL-CPLS is summarised in Algorithm 3 . It is im-

ortant to note, however, that this alternative vector, w , is not ca-

able of detecting a latent variable, t , that represents only cross-

suedocovariance between X and Y . 

lgorithm 3 The WL-CPL S NIPAL S algorithm with an alternative

ross-covariance criterion. 

1: Initialise: X 1 = [ X , X 

∗] , Y 1 = [ Y , Y 

∗] 

2: for i = 1 , . . . , r do 

3: w i = Eig max { X 

H 
i 

Y i Y 

H 
i 

X i } 
4: t i = X i w i , t i = [ t i , t 

∗
i 
] 

5: c i = ( t + 
i 

Y i ) 
H 

6: p 

i 
= ( t + 

i 
X i ) 

H 

7: u i = Y i c 1 ,i + Y 

∗
i 
c 2 ,i , u i = [ u i , u 

∗
i 
] 

8: q 

i 
= ( u 

+ 
i 

Y i ) 
H 

9: X i +1 = X i − t i p 

H 
i 

, Y i +1 = Y i − t i c 
H 
i 

10: Store t i , u i , p 1 ,i , p 2 ,i , q 1 ,i , q 2 ,i , c 1 ,i , c 2 ,i and w i 

11: end for 

. Analysis of the WL-CPLS 

The focus of our analysis of the WL-CPLS algorithm is on the

alculation of the widely linear regression coefficients, in (11) ,

ased on the structure of the WL-CPLS decomposition of X and

 , so as to satisfy Requirement R3 . This also highlights the abil-

ty of the WL-CPLS algorithms to produce a regularised widely

inear regression solution. Next, the application of the WL-CPLS

lgorithm as a complex covariance matrix diagonalisation trans-

orm is demonstrated, including a special case where the result is

quivalent to an existing technique, the strong uncorrelating trans-

orm (SUT) [23] . The orthogonality between the latent variables,

 , and the model residuals is then examined. Finally, the conver-

ence of the WL-CPLS algorithm is proven for a univariate output,

 , through a recurrence relation for the latent variables, t . 

.1. PLS For regularised widely linear estimation 

We have already shown that the PLS method calculates a joint

atent variable decomposition of both the input X and output Y .
n real-valued PLS, this property is used to calculate a regularised

egression solution in scenarios where the input matrix X is sub-

ank. We next show that the WL-CPLS algorithm allows a straight-

orward calculation of the coefficient matrices H and G in the

idely linear regression model 

ˆ 
 = 

˜ X H + 

˜ X 

∗G , 

here ˜ X is the WL-CPLS approximation of the input X given 

˜ 
 = T (P 

H 
1 W ) W 

H + T 

∗(P 

H 
2 W ) W 

H . (26)

his is a rigorous generalisation of the real-valued NIPALS algo-

ithm, where the matrix W is unitary and the matrices P 

H 
1 

W and

 

H 
2 W are upper triangular [29] . Upon substituting (26) into (14) ,

he WL-CPLS solutions for H and G are calculated as 

 WL-CPLS = [ ̃  C − ˜ P 

∗ ˜ C 

∗+ ˜ P ] + [ ̃  R 

H − ˜ P 

∗ ˜ C 

∗+ ˜ S T ] 

G WL-CPLS = [ ̃  C 

∗ − ˜ P ̃

 C 

+ ˜ P 

∗] + [ ̃ S T − ˜ P ̃

 C 

+ ˜ R 

H ] , (27) 

here ˜ R = 

˜ Y 

H ˜ X , ˜ S = 

˜ Y 

T ˜ X , ˜ C = 

˜ X 

H ˜ X , ˜ P = 

˜ X 

T ˜ X and 

˜ Y is given by the

ecomposition in (24) . Therefore, the computation of H and G re-

uires calculation of the generalised inverses 5 of ˜ C and 

˜ C − ˜ P 

∗ ˜ C 

∗+ ˜ P ,

hich requires special attention. 

emma 1 (Miller [35] ) . Consider a matrix M = N + O , where N ∈
 

n ×n is invertible and O ∈ C 

n ×n can be split into rank-1 matrices,

 = E 1 + E 2 + · · · + E r , with r denoting the rank of O . Then M can

e inverted iteratively as 

 

−1 
k +1 

= M 

−1 
k 

+ 

M 

−1 
k 

E k M 

−1 
k 

1 + T r(M 

−1 
k 

E k ) 
, (28)

here M 1 = N . The iteration is terminated at k = r. 

roposition 1. The inverses of the matrices ˜ C and ˜ C − ˜ P 

∗ ˜ C 

∗+ ˜ P can be

alculated through the exploitation of their special structure and with

he aid of Lemma 1 . 

roof. The proof consists of two parts, the calculation of ˜ C 

+ and

he calculation of ( ̃ C − ˜ P 

∗ ˜ C 

∗+ ˜ P ) + . 
In order to calculate the generalised inverse of ˜ C , the WL-CPLS

pproximation (26) can be used to give 

˜ 
 = W (F 1 + F 2 + F 3 + F 4 ) W 

H , (29)

ith F 1 , F 2 , F 3 and F 4 defined as the LDU decompositions 

 1 = (P 

H 
1 W ) H (P 

H 
1 W ) = L 1 L 

H 
1 

 2 = (P 

H 
1 W ) H D 

∗(P 

H 
2 W ) = L 1 D 

∗L H 2 

 3 = (P 

H 
2 W ) H D (P 

H 
1 W ) = L 2 DL H 1 

 4 = (P 

H 
2 W ) H (P 

H 
2 W ) = L 2 L 

H 
2 , (30) 

here D = T T T is diagonal, and the implicit assumption of nor-

alised scores, T H T = I was employed. Since W is unitary, a gener-

lised inverse for C is then given by 

˜ 
 

+ = W (F 1 + F 2 + F 3 + F 4 ) 
−1 W 

H , (31)

hich boils down to the problem of inverting the matrix (F 1 +
 2 + F 3 + F 4 ) . Although this matrix is non-singular, we show that

t is possible to calculate its inverse using only its structure. This is

quivalent to the real-domain NIPALS algorithm, where the neces-

ary generalised inverses for a regularised regression are calculated

olely due to the decompositions’ structure [29] . 

From the LDU decompositions of F n , n = 1 , 2 , 3 , 4 given in (30) ,

e further factorise (F 1 + F 2 + F 3 + F 4 ) as 

 1 + F 2 + F 3 + F 4 = L 1 (L H 1 + D 

∗L H 2 ) + L 2 (L H 2 + DL H 1 ) 

= L 1 U A + L 2 U B 
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Upon substituting N = A and O = B into Lemma 1 , this form

permits the calculation of the inverse whereby the LU structure of

A guarantees that the generalised inverse of ˜ C is readily obtained. 

We next consider the inversion of ˜ C − ˜ P 

∗ ˜ C 

∗+ ˜ P . Similarly to ˜ C ,

the matrix ˜ P can be factorised using the WL-CPLS approximation

in (26) , to yield 

˜ P = W 

∗(K 1 + K 2 + K 3 + K 4 ) W 

H , (32)

where 

K 1 = (P 

H 
1 W ) T D (P 

H 
1 W ) = L ∗1 DL H 1 

K 2 = (P 

H 
1 W ) T (P 

H 
2 W ) = L ∗1 L 

H 
2 

K 3 = (P 

H 
2 W ) T (P 

H 
1 W ) = L ∗2 L 

H 
1 

K 4 = (P 

H 
2 W ) T D 

∗(P 

H 
2 W ) = L ∗2 D 

∗L H 2 . (33)

Denote K 1 + K 2 + K 3 + K 4 = K and F 1 + F 2 + F 3 + F 4 = F , we can

now obtain C = WFW 

H and P = W 

∗KW 

H . The generalised inverse

of ˜ C − ˜ P 

∗ ˜ C 

∗+ ˜ P can therefore be obtained as 

( ̃  C − ˜ P 

∗ ˜ C 

∗+ ˜ P ) + = W (F − K 

∗F −1 ∗K ) −1 W 

H . 

To calculate the inverse of (F − K 

∗F −1 ∗K ) −1 we can employ again

Lemma 1 with N = F and O = −K 

∗F −1 ∗K . The inverse of F is

retained from the calculation of the generalised inverse of ˜ C

which satisfies the requirements of Lemma 1 . The so obtained

generalised inverses of ˜ C and 

˜ C − ˜ P 

∗ ˜ C 

∗+ ˜ P conclude the proof of

Proposition 1 . �

The steps in the calculation of the WL-CPLS regression co-

efficient matrices, H WL-CPLS and G WL-CPLS , are summarised in

Algorithm 4 . 

Algorithm 4 Calculation of H WL-CPLS and G WL-CPLS . 

1: Use the WL-CPLS in Algorithm 2 to obtain: T , P 1 , P 2 and W 

2: Calculate WL-CPLS approximation 

˜ X = T (P 

H 
1 W ) W 

H +
T ∗(P 

H 
2 W ) W 

H 

3: Obtain 

˜ C = 

˜ X 

H ˜ X , ˜ P = 

˜ X 

T ˜ X , ˜ R = 

˜ Y 

H ˜ X and 

˜ S T = 

˜ Y 

T ˜ X 

4: Obtain L 1 = (P 

H 
1 

W ) H , L 2 = (P 

H 
2 

W ) H and D = T T T 

5: Obtain U A = (L H 1 + D 

∗L H 2 ) and U B = (L H 2 + DL H 1 ) 

6: Define F = L 1 U A + L 2 U B 

7: Calculate F −1 using Lemma 1 with N = L 1 U A and O = L 2 U B 

8: Calculate ˜ C 

+ = WF −1 W 

H 

9: Define K = L ∗1 DL H 1 + L ∗1 L 
H 
2 + L ∗2 L 

H 
1 + L ∗2 D 

∗L H 2 
10: Obtain (F − K 

∗F −1 ∗K ) −1 using Lemma 1 with N = F and O =
−K 

∗F −1 ∗K 

11: Calculate [ ̃ C − ˜ P 

∗ ˜ C 

∗+ ˜ P ] + = W 

H (F − K 

∗F −1 ∗K ) −1 W 

12: Calculate H WL-CPLS = [ ̃ C − ˜ P 

∗ ˜ C 

∗+ ˜ P ] + [ ̃  R 

H − ˜ P 

∗ ˜ C 

∗+ ˜ S T ] 

13: Calculate G WL-CPLS = ([ ̃ C − ˜ P 

∗ ˜ C 

∗+ ˜ P ] + ) ∗[ ̃ S T − ˜ P ̃

 C 

+ ˜ R 

H ] 

Remark 7. The widely linear complex PLS algorithm in

Algorithm 2 provides an approximation of the matrix X , de-

noted by ˜ X , which admits a regularised widely linear regression

Y = 

˜ X H WL-CPLS + 

˜ X 

∗G WL-CPLS . The regression coefficients are ob-

tained from Algorithm 4 , owing to the inherent structure of the

WL-CPLS decomposition. As a result, the final Requirement R3 for

the WL-CPLS is met. We note that the required generalised in-

verses can also be calculated through other methods, not utilising

the matrix structures. 

4.2. WL-CPLS as a covariance matrix diagonalisation transform 

Diagonalisation of covariance matrices is an essential data anal-

ysis tool, and for real-valued data this is accomplished through

PCA/SVD. However, for the applications in the complex domain
24] , both the covariance and pseudocovariance matrices must be

imultaneously diagonalised. This can be achieved through the

trong uncorrelating transform (SUT) [23] , given by 

 SUT = X�, (34)

here � ∈ C 

m ×m is a transform, obtained through Algorithm 5 ,

hich maps the measured variables, X ∈ C 

N×m , on to the un-

orrelated SUT variables, X SUT ∈ C 

N×m . The transformed covari-

nce matrix C X SUT 
= X 

H 
SUT 

X SUT is an identity matrix, and the pseu-

ocovariance matrix P X SUT 
= X 

T 
SUT X SUT is diagonal and with real-

alued entries which represent the circularity quotient (defined in

ection 2.4 ) of each component (column vector) in X SUT . 

lgorithm 5 The SUT algorithm. 

1: Initialise: The data matrix X is provided 

2: Calculate empirical covariance matrix C = X 

H X 

3: Apply the SVD to give C = U�U 

H 

4: Obtain new variables ˆ X = XU�−1 / 2 

5: Calculate empirical psuedocovariance matrix P = 

ˆ X 

T ˆ X 

6: Apply the Takagi factorisation to give P = V�V 

T 

7: Obtain SUT variables ˜ X SUT = XU�−1 / 2 V 

∗ = X�

We now show that the WL-CPLS result can be viewed, similarly

o the SUT, as an uncorrelating transform by considering the aug-

ented form of the decomposition of X , given by 

 = X 

(
(P 

H 
1 W ) W 

H ((P 

H 
2 W ) W 

H ) ∗

(P 

H 
2 W ) W 

H ((P 

H 
1 W ) W 

H ) ∗
)+ 

. (35)

he matrix T H T is block diagonal, and hence, the transformed co-

ariance matrix, T H T , and the pseudocovariance matrix, T T T , are

oth diagonal. Therefore, the matrix 

(P 

H 
1 W ) W 

H ((P 

H 
2 W ) W 

H ) ∗

(P 

H 
2 W ) W 

H ((P 

H 
1 W ) W 

H ) ∗
)+ 

, 

btained by the WL-CPLS solution from regressing X to itself can

e considered as an uncorrelating transform. 

To validate the performance of the so-obtained WL-CPLS uncor-

elating transform for dimensionality reduction, we consider a case

here a data matrix 

 = Z + N , (36)

ontains a low-rank “signal” subspace component, denoted by the

atrix Z , and a full-rank “noise” subspace component, denoted by

he matrix N . This is a common real-world scenario and if the sig-

al accounted for the majority of the total variance in X then a

ractical uncorrelating transform would clearly identify the low-

ank subspace. To this end, we generated N = 10 0 0 samples of 20

ndependent, identically distributed (i.i.d.), non-circular, Gaussian

ources which were mixed to give a matrix Z ∈ C 

10 0 0 ×50 . A noise

ource, N ∈ C 

10 0 0 ×50 , was added to the matrix, Z , to give the data

atrix X = Z + N , in (36) , drawn from a circular, Gaussian i.i.d. dis-

ribution with an SNR = 26dB, where the SNR is defined as 

NR = 10 log 10 

T r{ E[ Z 

H Z ] } 
T r{ E[ N 

H N ] } , (37)

he SUT and WL-CPLS transforms were then performed. Fig. 2

hows the percentage of the total variance in X that is explained

y the approximation obtained from each score described by the

etric 

 E = 100 

T r{ ̃  A 

H ˜ A } 
T r{ A 

H A } . (38)

For the WL-CPLS result ˜ A = t i p 

H 
i 
, where i is the iteration num-

er for the respective WL-CPLS score and loading and for the SUT

esult ˜ A = x SUT,i �
+ 
i 
, where x SUT , i is the ith component (column of
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Fig. 2. Proportion of the variance (in %) explained by each component in the SUT 

and WL-CPLS transform, VE in (38) . 
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 SUT ) and �+ 
i 

is the ith row of the pseudoinverse of the SUT trans-

orm �. The metric VE was calculated for both the WL-CPLS/SUT

esults obtained from both the data matrix A = X and for the

oiseless case A = Z from above in (36) . 

Fig. 2 indicates that the uncorrelating transform performed by

he WL-CPLS is more powerful for subspace identification than the

UT. Observe that the WL-CPLS concentrates the energy in the sig-

al into as few components as possible, owing to the fact it se-

ects a component in each iteration which explains the maximum

ariance in X (due to the cross-covariance optimisation problem in

18) ). On the other hand for the SUT, owing to the inherent whiten-

ng, each element accounts for a similar amount of variance. This

s more clearly seen for the results of the data matrix, X , com-

ared to those for just the low-rank signal matrix, Z . Clearly, in the

bsence of noise (which increases the rank), the SUT can identify

ell a low-rank subspace. For even a small amount of noise, how-

ver, the signal power is spread amongst all components, which

akes it diffcult for the SUT to identify a subspace. On the other

and, the WL-CPLS performs similarly in both cases. Note that the

omputational requirements of the SUT are only two SVDs whereas

he WL-CPLS transform requires one SVD per latent component ex-

racted. 

.2.1. Duality with SUT 

A special case where the application of the WL-CPLS algorithm

s a transform and the SUT yield identical results exists for a uni-

ary input, X , that has an empirical covariance matrix C = X 

H X = I .

or such data, both methods result in the transform matrix V 

∗

btained from the Takagi factorisation of the matrix P = X 

T X =
�V 

T . In other words, for “white” data, the SUT transformed vari-

bles, X SUT in (34) , are equal to the scores matrix, T , produced by

he WL-CPLS algorithm. 

To prove this equivalence, observe first that the whitening

ransform in the SUT calculation (outlined in Steps 3 and 4 of

lgorithm 5 ) is no longer required, and so the required Takagi fac-

orisation can be calculated directly from the empirical pseudo-

ovariance matrix P . On the other hand, for the WL-CPLS result,

he input and output deflations (Step 11 of Algorithm 2 ) are sym-

etric and are achieved by a strictly linear regression. This means

hat p 1 = c 1 = w and p 2 = c 2 = 0 . The WL-CPLS solution can now

e calculated in a closed form through the SVD of S Re S 
T 
Re 

(where

 Re = X 

T 
Re Y Re ) as the first m (where m is the number of columns

f X ) singular vectors are cast into the complex domain according

o (19) . To demonstrate the equivalence to the Takagi factorisation

f the empirical pseudocovariance matrix, P , consider the link be-

ween the SVDs of X 

T 
Re 

X Re = U Re �Re U 

T 
Re 

and X 

H X = U C �C U 

H 
C 

. It is

ell known that �Re = 2 �C [36] and hence, the transformed sin-

ular vectors �m 

U Re produce the same diagonalisation of the ma-

rix X 

H X as the SVD, up to a factor of 2. 
emma 2 (Horn [37] ) . Let A ∈ C 

n ×n be a square matrix. There ex-

sts a unitary matrix, X , a diagonal matrix, �, with non-negative en-

ries, and a matrix Y with orthonormal rows such that A = X�Y . The

olumns of matrix X are the eigenvectors of AA 

H and the diagonal en-

ries of the matrix � are the square root of the corresponding eigen-

alues of AA 

H . If AA 

H has distinct eigenvalues, then X is determined

p to a right diagonal factor D = diag (e iθ1 , . . . , e iθn ) with all θ ∈ R

nd | d i j | = | e iθ | = 1 ; that is, if A = X 1 �Y 1 = X 2 �Y 2 then X 2 = X 1 D . 

Lemma 2 (which is a property of the SVD and is proved in [37] )

tates that if a square matrix A can be represented as A = X 1 �Y 1 =
 2 �Y 2 (where X 1 , X 2 , Y 1 and Y 2 are unitary matrices) then X 2 =
 1 D where D = diag (e iθ1 , . . . , e iθn ) , θ ∈ R and | d i j | = | e iθ | = 1 . Us-

ng Lemma 2 we can now derive the relationship 

m 

U Re = 

√ 

2 U C D . (39)

herefore, the latent vectors obtained by the WL-CPLS are identical

o those obtained from the SVD of X 

H X , each rotated to be of the

orm 

 

2 U C D = 

(
U S1 U S2 

U 

∗
S1 U 

∗
S2 

)
, (40) 

here the matrix [ U 

T 
S1 , U 

H 
S1 ] 

T represents the matrix of the first m

of 2 m ) eigenvectors of S Re S 
T 
Re 

transformed to the complex do-

ain (as in (19) ) and the matrix [ U 

T 
S2 

, U 

H 
S2 

] T represents the re-

aining m eigenvectors of S Re S 
T 
Re . The matrix U S 1 is then iden-

ical to the matrix W for the WL-CPLS result. In order for the

atrix 
√ 

2 U C D to diagonalise X 

H X in this special case, the sum

 

H 
S1 

P 

∗U 

∗
S1 

+ U 

T 
S1 

PU S1 + U 

H 
S1 

U S1 + U 

T 
S1 

U 

∗
S1 

must be diagonal. This con-

ition (the derivation is given in Appendix A ) is satisfied if U S1 =
 

∗ from the Takagi factorisation of the matrix P = V�V 

T . There-

ore, the WL-CPLS result for X serving as both the input and output

s equivalent to that of the SUT for data for which the empirical

ovariance matrix is given by C = I . 

.3. The convergence of the WL-CPLS algorithm 

The convergence analysis of real-valued PLS algorithms has

roved a difficult task [38] . For a univariate output, y , it has been

hown by Helland [39] that the vectors w span a space defined by

he vectors in a Krylov sequence K i = (s , Ss , . . . , S i −1 s ) (defined as

he Krylov space K i (S , s ) = span( K i )) where s = X 

T y , S = X 

T X and

 is the number of components, while the t vectors span a Krylov

equence, K i , where s = XX 

T y and S = XX 

T [38,40] . Furthermore,

he work of Bro [38] highlights that the residuals for X and y are

rthogonal to the space defined by the obtained T , an important

roperty for a regression algorithm. 

.3.1. The orthogonality of the model residuals 

Consider the WL-CPLS approximation with i components of X

n (23) . We can write the residual of X as 

 i +1 = X − T i P 

H 

i , (41) 

here P i = [ P 1 ,i , P 2 ,i ] . Note that X i +1 is equivalent to the deflation

tep in (22) at the i th iteration. The matrix P i can be obtained

from (23) ) as 

 i = X 

H T i ( T 

H 
i T i ) 

−1 , 

nd the residuals from (41) can be expressed as 

 i +1 = (I − P t,i ) X , (42)

here P t,i = T i ( T 
H 
i T i ) 

−1 T H i is a projection onto the space spanned

y T i . A similar relationship can be derived for the output Y using

he WL-CPLS model (24) , where the model residuals are given as
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Fig. 3. Prediction MSE for ˆ Y (as a percentage of total variance) against the SNR in 

Y . 

Fig. 4. Performance, in terms of MSE, of the prediction of Y (as a percentage of 

total variance) for a varying number of WL-CPLS components, in both training and 

test data. 
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Y i +1 = Y − T i C 

H 

i with C i = Y 

H T i ( T 
H 
i T i ) 

−1 . As above, this leads to a

relationship of the form 

Y i +1 = (I − P t,i ) Y . (43)

From (43) and (42) , the residuals for both multivariate X i and Y i 

must be orthogonal to the subspace defined by the augmented la-

tent variables T i as P t,i is a projection matrix, verified by the com-

putation of P 

H 
t,i P t,i = P t,i . 

4.3.2. Proof of WL-CPLS convergence to a Krylov space 

Consider the univariate output y . In this case we can derive a

recurrence relation for the augmented scores t = [ t i , t 
∗
i 
] obtained in

the alternative form of WL-CPLS described in Algorithm 3 , where

the vector w i in each iteration is obtained as the largest eigenvec-

tor of the matrix X 

H 
i 

y i y 
H 
i 

X i . This eigenvector is given by [39] 

w i = 

X 

H 
i 

y 

|| X 

H 
i 

y || , 

and is proportional to the vector X 

H 
i 

y . The score vector is then

given by t i = X i w i which is proportional to X i X 

H 
i 

y . Utilising the re-

lation obtained in (42) we can now write 

t i +1 ∝ (I − P t,i ) XX 

H (I − P t,i ) y . 

This can be written in the form of a recurrence relationship of the

augmented scores vector 

t i +1 ∝ [ (I − P t,i ) XX 

H (I − P t,i ) y , (I − P t,i ) 
∗X 

∗X 

T (I − P t,i ) 
∗y ∗] . 

(44)

Proposition 2. The augmented scores matrix, T i = [ T i , T 
∗
i 
] , obtained

from the WL-CPLS in Algorithm 3 , form a basis for the space defined

by the vectors K i = [ s , SK i −1 , SK 

∗
i −1 

] and its conjugate K 

∗
i 
, where s =

XX 

H y , S = XX 

H and K 1 = [ s ] . 

Proof. In order to show that the columns of T i form a basis of

the space spanned by the columns of [ K i , K 

∗
i 
] , it is sufficient to

show that they can be created through a linear combination of the

columns. The proof is obtained by induction, in the same way as

the proof of Proposition 3.1 in [39] . It has been shown that t 1 ∝
[ s , s ∗] = [ K 1 , K 

∗
1 
] and therefore our hypothesis is true for the base

case i = 1 . We then assume that it is true that the columns of the

matrix T i are a linear combination of the column vectors in K i and

K 

∗
i 
. The matrix P t,i is therefore also a combination of the vectors

in K i and K 

∗
i 
. The recursion in (44) represents the composite of the

vector 

t i +1 ∝ s − S P t,i y − P t,i s + P t,i S P t,i y , 

and the vector 

t ∗i +1 ∝ s ∗ − S ∗P 

∗
t,i y 

∗ − P 

∗
t,i s 

∗ + P 

∗
t,i S 

∗P 

∗
t,i y 

∗. 

Since the matrix P t,i is a linear combination of the columns of

[ K i , K 

∗
i 
] , the vectors t i +1 and t ∗

i +1 
are then a linear combination

of the columns of [ K i +1 , K 

∗
i +1 

] which is [ s , s ∗, SK i , S 
∗K i , SK 

∗
i 
, S ∗K 

∗
i 
]

and so if T i is a linear combination of the columns of [ K i , K 

∗
i 
] then

the columns of T i +1 are a linear combination of the columns of

[ K i +1 , K 

∗
i +1 

] which proves Proposition 2 . �

5. Simulation results 

The performance of the proposed WL-CPLS algorithm is verifed

in a variety of scenarios. The performance metric used was the

prediction mean square error (MSE), defined as 

MSE = E[ ‖ Y − ˆ Y ‖ 

2 
F ] , (45)

where Y are the original “correct” output variables and 

ˆ Y are their

predictions from the WL-CPLS model, ˆ Y = 

˜ X H + 

˜ X 

∗G , calculated

from the approximation 

˜ X = T (P 

H W ) W 

H + T ∗(P 

H W ) W 

H . For rigour,

1 2 
e examined the key factors that affect the performance of the

L-CPLS algorithm: the number of WL-CPLS components selected

nd the noise level in X and Y . 

.1. Prediction MSE for a varying SNR in Y 

The performance of the WL-CPLS estimator of the output, Y ,

as assessed for a varying SNR in Y . This is a classical linear re-

ression scenario which assumes that the input variables, X , are

ccurate, whereas the output variables, Y , are corrupted by noise.

he data were generated as described in Table 1 with N = 10 0 0 ,

 = 20 , m = p = 100 , σX = 0 while σ Y was varied to give a range

f SNRs defined as in (37) where Z = Y and N = N Y . 

The WL-CPLS estimator was obtained for 20 components from

raining data and the average prediction MSE was then calculated

or an ensemble of 100 realisations. The results are shown in Fig. 3

nd the prediction MSE was calculated as a percentage of the total

ariance in Y . Observe that even for negative SNRs the WL-CPLS

roduced a regularised regression estimator with less than a 10%

rror. 

.2. Prediction MSE for a varying number of WL-CPLS components 

The WL-CPLS solution was next examined over a varying num-

er of components, in order to reflect the rank of the approxima-

ion for ˜ X . In this set of simulations, the average prediction MSE

as calculated over an ensemble of 100 trials, for a varying SNR

nd a number of components in WL-CPLS. The data was generated

s described in Table 1 , with N = 10 0 0 , r = 40 , m = p = 100 and

o noise added ( σX = σY = 0 ). The MSE (as a percentage of the to-

al variance) between the training data and the corresponding WL-

PLS estimate is shown by the solid red line in Fig. 4 . Observe a

haracteristic “elbow” when more than 40 components are used
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Table 1 

Generation of synthetic test data matrices X and Y . 

1 : Initialise inputs : N , r , m , p , σ X and σ Y 

2 : Define s n ∈ C N×1 as vector of N samples generated such that �{ s n } = N (0 , 1) and �{ s n } = N (0 , 1) 

3 : Define 0 n as a vector of N zeros 

4 : Generate matrix M ∈ R m ×m such that M 

T M = I 

5 : Create matrix X = [ s 1 , s 2 , . . . s r , 0 1 , 0 2 , . . . , 0 m −r ] M 

6 : Generate matrices H ∈ C m ×p and G ∈ C m ×p such that H 

H H = I and G H G = I 

7 : Define n n ∈ C N×1 as vector of N samples generated as �{ n n } = N (0 , σ 2 
Y ) and �{ n n } = N (0 , σ 2 

Y ) 

8 : Create matrix N Y = [ n 1 , . . . , n p ] 

9 : Create matrix Y = XH + X ∗G + N Y 

10 : Define n n ∈ C N×1 as vector of N samples generated as �{ n n } = N (0 , σ 2 
X ) and �{ n n } = N (0 , σ 2 

X ) 

11: Create matrix N X = [ n 1 , . . . , n m ] 

12 : Create matrix X = X + N X 
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Fig. 5. Prediction MSE against the noise level in Y (as a percentage of total vari- 

ance), with noise also present in X . 

Fig. 6. Prediction obtained from the Moore–Penrose pseudoinverse against the 

noise level in Y (as a percentage of total variance), with noise also present in X . 

a  

p

6

 

a  

c

s

T  

w  

f  

q  

a

o calculate the WL-CPLS solution, beyond this point there was no

ignificant information added by further components and the WL-

PLS model “over-fits”. This is demonstrated by the ensemble av-

rage prediction MSE for test data using the WL-CPLS estimator

nd shown by the dashed blue line in Fig. 4 . The MSE was lowest

or 40 WL-CPLS components, which confirms that the number of

L-CPLS latent variables selected should be the number of inde-

endent components used to create the joint process. 

.2.1. Stopping criteria for WL-CPLS algorithm 

Notice that the WL-CPLS formulations in Algorithms 2 and 3 are

terated until r components are found. The value of r is often not

nown a priori but can be determined based on a stopping crite-

ion. For example, the WL-CPLS solution is computed for a range

f component numbers, r , then the prediction MSE for both train-

ng and test data is determined, and the variable r is selected as

he index of the last component after which adding a new compo-

ent to the data no longer significantly improves the MSE. This is

ndicated by the “elbow” in Fig. 4 . 

.3. Prediction MSE for a varying SNR in X and Y 

We next assessed the performance of the WL-CPLS in the pres-

nce of noise in both X and Y . The data were generated as shown

n Table 1 with N = 10 0 0 , r = 40 , m = p = 100 , while σ X and σ Y 

ere varied so as to give a range of SNRs, defined as in (37) , where

 is either X or Y and N is N X or N Y , respectively. 

emark 8. The ordinary least squares (OLS) regression model as-

umes that the input variables, X , are accurate and only the output

ariables, Y , may contain error, however, this is not generally the

ase in real-world scenarios. The PLS aims to improve the estimate

y using only the relevant subspace shared between the variables

 and Y , so as to eliminate spurious correlations from erroneous

ariables from the regression calculation. 

Fig. 5 shows the average prediction MSE (as a percentage of the

otal variance) of an ensemble of 100 realisations for the WL-CPLS

olution obtained from training data (generated as before) with

arying noise levels for X and Y (the noise level for X was defined

imilarly to the noise in Y above) where the training data X had 40

ndependent components mixed over m = 100 variables and trans-

ormed to 100 variables in Y . For comparison, we used the Moore-

enrose pseudoinverse [28] to provide the inversions required in

ection 4.1 , and Fig. 6 shows the average prediction MSE for the

ame ensemble as in Fig. 5 . Observe that the MSE of WL-CPLS was

ower, especially for higher noise levels in input data X . 

. Distributed frequency estimation in power grids 

The problem complex-valued of frequency estimation in multi-

ode systems is important in modern smart grids [12,41,42] , where
ny imbalance is indicated by a noncircular behaviour of a voltage

hasor. 

.1. Frequency estimation: Problem specification 

Consider a network of M voltage sensors where each node has

ccess to sampled three-phase voltage measurements, at the dis-

rete time instant k , given by [12] 

 k = 

[ 

v a,k 

v b,k 

v c,k 

] 

= 

⎡ 

⎢ ⎢ ⎣ 

V a cos (ωk + φa ) 

V b cos 

(
ωk + φb −

2 π

3 

)
V c cos 

(
ωk + φc + 

2 π

3 

)
⎤ 

⎥ ⎥ ⎦ 

. (46) 

he amplitudes of the phase voltages v a,k , v b,k , v c,k , are V a , V b , V c ,

hile the phase values are denoted by φa , φb , φc and the angular

requency is ω = 2 π f T , with f the fundamental power system fre-

uency. Observe that both the frequency ω and phasors (amplitude

nd phases) are assumed to be identical over a local area. 
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The three-phase representation of the s k in (46) is over-

parametrised and is routinely represented as a compact “two-

phase” Clarke voltage, v α,k and v β,k , via the Clarke transform, given

by [3] [
v α,k 

v β,k 

]
def = 

√ 

2 

3 

[
1 − 1 

2 
− 1 

2 

0 

√ 

3 
2 

−
√ 

3 
2 

]
︸ ︷︷ ︸ 

Clarke matrix 

[ 

v a,k 

v b,k 

v c,k 

] 

. (47)

Moreover, the Clarke transform enables, v α,k and v β,k , to be con-

veniently represented jointly as a complex-valued scalar, 

s k 
def = v α,k + jv β,k . (48)

The complex αβ voltage in (48) therefore admits a widely linear

auto-regressive (WLAR) representation given by Xia et al. [2,3] 

s k = h 

∗s k −1 + g ∗s ∗k −1 , (49)

where the WLAR coefficients h and g contain the information of

the system frequency, ω i , and level of imbalance in the system,

that is, the degree of improperness. The system frequency is then

calculated as [3] 

e jω = Re { h } + j 
√ 

Im 

2 { h } − | g| 2 (50)

⇒ ω = angle 

{ 

Re { h } + j 
√ 

Im 

2 { h } − | g| 2 
} 

. (51)

Note that if the system is in a balanced condition, only a single pa-

rameter, h , is required to estimate the system frequency (a strictly

linear system). 

An important task in electricity grids is to estimate the system

frequency, ω, given noisy observations of the Clarke voltage s k in

(48) , which can be expressed 

z i,k = s k + ηi,k , (52)

where ηi , k , is a zero-mean complex-valued white Gaussian noise

process, with variance σ 2 
ηi 

= E | ηi,k | 2 . 

6.2. Balanced multiple node case 

The noisy voltage measurements in (52) at each node are given

by 

z i,k 
def = 

[
z i,k , z i,k +1 , . . . , z i,k + N−1 

]T 
. 

To construct a classical strictly linear least squares problem, while

exploiting all the measurements in the network, we fold a collec-

tion of voltage measurements at each node into a single column

vector 

z −1 = 

[
z 1 ,k −1 , · · · , z M,k −1 

]T 
, 

z = 

[
z 1 ,k , · · · , z M,k 

]T 
, (53)

where the subscript “−1 ” indicates that the sample at a given time

index is delayed by one time instant compared to the vector z . This

gives the formulation of the strictly linear least squares solution in

the form 

ˆ h = (z H −1 z −1 ) 
−1 z H −1 z , (54)

from which the system frequency is calculated as 

ˆ 
ˆ ω SL = angle { h } . w  
.3. Unbalanced multiple node case 

Three-phase systems under unbalanced conditions require a

idely linear solution [3] , given by 

 i,k = h i z i,k −1 + g i z 
∗
i,k −1 , (55)

here the regression can be represented through the augmented

atrix of the vector of delayed system voltages, z −1 , in (53) , de-

ned as 

 −1 = 

[
z −1 , z ∗−1 

]
, 

uch that the widely linear model of the voltage in (55) assumes

n augmented form 

 = z −1 h 

a , (56)

here h 

a = [ h, g] H . The WL-LS solution is then given by 

ˆ 
 

a = 

[
h, g 

]H = Z 

+ y , 

here the frequency can be obtained from (51) . 

.4. Exploiting redundancy with a WL-CPLS solution 

The formulations proposed so far rearrange the data from each

ode into a single composite vector and, hence, destroy any spatial

nformation. Alternatively, consider the following matrix of regres-

ion variables 

 −1 = 

[
z 1 ,k −1 , z 2 ,k −1 , . . . , z M,k −1 

]
, 

Z = 

[
z 1 ,k , z 2 ,k , . . . , z M,k 

]
. 

he problem now assumes a multivariate WL-LS form 

 = 

[
Z −1 , Z 

∗
−1 

]
B 

a . 

ote that Z −1 is a rank-1 matrix (as the system voltage signal at

ach node should be the same) corrupted by noise, a natural sce-

ario for the WL-CPLS algorithm as the widely linear OLS solu-

ion is computationally intractable. The augmented regression co-

fficient matrix can now be expressed as 

 

a = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

h 1 · · · · ·
· h 2 . . . ·
. . . 

. . . 
. . . 

. . . 
· · · · · h M 

g 1 · · · · ·
· g 2 . . . ·
. . . 

. . . 
. . . 

. . . 
· · · · · g M 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

rom (49) , the elements h 1 , h 2 , . . . , h M 

and g 1 , g 2 , . . . , g M 

are the

oefficients of the WLAR model, for each node, while the matrix

 

a can be estimated using the WL-CPLS algorithm with a single

omponent. This admits a new estimator of the grid frequency in

he form 

 = 

1 

M 

M ∑ 

i =1 

angle 

{ 

Re { h i } + j 
√ 

Im 

2 { h i } − | g i | 2 
} 

. 

.5. Simulation comparison of estimators 

The performance of the three system frequency estimators was

valuated for a power grid in an unbalanced condition. Synthetic

ata were generated for a system with 100 nodes over a range of

NRs. The three phase voltages, v a , v b and v c , were generated as

f = 50 Hz sinusoids sampled at f s = 5 kHz for t = 0 . 3 s and with a
2 π
3 phase difference. The system imbalance was Type B sag which

as caused by a resistive fault on v a causing it to drop to half
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Fig. 7. Comparison of MSE for an unbalanced 3-phase power grid frequency esti- 

mator, for a range of SNR. 
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he amplitude of the other phases, and the fault was propagated

ver M = 100 nodes corrupted with i.i.d. Gaussian noise to give

he corresponding SNR. An ensemble MSE of the three system

requency estimators was calculated over 100 realisations over a

ange of SNR, and the results are given in Fig. 7 . Observe that the

trictly linear estimator did not have enough degrees of freedom

o provide an accurate result. The performance of the widely linear

east squares estimator rapidly degraded for low SNRs, exhibiting a

blow up” at SNR = 12dB. This can be attributed to the fact that au-

oregressive modelling of sinusoids (strictly or widely linear) pro-

uces biased estimates in the presence of measurement noise [43] .

he estimator derived from the WL-CPLS algorithm with only one

omponent, however, provided an accurate estimate even for low

NRs. This demonstrates the ability of the WL-CPLS to find a com-

on subspace between noisy data blocks, a common application

n dimensionality reduction [44] . Moreover, the WL-CPLS allows

or spatial information to be maintained and, since all the quan-

ities (e.g. phasors, widely linear auto-regressive model) involved

re complex-valued, the computation is performed in a physically

eaningful manner 6 . 

. Conclusion 

A widely linear complex partial least squares regression algo-

ithm (WL-CPLS) has been derived as a generalisation of the NI-

ALS algorithm in [17,27] to noncircular complex data. It has been

hown that the WL-CPLS provides a latent variable decomposition

f a data matrix, X , which, in turn, admits a tractable computa-

ion of the generalised inverses of the required matrices in order to

alculate a widely linear regression. Moreover, the proposed algo-

ithm has been shown to extend the cross-covariance criterion of

eal-valued PLS to suitably select components based on the maxi-

um joint second-order information between the complex-valued

nput and output blocks. In this way, both significant data compo-

ents are prioritised and the subspace containing relevant infor-

ation is identified. The so derived WL-CPLS has been shown to

ulfil the requirements for the PLS class of algorithms and its per-

ormance has been analysed in terms of the properties of the resid-

als and through convergence analysis for the case of a univariate

utput. The utility of the WL-CPLS latent variable decomposition

as been demonstrated through its application as a covariance ma-

rix diagonalisation transform, which exhibits useful properties for

imensionality reduction and physically meaningful data analysis.

inally, the benefits from the inherent structure of the complex-

alued representation within the WL-CPLS framework have been
6 For example, the variable g i in the WL complex solution indicates whether the 

ystem is balanced or not. 

 

 

 

xemplified through real-world multi-node frequency estimation in

nbalanced power grids. 
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ppendix A. SUT and WL-CPLS duality proof condition 

erivation 

To show that both the WL-CPLS transform and the SUT are de-

ermined by the conjugate of the matrix V which arises from the

akagi factorisation of the matrix P = X 

T X = V�V 

T , we now derive

he condition that the sum U 

H 
S1 

P 

∗U 

∗
S1 

+ U 

T 
S1 

PU S1 + U 

H 
S1 

U S1 + U 

T 
S1 

U 

∗
S1 

ust be a diagonal matrix. Consider the transform of the original

ariables X (in augmented form) to the new variables ˜ X by means

f the matrix �m 

U Re which, through (40) , gives 

˜ 
 = X 

(
U S1 U S2 

U 

∗
S1 U 

∗
S2 

)
. 

his is precisely the result produced by the WL-CPLS transform.

he covariance matrix of the transformed variables is then given

y 

˜ 
 

H ˜ X = 

(
U 

H 
S1 U 

T 
S1 

U 

H 
S2 U 

T 
S2 

)(
I P 

∗

P I 

)(
U S1 U S2 

U 

∗
S1 U 

∗
S2 

)
, 

= 

(
U 

H 
S1 IU S1 + U 

T 
S1 PU S1 + U 

H 
S1 P 

∗U 

∗
S1 + U 

T 
S1 IU 

∗
S1 

U 

H 
S2 IU S1 + U 

T 
S2 PU S1 + U 

H 
S2 P 

∗U 

∗
S1 + U 

T 
S2 IU 

∗
S1 

U 

H 
S1 IU S2 + U 

T 
S1 PU S2 + U 

H 
S1 P 

∗U 

∗
S2 + U 

T 
S1 IU 

∗
S2 

U 

H 
S2 IU S2 + U 

T 
S2 PU S2 + U 

H 
S2 P 

∗U 

∗
S2 + U 

T 
S2 IU 

∗
S2 

)
. (A.1) 

his matrix is known to be diagonal, which gives rise to the condi-

ion that U 

H 
S1 P 

∗U 

∗
S1 + U 

T 
S1 PU S1 + U 

H 
S1 U S1 + U 

T 
S1 U 

∗
S1 must be diagonal.

hrough inspection, this is satisfied when U S1 = V 

∗. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.sigpro.2018.06.018 
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