
1

A Fast Independent Component Analysis Algorithm for Improper Quaternion Signals

Soroush Javidi and Danilo P. Mandic
Communications and Signal Processing Research Group,

Department of Electrical and Electronic Engineering,
Imperial College London, London, SW7 2AZ, U.K.
email: {soroush.javidi, d.mandic}@imperial.ac.uk

URL: http://www.commsp.ee.ic.ac.uk/ mandic

Technical Report: TR-ICU-ICA-1070/06-10
Created: 08 June 2010, Last Updated: December 2010

Abstract

An extension of the FastICA algorithm is proposed for the blind separation of both Q-proper and Q-improper quaternion-
valued signals. This is achieved by maximising a negentropy-based cost function, and is implemented using the Newton method
in the augmented quaternion statistics framework. It is shown that the use of augmented statistics and the associated widely linear
modeling provide theoretical and practical advantages over standard models. Simulations using both benchmark and real-world
signals support the approach.

Index Terms

Independent Component Analysis (ICA), augmented quaternion statistics, quaternion widely linear modelling, quaternion
noncircularity, quaternion blind source separation

I. INTRODUCTION

The independent component analysis (ICA) framework is a popular method for the separation of latent sources from an
observed mixture, aided by the assumption of statistical independence of the sources [1]. In its standard form, the latent sources
are assumed to be linearly mixed, and with additive noise present. For this scenario, algorithms proposed in the past two decades
include those based on the utilisation of second- and higher-order statistics (SOBI and JADE algorithms [2], [3]), and those
based on information theoretic criteria such as the maximisation of likelihood and minimisation of mutual information [4].
The FastICA algorithm [5], a fast converging algorithm based on the maximisation of non-Gaussianity and implemented using
an approximative Newton optimisation method, has become a standard for the separation of both sub- and super-Gaussian
sources. The algorithm was shown to exhibit cubic convergence for the deflationary separation process and local quadratic
convergence for the symmetric orthogonalisation approach [6]. The FastICA algorithm was extended for the separation of
complex circular sources in [7] and more recently it was generalised for the separation of noncircular complex sources [8]; this
was achieved based on the fourth order moment and through utilisation of the strong uncorrelating transform [9]. A generalised
FastICA algorithm for the separation of both circular and noncircular sources based on a negentropy-based FastICA algorithm
was addressed in [10].
The recent progress in supervised and unsupervised adaptive signal processing algorithms in the complex domain [11], has
been made possible owing to the advances in complex domain augmented statistics [12] and the analysis of non-analytic
functions through the framework of CR calculus (also known as Wirtinger calculus) [13]. In the same light, there has been
recent interest in adaptive signal processing algorithms in the quaternion domain, a natural domain for the processing of three-
and four-dimensional signals.
The literature on quaternion-valued signal processing includes the algebraic [14], [15] as well as statistical approaches [16], [17].
More recent developments include the analysis of quaternion-valued random variables via augmented quaternion statistics [18],
and the so called HR calculus, a unified framework for the analysis of non-analytic quaternion functions [19].
These advances have been exploited through widely linear modelling of quaternion signals, allowing us to incorporate the full
second-order information and have led to the class of widely linear quaternion least mean square (WL-QLMS) algorithms [20].
In nonlinear signal models, both split- and fully-quaternionic nonlinear models have been successfully implemented [21]. In the
study of unsupervised adaptive algorithms, a quaternion ICA algorithm based on likelihood maximisation and the concept of
Infomax was proposed by Le Bihan and Buchholz in [22], In their study, it was concluded that a fully-quaternion nonlinearity
results in better separation performance.
In this paper, we propose a FastICA algorithm suitable for the separation of Q-proper and Q-improper quaternion-valued
signals from an observed linear mixture. This is achieved by means of augmented quaternion statistics, widely linear modelling
and HR calculus, and based on the augmented Newton method, whereby at the cost of additional complexity we capture
the complete statistical properties of the signals and ensure successful separation of latent sources. The performance of the
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algorithm using synthetic Q-proper and Q-improper polytope signals in both deflationary and simultaneous separation scenarios
is studied, and is followed by a real-world case study of electroencephalogram (EEG) artifact extraction.
This paper is organised as follows. In Section II the background on quaternion algebra, statistics and the HR calculus is
provided. Section III introduces the ICA problem and proposes separation methodology for the generality of quaternionic
signals. Simulations based on both synthetic sources and a real-world case study are given in Section IV. Section V concludes
the paper.

II. PRELIMINARIES ON QUATERNION SIGNALS

A. Quaternion algebra

Consider the quaternion variable q = qa + ıqb + ȷqc +κqd ∈ H, where qa, qb, qc and qd are real-valued scalars, and ı, ȷ and
κ are orthogonal unit vectors such that

ı = ȷ = κ =
√
−1

ıȷ = κ ȷκ = ı κı = ȷ

ıȷκ = ı2 = ȷ2 = κ2 = −1. (1)

These identities illustrate the non-commutative property of products in quaternion algebra, whereby q1q2 ̸= q2q1. The number
q can also be written in terms of its real (scalar) part ℜ{q} = qa and its vector part ℑ{q} = ıℑı{q}+ ȷℑȷ{q}+κℑκ{q}, such
that q = ℜ{q}+ℑ{q}. Alternatively, by adopting the Cayley-Dickson notation, q can be constructed from a pair of complex
quantities z1 = qa + ıqb and z2 = qc + ıqd, such that q = z1 + z2ȷ, however in this article direct quaternionic notation will
be used.
In the quaternion domain, we can consider three self-inverse mappings1 or involutions [23] about the ı, ȷ and κ axes,

qı = −ıqı = qa + ıqb − ȷqc − κqd

qȷ = −ȷqȷ = qa − ıqb + ȷqc − κqd

qκ = −κqκ = qa − ıqb − ȷqc + κqd (2)

which form the bases for augmented quaternion statistics [18]. Intuitively, an involution represents a rotation along each
respective axis, while the conjugate operator (·)∗ forms an involution along all three directions, where

q∗ = qa − ıqb − ȷqc − κqd. (3)

The involutions have the property that (q1q2)α = qα1 q
α
2 , α = {ı, ȷ, κ}, while (q1q2)

∗ = q∗2q
∗
1. Finally, the norm (modulus) of

a quaternion variable q is defined by

∥q∥2 =
√
qq∗ =

√
q∗q =

√
q2a + q2b + q2c + q2d (4)

whereby for a vector q in a quaternion Hilbert space [16], the 2-norm is defined as ∥q∥2 =
√
qHq.

B. Augmented statistics and widely linear modelling

For a random vector q = qa + ıqb + ȷqc + κqd ∈ HN , the probability density function (pdf) is defined in terms of the
joint pdf of its scalar and vector components, such that pQ(q) , pQa,Qb,Qc,Qd

(qa,qb,qc,qd). Its mean is then calculated
in terms of each respective component as E{q} = E{qa} + E{qb} + E{qc} + E{qd} and the quadrivariate covariance
matrix of real-valued component vectors Crqq = E{qrqrT } ∈ R4N×4N describes the second-order relationship between the
respective components of q, where qr = [qa,qb,qc,qd]

T . Representing the components of Crqq by their equivalent quaternion
counterparts allows for the complete second-order statistical information to be captured directly in H [18]. This is achieved
by considering the relation between the components of the quaternion variable q and its involutions (2), given by

qa =
1

4
(q+ qı + qȷ + qκ), qb =

1

4
(q+ qı − qȷ − qκ)

qc =
1

4
(q− qı + qȷ − qκ), qd =

1

4
(q− qı − qȷ + qκ). (5)

In analogy to the complex domain2 where both z and z∗ are used to define the augmented statistics [24], [25], it can be
shown that the bases q,qı,qȷ and qκ provide a suitable means to define the quaternion augmented statistics [18]. This way,

1A self-inverse mapping operator sinv(·) is such that sinv
(
sinv(q)

)
= q.

2In the complex domain, the real and imaginary components can be represented in terms of the conjugate coordinates z and z∗ respectively as 1
2
(z+ z∗)

and 1
2ȷ
(z− z∗).
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the augmented random vector qa = [qT , qıT , qȷT , qκT ]T is used to define the augmented covariance matrix

Caq = E{qaqaH}

=


Cqq Cqı Cqȷ Cqκ

CHqı Cqıqı Cqıqȷ Cqıqκ

CHqȷ Cqȷqı Cqȷqȷ Cqȷqκ

CHqκ Cqκqı Cqκqȷ Cqκqκ

 ∈ H4N×4N (6)

which describes the complete second-order information available within a quaternion random vector. In (6), Cqı , Cqȷ , Cqκ

are respectively termed the ı-, ȷ- and κ-covariance matrices E{qqαH}, α = {ı, ȷ, κ}, while Cqq = E{qqH} is the standard
covariance matrix. The ı-, ȷ- and κ-covariance matrices are referred to as the complementary or pseudo-covariance matrices [25].
The concept of properness (rotation invariant pdf) can be extended from the complex to the quaternion domain and has been
discussed in [16] and [17]. Following the involution-based augmented bases, a random vector is considered Q-proper if it
is not correlated with its involutions, or, Cqı = Cqȷ = Cqκ = 0, and all cross-covariance matrices vanish, and is otherwise
termed Q-improper [18]. Therefore, for a Q-proper random vector, the augmented covariance matrix (6) has a block-diagonal
structure. More restricted definitions of properness can also be defined, whereby one or more pseudo-covariances are non-zero
(C-proper) [17], and can be intuitively understood as rotation invariance along one or more of the quaternion axes; Q-properness
thus reflects rotation invariance along all three axes.
Recall that the solution to the mean square error (MSE) estimator of a real-valued signal y ∈ R in terms of an observation
x, expressed as ŷ = E{y|x}, is given by ŷ = hTx, where h is a coefficient vector and x the regressor. As a generalisation,
the MSE estimator for a quaternion-valued signal y ∈ H can then be written in terms of the MSE estimators of its respective
components, given by

ŷa = E{ya|qa, qb, qc, qd} ŷb = E{yb|qa, qb, qc, qd}
ŷc = E{yc|qa, qb, qc, qd} ŷd = E{yd|qa, qb, qc, qd}, (7)

such that

ŷ = ŷa + ıŷb + ȷŷc + κŷd

= E{ya|qa, qb, qc, qd}+ ıE{yb|qa, qb, qc, qd}
+ ȷE{yc|qa, qb, qc, qd}+ κE{yd|qa, qb, qc, qd}. (8)

Observe that by using the relations (5), the MSE estimator of y can be equivalently written as

ŷ = E{y|q, qı, qȷ, qκ}+ ıE{y|q, qı, qȷ, qκ}
+ ȷE{y|q, qı, qȷ, qκ}+ κE{y|q, qı, qȷ, qκ}, (9)

and results in the widely linear estimator [18], [20]

y = hHq+ gHqıuH + qȷ + vHqκ

= waHqa (10)

where the augmented weight vector wa = [hT , gT , uT , vT ]T . Thus (10) is the optimal estimator for the generality of
quaternion-valued signals, both proper and improper.

C. An overview of HR calculus

In signal processing problems, it is common to define a real-valued cost function, typically the error power. In a similar
fashion to the CR calculus framework where a function is defined based on the conjugate coordinates z and z∗ [13], [26], in
the context of HR calculus [19], f(q) : HN 7→ R can be considered as a function of the orthogonal quaternion basis vectors
q,qı,qȷ and qκ, such that

f(q,qı,qȷ,qκ) : HN ×HN ×HN ×HN 7→ R. (11)

Likewise, the duality between a quaternion function f and its real-valued equivalent g can be expressed as

f(q) = f(q,qı,qȷ,qκ)

= fa(qa,qb,qc,qd) + ıfb(qa,qb,qc,qd)

+ ȷfc(qa,qb,qc,qd) + κfd(qa,qb,qc,qd)

= g(qa,qb,qc,qd) (12)

Then, by considering the components of the quaternion variable q and the orthogonal bases given in (5), a relation can be
established between the derivatives taken with respect to the components of the quaternion variable and those taken directly
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with respect to the quaternion basis variables, forming a fundamental result of HR calculus. These relations, know as HR
derivatives, are given by [19], [27]

∂f

∂q
=

1

4

(
∂f

∂qa
− ı

∂f

∂qb
− ȷ

∂f

∂qc
− κ

∂f

∂qd

)
∂f

∂qı
=

1

4

(
∂f

∂qa
− ı

∂f

∂qb
+ ȷ

∂f

∂qc
+ κ

∂f

∂qd

)
∂f

∂qȷ
=

1

4

(
∂f

∂qa
+ ı

∂f

∂qb
− ȷ

∂f

∂qc
+ κ

∂f

∂qd

)
∂f

∂qκ
=

1

4

(
∂f

∂qa
+ ı

∂f

∂qb
+ ȷ

∂f

∂qc
− κ

∂f

∂qd

)
. (13)

The so called HR∗ derivatives can then readily be written from (13) by using the property
(
∂f
∂q

)∗
= ∂f

∂q∗ , where f is a
real-valued function. Thus,

∂f

∂q∗ =
1

4

(
∂f

∂qa
+ ı

∂f

∂qb
+ ȷ

∂f

∂qc
+ κ

∂f

∂qd

)
∂f

∂qı∗ =
1

4

(
∂f

∂qa
+ ı

∂f

∂qb
− ȷ

∂f

∂qc
− κ

∂f

∂qd

)
∂f

∂qȷ∗ =
1

4

(
∂f

∂qa
− ı

∂f

∂qb
+ ȷ

∂f

∂qc
− κ

∂f

∂qd

)
∂f

∂qκ∗ =
1

4

(
∂f

∂qa
− ı

∂f

∂qb
− ȷ

∂f

∂qc
+ κ

∂f

∂qd

)
. (14)

Similar to the conjugate derivatives property, an involution property is also applicable to real-valued functions, and is given by(
∂f

∂q

)α

=
∂f

∂qα
, α = {ı, ȷ, κ}. (15)

It has been shown that in the quaternion domain, the direction of steepest descent (maximum rate of change of f(q)) is given
by the derivative with respect to q∗, or ∂f

∂q∗ . This can be seen as an extension of Brandwood’s result for functions of complex
variables [28], and it is thus natural to consider this gradient in the optimisation of cost functions. Finally, note that while
we have considered real-valued functions in the above discussion, the HR calculus framework can be equally utilised for the
analysis of general quaternion-valued functions.

III. THE QUATERNION FASTICA ALGORITHM

Consider the standard ICA model

x́ = As (16)

whereby observed mixtures x́ ∈ HN are a weighted sum of Ns latent sources s ∈ HNs in a noise-free environment, and
the rows of A ∈ HN×Ns form the respective mixing parameters. While no knowledge of the mixing process is available,
the sources are assumed statistically independent; for convenience they have zero mean and unit variance and no assumption
is made regarding the ı−, ȷ− and κ−variances. The mixing matrix A is assumed square (N = Ns), well-conditioned and
invertible.
We shall now show that for a quaternion random vector q ∈ HN , its whitening matrix V is given by

V = Λ−1/2EH , (17)

where Λ is the diagonal matrix of right eigenvalues and E is the matrix of corresponding eigenvectors of the covariance matrix
of q.
To prove this, let us write the covariance matrix in terms of the quaternion right eigenvalue decomposition Cqq = E{qqH} =
EΛEH [29]. The covariance matrix of the whitened random vector p = Vq is then expressed as

E{ppH} = VE{qqH}VH

= Λ−1/2EH
(
EΛEH

)
EΛ−1/2 = I (18)

where I is the identity matrix. This result will be used for the whitening of the observed mixture x́ in (16).
As a preprocessing step to aid the ICA algorithm, the quaternion mixture x́ is whitened such that

E{xxH} = ME{ssH}MH = I (19)
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where x = Vx́ = VAs and M , VA is the new unitary mixing matrix containing the whitening matrix V, given in (17).
We aim to obtain a demixing matrix W such that WHx is an estimate of the original sources, albeit with a scaling, phase
and permutation ambiguity. Then for the nth source estimate we have

yn = wH
n x = wH

n Ms = uHs = eµφsm (20)

where wn is the nth column of the demixing matrix W, u is a vector with a single non-zero value given by eµφ at the nth
entry signifying an arbitrary direction within H and µ = (ıqb+ȷqc+κqd)√

q2b+q2c+q2d
is the unit pure quaternion vector3. Finally, note that

by constraining the demixing vector wn to unit norm, the estimated source yn is of unit variance, that is

E{yny∗n} = wH
n E{xxH}wn = wH

n wn = 1 (21)

while the matrix W becomes unitary.

A. A Newton-update based ICA algorithm

The quaternion FastICA (q-FastICA) algorithm is based on the maximisation of the negentropy of the separated sources,
following from previous implementations of the FastICA algorithm in the real and complex domains [1], [7], [10]. This is
achieved by utilising an appropriate nonlinear function G(y), so as to make a suitable approximation of the negentropy function.
In [22], three distinct quaternion nonlinearities were identified whereby the nonlinear operation is split on each component of y
(split-quaternion function), on the components of the Cayley-Dickson form of y (split-complex function), or applied directly on
y (full-quaternion function). It was also shown that the full-quaternion nonlinearity resulted in the best separation performance.
Under the stringent analyticity conditions of the Cauchy-Riemann-Feuter [30] equations, the only analytic function in H is a
constant. As an alternative, local analyticity conditions may be considered in the calculation of the derivatives [31]. However,
this depends on assumptions that may not be valid for general nonlinear functions. Thus, to avoid problems associated with
the derivation of fully-quaternion nonlinearities, we shall utilise a real-valued smooth and even nonlinearity G : R 7→ R,
while implementing an augmented Newton method so as to employ the full information available within general Q-improper
mixtures.
The q-FastICA cost function is then defined as

J (w,wı,wȷ,wκ) = E
{
G(|wHx|2)

}
(22)

where the cost function J is written in terms of the four basis vectors for emphasis on the equivalent notation. The optimisation
problem based on (22) can then be stated as

wopt = arg max
∥w∥2

2=1
J (w,wı,wȷ,wκ) (23)

where the demixing vector is normalised to avoid very small values of w, while keeping the variance of the extracted sources
equal to unity.
The solution of this constrained optimisation problem is found through the method of Lagrangian multipliers and by utilising
the Newton method to perform a fast iterative search to the optimal value wopt. In summary, the quaternion FastICA algorithm
for the estimation of one source is expressed in its augmented form as

wa(k + 1) = wa(k)− (Ha
ww)−1∇wa∗L

λ(k + 1) = λ(k) + µ∇wa∗L

w(k + 1)← w(k + 1)

∥w(k + 1)∥2
(24)

where the augmented demixing vector wa = [w,wı,wȷ,wκ]T , L is the Lagrangian function and λ is the Lagrange parameter
updated via a gradient ascent method with step-size µ. The vector ∇wa∗L and matrix Ha

ww are respectively the augmented
gradient vector and Hessian matrix of the Lagrangian function. The full derivation is provided in the Appendix.
The estimation of multiple sources can be performed one by one through a deflationary procedure, where for the nth estimated
source is given by the following Gram-Schmidt orthogonalisation procedure

wn(k + 1)← wn(k + 1)− W̌W̌Hwn(k + 1)

W̌ =
[
w1(k + 1), . . . ,wn(k + 1)

]
(25)

or simultaneously via a symmetric orthogonalisation method

W(k + 1)←
(
W(k + 1)WH(k + 1)

)−1/2
W(k + 1), (26)

where the orthogonalisation procedures in the quaternion domain follow from the already established results.

3A pure ‘imaginary’ quaternion is referred to as the imaginary or vector part of a quaternion variable.
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TABLE I
SOURCE PROPERTIES FOR BENCHMARK SIMULATION WITH DEFLATIONARY APPROACH

Source polytope Q-improperness measure (r)
s1(k) Cubic 0.0129
s2(k) Cyclic (2 point) 1.0000
s3(k) Cyclic (3 point) 0.3392
s4(k) 5-Simplex 0.0071

IV. SIMULATIONS AND DISCUSSION

A. Benchmark simulations

The performance of the algorithm is first assessed through simulations using synthetic four dimensional signal codes located
on the edges of geometric polytopes [32] with varying degree of Q-improperness. To assess the degree of Q-improperness
of the generated sources, we define a measure based on the ratio of the complementary variances to the standard variance,
expressed as

r =

∣∣E{qqı∗}∣∣+ ∣∣E{qqȷ∗}∣∣+ ∣∣E{qqκ∗}∣∣
3E{qq∗}

, r ∈ [0, 1]. (27)

This way, a measure of r = 0 indicates a Q-proper source, while for a highly Q-improper source r = 1.
The performance of the quaternion FastICA algorithm using the deflationary orthogonalisation was assessed using the Perfor-
mance Index (PI) [33], which for uH = wHVA = [u1, . . . , uN ]H is given as

PI = 10 log10

(
1

N

( N∑
i=1

|ui|2

max{|u1|2, . . . , |uN |2}

))
(28)

and indicates the proximity of u to a vector with a single non-zero element. For the deflationary approach, a PI of less
than -20dB indicates good separation performance. For the q-FastICA algorithm with symmetric orthogonalisation, the full PI
measure was used, given by

PI = 10 log10

(
1

N

N∑
i=1

( N∑
j=1

|uij |
max{|ui1|, . . . , |uiN |}

− 1
)

+
1

N

N∑
j=1

( N∑
i=1

|uij |
max{|u1j |, . . . , |uNj |}

− 1
))

. (29)

where UH = WHVA and uij = (U)ij and a PI less than -10dB signifies good separation performance.
For simulations, 5000 samples of four polytope sources were mixed using a randomly generated quaternion-valued 4×4 mixing
matrix. The observed mixtures were then whitened and processed using the q-FastICA algorithm (24), using the deflationary
and symmetric orthogonalisation.

1) Deflationary orthogonalisation: The scatter plots of the four quaternion sources are shown in Fig. 1(a) and their properties
are given in Table I. Source s1(k) was a cubic polytope, s2(k) and s3(k) were generated from cyclic groups with two and three
points, and s4 was a simplex with five vertices. The nonlinearity G(y) = log cosh(y), the demixing vector w was initialised
randomly and the step-size of the gradient ascent update µ = 1 and λ = 5. The scatter plot of the normalised estimated
sources are given in Fig. 1(b) and the performance of the q-FastICA algorithm in the separation of each source and at each
iteration stage is shown in Fig. 1(c). It can be seen that the algorithm was successful in estimating all the sources, converging
to a solution in as few as four iterations. As expected from a deflationary orthogonalisation procedure, the performance of the
algorithm degraded after each stage due to the accumulation of errors, with the final PI value for the first estimated source
y1(k) of -39.93dB, while for y4(k) this value reduced to -26.28dB. Note that due to the symmetry of the signal codes, rotations
of the extracted sources relative to the original source are not visible, and can only be observed in the scatter plot of y3(k).

2) Symmetric orthogonalisation: In this simulation, the sources were estimated simultaneously using the algorithm (24) and
the orthogonalisation procedure (26). Table II describes the source properties; visual scatter plot representations are given in
Fig. 2(a). Sources s1(k) to s4(k) were respectively generated from cubic, 5 point dicyclic, 2 point cyclic and 3 point cyclic
groups, source s3(k) had a high degree of Q-improperness, the value of r = 0.3351 for s4(k), and the other two sources were
Q-proper. For performance comparison, the nonlinearity G was chosen as in [7], with G1(y) = log cosh(y), G2(y) =

√
0.1 + y

and G3(y) = log(0.1 + y). The demixing matrix W was initialised randomly, and the step-sizes µ1 = 1, µ2 = 0.1, µ3 = 0.5
and λ = 5 for the gradient ascent update algorithm. As shown in Fig. 2(c), the algorithm successfully separated all the four
sources with the respective PI values of -17.87dB, -15.8086 dB and -19.4882 dB. Fig. 2(b) depicts the scatter plots of the
normalised estimated sources with nonlinearity G1, note that sources were estimated in a random order.
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(a) The scatter plot of the quaternion sources, properties given in Table I.
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TABLE II
SOURCE PROPERTIES FOR BENCHMARK SIMULATION WITH SYMMETRIC ORTHOGONALISATION APPROACH

Source polytope Q-improperness measure (r)
s1(k) Cubic 0.0104
s2(k) Dicyclic (5 point) 0.0089
s3(k) Cyclic (2 point) 1.0000
s4(k) Cyclic (3 point) 0.3351

B. EEG artifact extraction

In a practical EEG recording session, each EEG recording channel consists of a superposition of a pure EEG signal
corresponding to the collective neural activity within the brain, and electrical activity pertaining to distinctive artifacts such
as movement of the head, line noise and eye blinks. In modelling the EEG signal, the artifacts, both external and biological,
are considered statistically independent from the pure EEG recording [34]–[36]. The usefulness of the real-valued FastICA
algorithm in the extraction of eyeblink artifacts was studied in [37].
In the experimental setup, data was sampled at 4.8kHz for 30s from 12 electrodes placed symmetrically on the scalp according
to the 10-20 system, as shown in Fig. 3(f), with the reference and ground electrodes placed respectively on the right earlobe
and forehead. The electrodes used were the AF7, AF8, AF3, AF4, ML, MR, C3, C4, PO7, PO8, PO3 and PO4, where the ML
and MR electrodes were placed respectively on the left and right mastoid. In addition, the voltage difference between the two
pairs of electrodes placed above and to the side of the eye sockets measured the electrooculogram (EOG), that is, the electrical
activity due to eye blinks and eye movement.
The 4-tuple quaternion-valued EEG signals were formed from four symmetric electrodes from the frontal (AF7, AF8, AF3,
AF4), central (ML, MR, C3, C4) and occipital (PO7, PO8, PO3, PO4) regions of the head. The Q-improper quaternion signals
were constructed as

x1(k) = AF8(k) + ıAF4(k) + ȷAF7(k) + κAF3(k)
x2(k) = MR(k) + ıC3(k) + ȷML(k) + κPO8(k)
x3(k) = PO8(k) + ıPO4(k) + ȷPO3(k) + κPO7(k) (30)

and the observed EEG mixture were then represented as x = [x1(k), x2(k), x3(k)]
T . The degree of Q-impropropriety of the

signals were respectively 0.8902, 0.6824 and 0.8932, according to (27).
In this scheme, the quaternion FastICA algorithm (24) was first utilised to estimate the source signals, with the step-size µ = 1
and initial Lagrange parameter λ = 5, while the nonlinearity was chosen as G(y) = log cosh(y), to provide good overall
performance. Next, the estimated source pertaining to the EOG artifact was selected through examination of the kurtosis values
of the components of the separated sources. Pure EEG signals typically have near-zero kurtosis values, while those belonging
to EOG artifacts have super-Gaussian distributions and thus large kurtosis values [38], this being attributed the the sparse
nature of eye blinks.
A time plot of the original recorded channels and the components of the quaternion-valued separated sources are depicted
respectively in Fig. 3(a) and Fig. 3(b). The occurrence of the eye blinking can be seen at the beginning of the recording, then
at around 7s, 15s and 22s, where the effect of the EOG artifact is more prominent on the frontal lobe channel, and less severe
in the central and occipital channels. By visual inspection, the separated EOG artifact can be seen to span the components of
the third extracted source y3(k), that is ℜ{y3(k)},ℑı{y3(k)},ℑȷ{y3(k)},ℑκ{y3(k)}, and is confirmed through comparison of
the kurtosis values of each components (Fig. 3(c)). While most estimated sources have a near-zero measure of kurtosis, the
real and imaginary components of y3(k) have, in comparison, very large kurtosis values.
To study the effectiveness of the algorithm in removing the artifact, the components of y3(k) were reconstructed to form the
EOG signal and then compared to the original combined EOG recording. Fig. 3(d) depicts both signals along with the residual
error of the estimation process, having a mean square error of 1.21× 10−4. Also, by excluding the components of y3(k) the
clean EEG mixture was reconstructed and a 3s window between 6s–9s for each reconstructed channel is shown in Fig. 3(e),
where the effect of the EOG present at 7s was diminished in the channels.

V. CONCLUSIONS

An ICA algorithm suitable for the blind separation of both Q-proper and Q-improper sources has been introduced. The well-
known negentropy-based cost function has been utilised to estimate independent quaternion-valued sources, while an augmented
Newton method implementation has allowed for the extension of the FastICA methodology to the quaternion domain. The
performance of the quaternion FastICA (q-FastICA) algorithm in deflationary and simultaneous separation using benchmark
quaternion polytope signals has been discussed, and the algorithm has been shown to be effective in the removal of ocular
artifacts from EEG signals.
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APPENDIX A
SOME RELEVANT RESULTS FROM HR CALCULUS

Several results, used in the derivation of the q-FastICA algorithm (24) are discussed here.

A. Chain rule in HR calculus

For a quaternion composite function F ◦G = F (G(q)) : H 7→ H, the chain rule is expressed as

∂F

∂ξ
=

∂F

∂G

∂G

∂ξ
+

∂F

∂Gı

∂Gı

∂ξ
+

∂F

∂Gȷ

∂Gȷ

∂ξ
+

∂F

∂Gκ

∂Gκ

∂ξ
(31)

and ξ = {q, qı, qȷ, qκ}. To show this, the total differential of F (q̄) can be written as [19]

dF =
∂F

∂q̄
dq̄ +

∂F

∂q̄ı
dq̄ı +

∂F

∂q̄ȷ
dq̄ȷ +

∂F

∂q̄κ
dq̄κ (32)

where the dummy variable q̄ , G(q). Likewise, the total differential for G(q) is given by

dG =
∂G

∂q
dq +

∂G

∂q̄ı
dqı +

∂G

∂qȷ
dqȷ +

∂G

∂qκ
(33)

By substituting (33) into (32), and after rearranging the expressions, we obtain the total differential of F with respect to q as

dF =

(
∂F

∂G

∂G

∂q
+

∂F

∂Gı

∂Gı

∂q
+

∂F

∂Gȷ

∂Gȷ

∂q
+

∂F

∂Gκ

∂Gκ

∂q

)
dq

+

(
∂F

∂G

∂G

∂qı
+

∂F

∂Gı

∂Gı

∂qı
+

∂F

∂Gȷ

∂Gȷ

∂qı
+

∂F

∂Gκ

∂Gκ

∂qı

)
dqı

+

(
∂F

∂G

∂G

∂qȷ
+

∂F

∂Gı

∂Gı

∂qȷ
+

∂F

∂Gȷ

∂Gȷ

∂qȷ
+

∂F

∂Gκ

∂Gκ

∂qȷ

)
dqȷ

+

(
∂F

∂G

∂G

∂qκ
+

∂F

∂Gı

∂Gı

∂qκ
+

∂F

∂Gȷ

∂Gȷ

∂qκ
+

∂F

∂Gκ

∂Gκ

∂qκ

)
dqκ

where the derivatives ∂F
∂ξ are given by the terms within the brackets, and form the chain rule. The chain rule for the HR∗

derivatives can be obtained similarly, and the result of (31) can be extended to vector-valued functions to form a generalised
chain rule for the derivatives.

B. First and second derivatives of the cost function J (w)

First, by using the product rule, the derivatives of the involutions of |y|2 = yy∗ = |wHx|2 with respect to the conjugate
demixing vector w∗ are calculated as

∂yy∗

∂w∗ =
∂y

∂w∗ y
∗ + y

∂y∗

∂w∗ = xy∗ − 1

2
yx∗

∂(yy∗)ı

∂w∗ =
∂yı

∂w∗ y
ı∗ + yı

∂yı∗

∂w∗ =
1

2
yıxı∗

∂(yy∗)ȷ

∂w∗ =
∂yȷ

∂w∗ y
ȷ∗ + yȷ

∂yȷ∗

∂w∗ =
1

2
yȷxȷ∗

∂(yy∗)κ

∂w∗ =
∂yκ

∂w∗ y
κ∗ + yκ

∂yκ∗

∂w∗ =
1

2
yκxκ∗.

Then by using the chain rule (31) and after simplification we obtain the gradients of the cost function as

∇w∗J = E{2g(|y|2)xy∗}
∇wı∗J = E{2g(|y|2)xyı∗}
∇wȷ∗J = E{2g(|y|2)xyȷ∗}
∇wκ∗J = E{2g(|y|2)xyκ∗} (34)
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where g is the first derivative of G; this result can also be interpreted based on the involution property (15).
After simplifications and considering the whiteness of x, the second derivatives of J can then be calculated as

∂

∂w∗

(
∂J
∂w∗

)T

= E{4g′(|y|2)xy∗xT y∗ − g(|y|2)I}

∂

∂wı∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)ı(xT y∗) + g(|y|2)I}

∂

∂wȷ∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)ȷ(xT y∗) + g(|y|2)I}

∂

∂wκ∗

(
∂J
∂w∗

)T

= E{2g′(|y|2)(xy∗)κ(xT y∗) + g(|y|2)I}, (35)

where g′ is the second derivative of G and the calculations of the remaining derivatives follow from property (15). Finally,
notice that the non-commutativity of the quaternion product prohibits further simplification of the derivatives in (35).

APPENDIX B
THE AUGMENTED QUATERNION NEWTON METHOD

The duality between R4 and H allows for the consideration of the relations between the derivatives in the two domains. This
methodology was previously considered in [39] and resulted in the derivation of the augmented complex Newton method. The
extension of this work to the quaternion domain based on the involution bases was detailed in [19], [27]. A short summary is
presented below.
For a function f(q) : HN 7→ R, its augmented gradient ∇qa∗f = ∂f

∂qa∗ and Hessian Ha
qq = ∂

∂qa∗

(
∂f

∂qq∗

)T
, where the

augmented vector qa = [qT , qıT , qȷT , qκT ]T . The augmented Newton update can then be written as

∆qa = −
(
Ha

qq

)−1 · ∇qa∗f, (36)

where ∆qa = qa(k + 1)− qa(k) is the change in qa in each consecutive update.
Finally, observe that the elements of the augmented Hessian matrix

Ha
qq =


Hq∗q∗ Hqı∗q∗ Hqȷ∗q∗ Hqκ∗q∗

Hq∗qı∗ Hqı∗qı∗ Hqȷ∗qı∗ Hqκ∗qı∗

Hq∗qȷ∗ Hqı∗qȷ∗ Hqȷ∗qȷ∗ Hqκ∗qȷ∗

Hq∗qκ∗ Hqı∗qκ∗ Hqȷ∗qκ∗ Hqκ∗qκ∗

 (37)

can be written in terms of its first row by utilising the involution property (15) and noting that
(
(·)α

)β
= (·)γ , α ̸= β ̸= γ =

{ı, ȷ, κ}.

APPENDIX C
DERIVATION OF THE AUGMENTED Q-FASTICA UPDATE ALGORITHM

The Lagrangian function L for the optimisation problem in (23) is given by

L(w, λ) = J (w) + λ(wHw − 1)︸ ︷︷ ︸
, c

(38)

where λ ∈ R is the Lagrange parameter. We utilise the Newton method (36) to find the extrema of (38), where

∂L
∂wa∗ =

∂J
∂wa∗ +

∂c

∂wa∗

∂

∂wa∗

(
∂L

∂wa∗

)T

= Ha
ww +

∂

∂wa∗

(
∂c

∂wa∗

)T

(39)

and the augmented gradient and Hessian of J are obtained using (34) and (35). The gradients of c are then given by

∂c

∂w∗ = λ(w − 1

2
w∗)

∂c

∂wı∗ =
λ

2
w∗

∂c

∂wȷ∗ =
λ

2
w∗ ∂c

∂wκ∗ =
λ

2
w∗
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and the Hessian can be calculated from

∂

∂w∗

(
∂c

∂w∗

)T

= −λI ∂

∂wı∗

(
∂c

∂w∗

)T

= −λ

2
I

∂

∂wȷ∗

(
∂c

∂w∗

)T

= −λ

2
I

∂

∂wκ∗

(
∂c

∂w∗

)T

= −λ

2
I.

By substituting these results in (36), the Newton update for the Lagrangian is obtained. Finally, the Lagrange parameter λ is
updated using a gradient ascent method, whereby at each iteration the demixing vector w is first updated via the augmented
Newton method, followed by the update of λ using the current value of w and normalisation of the demixing vector [40], as
in (24).
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