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Abstract

Brain responses to audio stimuli are analysed using datardtime-frequency
analysis. This is achieved based on the electroenceplaao@EG) recordings
and with auditory chirps or music as the audio stimulus. Timpidcal mode
decomposition (EMD) is applied to multichannel EEG recogdi, and the insight
into the brain responses is provided by the analysis of tmaahycs of auditory
steady-state responses (ASSR). The proposed approacttherfillustrated on
the analysis of EEG responses to classical music. A compsahesynchrony
analysis is provided based on the visualization of EMD amtBpgram matching
technigues. Simulation results illustrate the potentidhe proposed approach in
future brain computer/machine interfaces.

1 Introduction

Research on the interpretation of musical experience frearaphysiological recordings, such as
electroencephalograms (EEG), has gained considerabigiati in neuroscience community. Music
is an important part of human daily experience, and it seeahsal to explore ways to incorporate
it in brain computer/machine interfaces (BCI/BMI). Resgaon BCI/BMI has been ongoing since
three decades with the aim to enable additional or indepgm@demunication channel between the
brain/mind and a computer/machine. This is achieved withmolvement of the peripheral nervous
system or muscles activities, as first postulated in [1] atef lextensively summarized in [2]. This
also allows for computer-aided communication with the inlgtsvorld [3].

Due to the non-invasive manner there are several importehdléficult challenges in the designing
of BCI/BMI, however, this technology is envisaged to be attbre of future “intelligent” prosthet-
ics, and is particularly suited to the needs of the handiedgnd paralyzed. Other industries which
would benefit greatly from the development of BCI includeénéertainment, computer games, and
automotive industries, where the control and navigatica@mputer-aided application is achieved
without the use of hands or gestures. The idea to utilizetarydor general musical stimuli for
BCI/BMI is very appealing [3] as it allows to: (i) deliver stuli via headphones or loudspeakers;
(ii) integrate the auditory devices in user’s environmard inatural way (sound stimuli can be per-
ceived by human spatially - in comparison to visual or tactimuli where direct modality channel



must be established - looking at or touching); (iii) minimakr’s distraction, since humans can gen-
erally concentrate on other tasks while listening to mustimple auditory tones (e.g. applications
in cars, since auditory stimulation generally does notagtdriver’s visual attention); (iv) possible
embedding of spell out ASSR stimuli within music, which usan listen to simultaneously; it is
also possible to adaptively modify stimuli in order to aveitvironmental sounds such as a car en-
gine or other interferences; (v) there is no evidence ofthdszard (causing seizures) by auditory
steady-state stimuli [4]. This paper presents a study of Efitghrony as a response to ASSR stim-
uli; this is used as a reference for further more complexyaigbf natural musical stimuli. ASSR
is already an established tool in objective hearing levetisration [4, 5]. The auditory steady-state
response (ASSR) is an auditory evoked potential, causeddolytated tones, that can be utilized in
BCI/BMI for users of all ages. The ASSR response itself is\aked neural potential that follows
the envelope of a complex auditory stimulus. It is evokedHh®y periodic modulation, or turning
on and off, of a tone or an auditory flutter [6]. The neural mesge is a brain potential that closely
follows the time course of the modulation and thus is pelfesited for initial study of subject’s
auditory responses. ASSR is also longer and more user fyienthparing to short clicks or beeps
used in classical auditory evoked potential (AEP) studieS].

The steady—state responses can be recorded over a rangearfddM modulation rates. Different
modulation frequencies rates result in stimulation ofedi#ht areas of the auditory pathway in the
brain [6]. It was summarized in [4] that lower frequency gf{¢,, < 20Hz) cause activity of
the generators responsible for late-latency responseeratedrates fi,, = 20Hz,...,60Hz) are
responsible for the middle-latency response, and highies (&,, > 60Hz) reflect activity from the
brainstem. For experiments in this paper a frequency'set {7,10,13,17,21,27, 31}Hz was
chosen so we could cover lower frequency ranges which are monerable to subject’s state and
motivational/attentional control as well as the middlenstii frequencies which are less affected by
subject’s mental states.

We use the following novel approach to measure the intertdgrece of the EEG signals, based on
the pairwise alignment (“matching”) of their Hilbert-Huguspectra which provide more accurate
and sharper time frequency representations comparingiteegporary methods [9]: first, empirical
modes are extracted from the signals, which representatscif components with time-varying
amplitude and frequency. Second, the empirical modes dbetiitransformed, resulting in very
sharply localized ridges in the time-frequency plane; thtaimed time-frequency representations are
known as Hilbert-Huang spectra. Finally, the latter arevpiake aligned by means of the stochastic-
event synchrony method (SES), a recently proposed proegdumatch pairs of multi-dimensional
point processes [12]. The level of similarity of two Hilbétuang spectra is quantified by three
parameters: timing and frequency jitter of coincident eéglgand fraction of non-coincident ridges.

This paper is organized as follows. In the next section, wievethe empirical mode decomposition
(EMD) method and explain how it can be used to obtain intcimsode functions (IMFs) as well
as time-frequency maps (“Hilbert-Huang spectra”). In fec8, the idea behind stochastic event
synchrony is outlined, its usability to quantify the sinnitg of Hilbert-Huang spectra is discussed.
In Section 4, several measures to analyze EEG with braironsgpto steady-state auditory and mu-
sical stimuli are reviewed. The paper is concluded with camt® on further potential applications
of the proposed approach.

2 Empirical model decomposition (EMD)

Empirical Mode Decomposition (EMD) decomposes signals Bu called “intrinsic mode func-
tions” (IMF) [9]. They are functions that satisfy the follavg two conditions: (i) the number of
extrema and the number of zero crossings are either equéfarat most by one; (ii) at any point,
the mean value of the envelope defined by the local maximatendnvelope defined by the local
minima is zero. An IMF represents an oscillatory mode withigiven signal: its cycles (defined
by its zero crossings) correspondsaae (and not more than one) mode of oscillation; both the
amplitude and frequency of this oscillation may vary overgj in other words, the oscillation is not
necessarily stationary nor narrow-band.

The process of extracting an IMF from a signét) (“sifting process” [9]) consists of the following
steps:



1. determine the local maxima and minimaugt);

2. generate the upper and lower signal envelope by conigetitimse local maxima and
minima respectively by some interpolation method (e.gnedr, spline, piece-wise
spline [9] [10]);

3. determine the local mean(t), by averaging the upper and lower signal envelope;
4. subtract the local mean from the data(t) = x(t) — mq(¢).

Ideally, b (t) can already represent an IMF, however, in practigét) still typically contains local
asymmetric fluctuations, and the above four steps need tefmated several times. In order to
obtain the second IMF, the sifting process is applied todls&ues (t) = z(t) — IMF1(t), obtained
by subtracting the first IMF fromx:(¢); the third IMF is extracted from the residue(t) and so
on. The sifting process is terminated when two consecutarations yield similar results. The
empirical mode decomposition of the signdt) can be written as:

2(t) = Y IMFL(t) +a(t), (1)
k=1

wheren is the number of extracted IMFs, and the final residy@) can either be the mean trend or
a constant. An EMD example for EEG signal decompositionvismin Fig. 1.
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Figure 1: Empirical mode decomposition (EMD): the origisiginal (top), three IMFs (middle), and
residue (bottom).

From (1), the empirical mode decomposition is a completeraipe the original signal can be
reconstructed from the IMFs and the final residue. Note thattd their data dependent nature, in
practice the IMFs are not guaranteed to be mutually orthafdnut are often close to orthogonal.
Based on IMFs we can construct a time-frequency represemiaftthe signalc(¢), i.e., the Hilbert-
Huang spectrum (HHS) [9]. The idea is to compute the insteadas amplitude and frequency for
each IMF, for instance derived from the analytic signal:

Z(t) =IMF(t) +iY(¢), i=v-1, 2)
with Y (¢) the Hilbert transform of the IMF:
1 _ [T IMF(t)
Y(t)==P dt’ 3
0=zr[ TR ©
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where P indicates the Cauchy principal value of the inteffrd). The instantaneous amplitude
a(t) and phasé(t) of the IMF are defined respectively as the magnitude and afglgt). The
instantaneous frequency is then simply defined as:

_ o)
= Tar @

Hilbert-Huang spectra (HHS) are plots of the instantanewnuplitude against instantaneous fre-
guency and time [9]. HHS images are typically sparse andatmisharp ridges, as illustrated in
Fig. 2. In the following section, we propose a method to gifiathe similarity of two Hilbert-
Huang spectra; the key idea will be to match ridges in one HH&lges in the other HHS.
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Figure 2: Hilbert-Huang spectra (bottom) of two EEG chasiftp)

3 Stochastic Event Synchrony (SES)

In earlier work [12], we developed a measure that quantifiessimilarity (“interdependence” or
“synchrony”) of two (one- or multi-dimensional) point pregses, referred to atochastic event
synchrony (SES); that measure was applied to point processes on teeftaguency plane, more
precisely, to bump models [13]. Here we will use SES to gdwaniie similarity of two Hilbert-
Huang spectra. The first step is to extract a point proceseiftestring”) from an HHS (see Fig. 3
(left)): from the given HHS, we only retain th¥ largest instantaneous amplitudésé {s typically
about 100). Each of th¥ remaining points (“ridges™; = (¢;,a;, f;) withj = 1,..., N is viewed
as an event, and the sequence (r1, ..., ry) is a three-dimensional point process; in other words,
the remaining points; in Fig. 3 (left) take the role of the “bumps”. Fig. 3 (left) syests a natural
way to define the similarity of two HHS: ridges in one timeefuency map (red) may not be present
in the other map (blue) (“non-coincident” ridges); othelges are present in both maps (“coincident
ridges”), but appear at slightly different positions on thaps. Fig. 3 (right) depicts the coincident
ridges, obtained after matching the event strindsed) andr’ (blue); the black lines connect the
centers of coincident ridges, and hence, they visualizeotfset in position between pairs of co-
incident ridges. Stochastic event synchrony consistsefdhowing parameters: (ip: fraction of
non-coincidentridges; (i) andd;: average time and frequency offset respectively betweitico
dentridges; (iii)s; ands: variance of the time and frequency offset respectivelwieh coincident
ridges. The alignment of the two ridge traces (cf. Fig. 3ht)jis cast as a statistical inference prob-
lem [12]. The associated probabilistic model depends orSte8 parameter® = (0,, 0, s¢, Sy)
besides the following two kinds of latent variables: (i) 4y variable</, associated to each pair
of ridges, wherel,,y = 1 indicates that event,, of the first HHS is coincident with evenf, in
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Figure 3: (left) Events (“ridges”) extracted from HHS1 (yemhd HHS2 (blue) of Fig. 2; (right)
coincident ridges.

the other HHS, and wher€y,, = 0 otherwise; (ii) binary variable®, and B}, which indicate
whether a ridge is non-coincident. The latent-variable eh@lof the form:

p(T7 T/’ b7 b/’ C7 9) X

/
n

(B8[b — 1] + 8[bk]) T (80[b% — 1] + 6[b}])

=

k=1 k'=1

T IT (Vi s0 ML — fior.590) ™

k=1k'=1

H 5[y, + Z cww — 1) TT (6% + > cowr — 1)p(60p(s0)p(S1)p(ss), ()

k=1 k'=1 k'=1 k=1

whereg is a constant (which serves as a knob to control the numbeomftnincident ridges),
andn’ is the total number of ridges in the two HHS, ahdz; m, s) stands for a univariate Gaus-
sian distribution with meam and variance [12]. For convenience, we choose “improper” priors
p(0:) = p(dy) = p(se) = p(sy) = 1. The SES parametets= (d;,d;, s¢, s5) and the latent
variablesC, B andB’ are determined jointly by MAP estimation. This may be catroet by cyclic
maximization [12]: for fixedd, one maximizedog p (cf. (5)) w.r.t. C, B and B’ and vice versa.
Conditional maximization w.r.# is straightforward, however, the conditional maximizatis.r.t.

C, B and B’ is non-trivial: it involves a mathematically intractablisckete optimization problem.
This problem is solved approximately (but successfully)tbyative max-product message passing
(“iterative dynamic programming”) on a graphical modelresponding to the latent-variable prob-
abilistic model (5) [12]. In Fig. 4, the edges correspondddables, and the nodes corresponds to
factors in (5). The node&” corresponds to the Gaussian distributions in (5), wheteagaddes de-
noted byX represent the factofs[by, +ZZ::1 ke —1]) (blue) and(8[b}, + 3" | crwr — 1)) (red),
and the nodes denoted Bycorrespond to the facto(gd by, — 1] + 6[bx]) and(B5[b), — 1] + d[b}.]).
The arrows in Fig. 4 depict “messages” (i.e., probabiliiesociated with the coincident and non-
coincident pairs of ridges) that are iteratively computedach node according to the max-product
computation rules. Intuitively, the nodes may be viewed @sputing elements that iteratively
update their evaluation about which ridges match and whichat, based on the opinions (“mes-
sages”) they receive from neighboring nodes. After the rdlgm has converged (and the nodes
have found a “consensus”), the messages are combined i alstacision orC, B andB’, and an
estimate ofy and the other SES parameters [12].

4 Experiments and Results

We considered the proposed ridge analysis and SES matchitigoth and applied them to a
BCI/BMI problem where subject was asked to concentrate worig given auditory stimuli. The

EEG signal were recorded from a human subject listeningeadst-state auditory and musical ex-
amples (introduction of thBeethoven Symphony No. 7). The EEG signals were recorded from 12



Figure 4: Graphical model of (5).

locations (four frontal [Fpl, Fp2, F3, F4], six auditory ¢ areas [C3, C5, T7, C4, C6, T8], and
two parietal [P3, P4]) [7]. EMD was used to extract IMF coments from those the EEG signals
(cf. Section 2). Correlation analysis of IMF componentsrggiiency ranges frortHz to 32Hz is
presented in Fig. 5, where different patterns of brain respe are presented. Observe, that ASSR
stimuli “correlated” across the whole brain, whereas malstimuli caused synchrony at only a few
EEG locations. The lack of auditory stimuli is representethie from of “non-correlated” patterns.
This simple correlation analysis of IMFs did not result irogalassification of “musical states”. To
overcome this problem, as a next step the IMF components Miéivert transformed (resulting in
Hilbert-Huang spectra). Based on the underlying psychsigsythe low-frequency drifts<(6Hz)
and high-frequency interference parts32Hz) of the IMFs were removed; one such a segment of
two EEG signals (recorded by two auditory channels) togetlii their Hilbert-Huang spectra is
shown in Fig. 2. Finally, the similarity of the so obtained Bkas analyzed by means of stochastic
event synchrony (cf. Section 3). Each pair of HHS was matched the timing and frequency jitter
s¢ ands of the coincidentridges, and the fraction of non-coincidelyesp were computed. Those
parameters were then averaged over all pairs of Hilbertagspectra, resulting in three global mea-
sures of interdependence. As a benchmark, we also quaritiBesynchrony of the EEG signals by
some classical measures: magnitude squared coherence ,(g&rtial directed coherence (PDC),
and directed transfer function (DTF) [15] (see Table 1).
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Figure 5: EMD based correlation analysis of the respondaserkto musical and non-musical



Table 1: A comparison of the percentage of incorrectly di@ssEEG signals using conventional
measures for auditory stimuli and the EEG response to stetady visual evoked potential (SSVEP)
experiment for comparison [14].

FEATURES SYMPHONY ASSR500Hz ASSR 1500Hz SSVEP

dDTF with PDC 37.5% 38.0% 24.0%  42.2%
PDC with SES 30.0% 40.0% 34.0% 125%
PDC with SESs; 25.0% 54.0% 30.0%  40.6%
PDC with SESs 32.5% 46.0% 30.0% 29.7%
COH with SESp 45.0% 50.0% 56.0% 7.8%
DTF 45.0% 42.0% 46.0%  39.1%
PDC 30.0% 46.0% 32.0% 42.2%
COH 42.5% 40.0% 42.0%  25.0%

We next investigated whether fluctuations in EEG synchréinggrdependence”) can be detected in
this way. In particular, our aim was to distinguish betwe&®GEsignals recorded during stimulation
and silent intervals; for each of those two conditions, westdered32 EEG segments of the same
length @ to 5s). Table 1 shows classification errors obtained by the leaesout method; for the
sake of simplicity, a linear classifier (hyperplane) wasdjsghereby synchrony measures were
used as single features and as pairs of features. Table kontgins the results for the pairs that
resulted in the smallest classification errors: for thegaithout SES parameters, the combination
of several measures with PDC or even the only use of PDC gavpridiminary results showing
minimum 25% of incorrect classification for musical stimuli. Similarstédts were obtained in the
case of ASSR stimuli with carrier frequencigs € {500, 1500}Hz and modulation frequencies
fs € {7,10,13,17,21,27,31}Hz and duration ofis for each segment showed (see Table 1). The
presented preliminary results show significant improveneglassification rates as compared to
previously published examples [3]; in our experiment, tirasli exposure times were shorter, and
resulted in clear separation as seen in Figure 6. For cosggriesults using the same method

applied to the much stronger EEG response of the steadystatal evoked potential (SSVEP) are
also shown.

5 Conclusions

We have analyzed the synchrony in multichannel EEG recgsdituring both ASSR and musical
stimulation. This has been achieved for a number of perfammaanetrics, with most promising
results obtained by PDC and the SES parameter musical stimuli. The results based on simpler
ASSR stimuli have exhibited slightly lower recognitiongst suggesting the high potential of mu-
sical stimuli in future BCI/BMI. Previous studies have regeadl similar findings, emphasizing the
level of EEG synchrony is correlated with the subject’sratiten [13]. This study show that ASSR
and BCI/BMI based on musical stimuli may be even used by stbjeithout prior training. How-
ever, state-of-the-art ASSR and musical stimuli based BX@I/systems require computationally
demanding signal processing and response detection thlgstiyielding relatively low data rates.
This is largely due to the fact that those systems typicaly tihe power spectrum as input features
only, in particular, the power spectrum at the ASSR and nalistimulation frequencies. Our study
has shown (see also [16]), that EEG synchrony has greattidtéar ASSR detection; despite a
relatively short stimulation period (onBto 5s), we obtained low classification erro&s¢ at best).
As a consequence, synchrony measures (particularly SESjarection with EMD) may prove very
useful in the context of future practical BCI/BMI.
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