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I. INTRODUCTION

Standard techniques employed in statistical multichannelprocessing typically do not fully ex-

ploit the ‘coupled’ nature of the available information within the channels. In other words,

most practical approaches are based on channelwise processing; this is often inadequate as the

components of a multichannel process are typically correlated. On the other hand, the quaternion

domainH facilitates the modelling of three- and four-dimensional signals. The resurgence in

quaternion signal processing is due to the advantages of quaternion algebra over real-valued

quadrivariate vector algebra in the modelling of such data.Applications of quaternions include

those in information forensics [1], instrumentation [2], communications [3], robotics [4], neural

networks [5], and seismics & oceanics [6]. In the signal processing community, quaternions have

been employed in Kalman filtering [7], the well-known MUSIC technique [8], singular value

decomposition for vector sensing [9] and the least-mean-square estimation [10].

As quaternions are a hypercomplex extension of complex numbers, it is natural to investigate

whether the recent developments in so called augmented complex statistics can be extended to the

quaternion domain, in order to cater for the generality of random signals. One of the pioneering

results in augmented complex statistics is the work by Neeser and Massey, who introduced the

concept of properness (second order circularity, rotationinvariant probability distribution) into

complex-valued statistics. They demonstrated that the covarianceE{zzH} of a complex random

vectorz alone is not adequate to provide a complete second order statistical description [11] and

that the pseudocovarianceE{zzT} also needs to be considered in order to cater for improper

signals. Their work was followed by Picinbono [12] and Van Den Bos, who formulated a generic

Gaussian distribution of both proper and improper complex processes, to show that the traditional

definition of the complex Gaussian distribution (based on the covariance) is only a special case,

applicable to proper processes only [13]. These foundations have been successfully used to

design novel algorithms in adaptive signal processing [14], communications [15], autoregressive

moving average (ARMA) modelling [16], and independent component analysis [17]. By virtue

of augmented complex statistics, all these results are applicable to the generality of complex

signals, both second order circular and noncircular.
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The results of work on quaternion-valued second order statistics are still emerging and are

scattered in the literature [18], [19]. The existing approaches typically take into account only the

information contained in quaternion-valued covariance [5], [7], [8], [20] and by analogy with

the complex domain, they are bound not to maximise the use of available statistical information.

However, despite quaternions being a natural generalisation of complex numbers (their hyper-

complex extension), the developments in the ‘augmented’ statistics of general processes (both

second order circular and noncircular) in the quaternion domain are still in their infancy. In this

connection, Vakhania extended the concept of ‘properness’to the quaternion domain, however,

his definition ofQ-properness was restricted to the invariance of the probability density function

(pdf) under some specific rotations around angle ofπ/2 [18]. Amblard and Le Bihan relaxed

the conditions ofQ-properness to an arbitrary axis and angle of rotationϕ, that is [19]

q , eνϕq ∀ ϕ (1)

for any pure unit quaternionν (whose real part vanishes); symbol, denotes equality in terms

of pdf. Although these results provide an initial insight into Q-properness, they are restricted

to single quaternion variables and it is not straightforward to apply them to quaternion-valued

processes.

The augmented statistics of complex variables and signals was addressed in detail in [21], [22].

We here extend this analysis to cater for the quaternion domain and derive conditions for complete

second order statistical description of such signals. To that end, this work introduces a generic

framework for second order statistical analysis of the generality of quaternion-valued random

variables and vectors, both second order circular and noncircular. It is demonstrated that in

order to exploit complete second order information, it is necessary to incorporate complementary

covariance matrices, thus accounting for a possible improperness of quaternion processes. The

benefits of such an approach are thus likely to be analogous tothe advantages that the augmented

statistics provides for noncircular complex-valued data [14], [23]. Our analysis shows that the

basis for augmented quaternion statistics should also include quaternion involutions, and that

the so introduced augmented covariance matrix contains allnecessary second order statistical

information, also leading to the introduction of widely linear modelling inH. Next, multivariate

Gaussian distribution is revisited to cater for general quaternion processes, leading to enhanced

November 18, 2009 DRAFT



4

entropy based descriptors. Finally, conditions forQ-properness (second order circularity) are

presented, and it is shown thatQ-proper Gaussian processes attain maximum entropy.

The organisation of the paper is as follows: in Section II we briefly review the elements of

quaternion algebra. In Section III, novel statistical measures for quaternion-valued variables

are introduced and the duality with their quadrivariate real domain counterparts is addressed.

Next, Section VI revisits the fundamentals ofQ-properness and illustrates its implications for

quaternion statistics. Section VII formulates a generic Gaussian distribution to cater for bothQ-

proper andQ-improper signals. In Section VIII, the upper bound of the entropy of a multivariate

quaternion-valued data is derived, and it is shown that it isattained forQ-proper signals.

Further, the so-called interaction information, an extension of mutual information to multivariate

processes, is introduced. We conclude this work in Section IX.

II. PROPERTIES OFQUATERNION RANDOM VECTORS

A. Quaternion Algebra

The quaternion domain provides a natural framework for a unified treatment of three- and four-

dimensional processes and can be regarded as a non-commutative extension of complex numbers

[24]. A quaternion variableq ∈ H comprises a real partℜ{·} (denoted by subscripta) and

a vector-part, also called a pure quaternionℑ{·}, consisting of three imaginary components

(denoted by subscriptsb, c, andd), and can be expressed as:

q = ℜ{q} + ℑ{q}

= ℜ{q} + ıℑi{q} + ℑj{q} + κℑk{q}

= qa + ıqb + qc + κqd ∈ H (2)

The orthogonal unit vectors,ı, , κ not only describe the three vector dimensions of a quaternion,

but are also imaginary numbers; their relationships are given by

ı = κ κ = ı κı = 

ıκ = ı2 = 2 = κ2 = − 1 (3)
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For everyq1, q2 ∈ H, quaternion multiplication is defined as

q1q2 = ℜ{q1q2} + ℑ{q1q2}

where ℜ{q1q2} = q1,aq2,a + q1,bq2,b + q1,cq2,c + q1,dq2,d

ℑ{q1q2} = q1,aℑ{q2} + q2,aℑ{q1} + ℑ{q1} × ℑ{q2} (4)

where the symbol “×” denotes the vector product; observe thatq1q2 = q2q1−2ℑ{q2}×ℑ{q1} 6=

q2q1. The non-commutativity of the quaternion product is a consequence of the vector product.

The quaternion conjugate is defined as

q∗ = ℜ{q} − ℑ{q}

= qa − ıqb − qc − κqd (5)

B. Quaternion Involutions and the augmented basis vector

Complex calculus allows for the real and imaginary part of a complex numberz = za + ızb

to be calculated asza = 1
2
(z + z∗) and zb = 1

2ı
(z − z∗). The necessity to use bothz and

z∗ to describe the elements of the corresponding bivariate signal in R2 is used as a basis for

the augmented complex statistics, where the ‘augmented’ basis vector is[z z∗]T . However,

the quaternion domain does not permit such convenient manipulation and the correspondence

between the elements of a quadrivariate vector inR4 and the elements of a quaternion valued

variable inH is not straightforward. To circumvent this problem, we propose to employ the three

perpendicular quaternion involutions (self-inverse mappings), given by

qı = −ıqı = qa + ıqb − qc − κqd

q = −q = qa − ıqb + qc − κqd

qκ = −κqκ = qa − ıqb − qc + κqd (6)

The four components of the quaternion variableq can now be expressed as [25]

qa =
1

2
(q + q∗) qb =

1

2ı
(q − qı∗)

qc =
1

2
(q − q∗) qd =

1

2κ
(q − qκ∗) (7)

Notice that the quaternion conjugate operation(·)∗ is also an involution, that is

q∗ =
1

2
(qı + q + qκ − q) (8)
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By introducing the augmented quaternion statistics, we aimto establish the duality between the

second order statistics of ‘augmented’ quaternion processesqa ∈ H4N×1 and quadrivariate real

valued vectors inR4N×1. To make the augmented statistics inH suitable for the description of

both second order circular and noncircular signals, following on (see pp. 118-119 [26]), we need

to establish a one-to-one correspondence between the components of a quadrivariate real variable

and its quaternionic counterpart. For convenient manipulation of the components of quaternion

variables, we shall use a combination2 of {q, q∗, qı, q, qκ}, and thus define the augmented

quaternion vectorqa = [qT qıT qT qκT ]T as

qa = Aqr










q

qı

q

qκ










=










I ıI I κI

I ıI −I −κI

I −ıI I −κI

I −ıI −I κI



















qa

qb

qc

qd










(9)

whereI ∈ RN×N is the identity matrix, andq = [q1 q2 · · · qN ]T ∈ HN×1; similar description

also applies toqı, q, qκ ∈ HN×1, andqa, qb, qc andqd ∈ RN×1. The 4N × 4N matrix A

provides an invertible mapping between the augmented quaternion valued signalqa ∈ H4N×1

and the quadrivariate ‘composite’ real valued vectorqr = [qT
a qT

b qT
c qT

d ]T ∈ R4N×1, and its

inverse is

A−1 =
1

4
AH (10)

thus yieldingqr = 1
4
AHqa. The determinant ofA can be calculated as a product of its singular

values, and so e.g. forN = 1, det(A) = 16. For any arbitraryN , the determinant ofA therefore

becomes

det(A) = 16N (11)

The basis{q, qı, q, qκ} in (9) has been selected so as to make the matrixA is unitary, which

facilitates its algebraic manipulation. In the sequel, we will show that due to the relation (8), any

other combination of four elements of{q, q∗, qı, q, qκ}, for instance the basis{q, q∗, qı∗, q∗}

is also valid, but this does not guarantee a unitaryA.

2Any four of {q, q∗, qı, q, qκ} or their conjugates can be used with the same effect.
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III. QUATERNION STATISTICS

A. Preliminaries

The standard covariance matrixCqq of a quaternion random vectorq = [q1 · · · qN ]T is given by

Cqq = E{qqH}

= ℜ{Cqq} + ıℑı{Cqq} + ℑ{Cqq} + κℑκ{Cqq} (12)

and its structure is shown in Table I. Observe that the real and imaginary parts ofCqq are linear

functions of the real-valued covariance and cross-covariance matrices of the component vectors

qa, qb, qc andqd ∈ RN×1. From Table I, the cross-correlation matrices have specialsymmetry

properties, e.g.Cqbqa
= CT

qaqb
, and it thus becomes apparent thatℜ{Cqq} is symmetric, whereas

ℑ{Cqq} is skew-symmetric, thus explaining the Hermitian propertyof Cqq.

Based on (7) and (9), the real-valued componentwise correlation matrices of the components

qa, qb, qc andqd cannot be estimated from the quaternion-valued covariancematrix Cq alone.

Hence, second order information within the quaternion-valued vectorq cannot be characterised

completely by the covariance matrix, and complementary correlation matrices: theı-covariance

Cqı, the-covarianceCq, and theκ-covarianceCqκ need to be used. They augment the information

within the covariance, and are given by

Cqı = E{qqıH}

= ℜ{Cqı} + ıℑı{Cqı} + ℑ{Cqı} + κℑκ{Cqı} (13)

Cq = E{qqH}

= ℜ{Cq} + ıℑı{Cq} + ℑ{Cq} + κℑκ{Cq} (14)

Cqκ = E{qqκH}

= ℜ{Cqκ} + ıℑı{Cqκ} + ℑ{Cqκ} + κℑκ{Cqκ} (15)

where the structures of the real and imaginary parts ofCqı, Cq, andCqκ are given in Table I and

Table II. Observe that, e.g. all the components of theı-covarianceCqı are symmetric, except for

the ı-componentℑı{Cqı} which has a skew-symmetric structure, giving rise to itsı-Hermitian
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TABLE I

STRUCTURES OF THE QUATERNION-VALUED COVARIANCE MATRICES IN TERMS OF THEIR QUADRIVARIATE

REAL-VALUED COUNTERPARTS

Covariance matrix Cqq = E{qqH} Cqı = E{qqıH}

ℜ{·} Cqa
+ Cqb

+ Cqc
+ Cqd

Cqa
+ Cqb

− Cqc
− Cqd

ℑı{·} Cqbqa
− Cqaqb

+ Cqdqc
− Cqcqd

Cqbqa
− Cqaqb

+ Cqcqd
− Cqdqc

ℑ{·} Cqcqa
− Cqaqc

+ Cqbqd
− Cqdqb

Cqaqc
+ Cqcqa

− Cqdqb
− Cqbqd

ℑκ{·} Cqdqa
− Cqaqd

+ Cqcqb
− Cqbqc

Cqdqa
+ Cqaqd

+ Cqbqd
+ Cqdqb

TABLE II

STRUCTURES OF THE QUATERNION-VALUED COVARIANCE MATRICES IN TERMS OF THEIR QUADRIVARIATE

REAL-VALUED COUNTERPARTS

Covariance matrix Cq = E{qq
H} Cqκ = E{qq

κH}

ℜ{·} Cqa
− Cqb

+ Cqc
− Cqd

Cqa
− Cqb

− Cqc
+ Cqd

ℑı{·} Cqbqa
+ Cqaqb

+ Cqdqc
+ Cqcqd

Cqbqa
+ Cqaqb

− Cqcqd
− Cqdqc

ℑ{·} Cqcqa
− Cqaqc

+ Cqdqb
− Cqbqd

Cqaqc
+ Cqcqa

+ Cqdqb
+ Cqbqd

ℑκ{·} Cqdqa
+ Cqaqd

− Cqbqc
− Cqcqb

Cqdqa
− Cqaqd

+ Cqbqc
− Cqcqb

property. Similarly, the-covarianceCq and theκ-covarianceCqκ are respectively-Hermitian

andκ-Hermitian, that is

Cqı = CıH
qı

Cq = CH
q

Cqκ = CκH
qκ (16)

These properties do not arise in the statistics of complex valued random variables [14], [17],

and are unique to the quaternion domain.

B. Duality between quaternionic and quadrivariate statistics

Advances in the statistics of complex variables have shown that the covariance matrix alone is

not adequate to completely describe the second order statistical properties of general complex-
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valued random vectors3 z = za + ızb. Picinbono showed that the complete description of the

second order statistics inC, catering for both proper and improper signals, can be achieved

if the real valued bivariate covariance matrices can be computed from their complex valued

counterparts (see pp. 118-119 [26]). In Section II, we have shown that components of a composite

quadrivariate real variable corresponding to the quaternion variableq cannot be completely

expressed based on onlyq and q∗, and to be able to introduce augmented statistics inH, we

need to consider an augmented basis comprising the involutionsqı andq andqκ. Following on

these results, we can obtain a complete second order statistical description inH, provided that

the quadrivariate real-valued correlation matrices of each single componentqa, qb, qc andqd of

the quaternion random vectorq can be expressed in terms of the quaternion-valued covariance

and the complementary covariance matrices as4

Cqa
=

1

4
ℜ{Cqq + Cqı + Cq + Cqκ} Cqb

=
1

4
ℜ{Cqq + Cqı − Cq − Cqκ}

Cqc
=

1

4
ℜ{Cqq − Cqı + Cq − Cqκ} Cqd

=
1

4
ℜ{Cqq − Cqı − Cq + Cqκ}

Cqbqa
=

1

4
ℑı{Cqq + Cqı + Cq + Cqκ} Cqcqa

=
1

4
ℑ{Cqq + Cqı + Cq + Cqκ}

Cqdqa
=

1

4
ℑκ{Cqq + Cqı + Cq + Cqκ} Cqcqb

=
1

4
ℑκ{Cqq + Cqı − Cq − Cqκ}

Cqdqb
= −

1

4
ℑ{Cqq + Cqı − Cq − Cqκ} Cqdqc

=
1

4
ℑı{Cqq − Cqı + Cq − Cqκ} (17)

3In the complex domain, both the covarianceCz = E{zzH} and the pseudocovariancePz = E{zzT } should be used, that is

Cza =
1

2
ℜ{Cz + Pz} Czb

=
1

2
ℜ{Cz −Pz}

Czazb
=

1

2
ℑı{Pz − Cz} Czbza = CT

zazb

where Cza and Czb
are respectively the componentwise covariance matrices ofthe real partza and the imaginary partzb,

whereasCzazb
andCzbza denote the cross-covariance matrices.

4If a different basis, e.g.{q, q∗, qı∗, q∗} is chosen, the full description of the second order statistics is still achieved, as shown

in Appendix X-A; this applies to any other combination of quadruples based on{q, q∗, qı, q, , qκ}.
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The augmented quaternion-valued covariance matrix of an augmented random vectorqa =

[qT qıT qT qκT ]T
(
see also (9)

)
, is therefore given by,

Ca
q

= E{qaqaH} =










Cqq Cqı Cq Cqκ

CH
qı Cqıqı Cqıq Cqıqκ

CH
q Cqqı Cqq Cqqκ

CH
qκ Cqκqı Cqκq Cqκqκ










(18)

where the submatrices in (18) are calculated according to

Cδ = E{qδH} Cαβ = E{αβH}

δ ∈ {qı,q,qκ} α, β ∈ {q,qı,q,qκ} (19)

To verify that the augmented covariance matrix in (18) provides a complete second order

statistical description, we need to show that it permits a static invertible one-to-one mapping

with the corresponding real valued quadrivariate covariance matrixCR, defined as

CR = E{qrqrT} =










Cqa
Cqaqb

Cqaqc
Cqaqd

Cqbqa
Cqb

Cqbqc
Cqbqd

Cqcqa
Cqcqb

Cqc
Cqcqd

Cqdqa
Cqdqb

Cqdqc
Cqd










(20)

Based on the relationship between the augmented quaternion-valued vectorqa and the corre-

sponding real valued ‘composite’ vectorqr in (9), and since from (10)qr = A−1qa = 1
4
AHqa,

the real valued covariance matrix can indeed be expressed interms of the augmented quaternion

valued covariance matrix in (18) as

CR = A−1Ca
q
A−H

=
1

16
AHCa

q
A (21)

whereA−H =
(
A−1

)H
. This completes the derivation of the augmented quaternionstatistics,

suitable for the description of both proper and improper quaternion random processes.

IV. QUATERNION WIDELY L INEAR MODEL

To exploit the complete second order statistics of quaternion valued signals in linear mean-

squared error (MSE) estimation, we need to consider a filtering model similar to the widely
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linear model developed for the complex case [27]. Based on (9) and (18), it is the augmented

random vectorxa = [xT xıT xT xκT ]T that contains all the required second order statistical

information. Then, the quaternion widely linear model (QWL) can be constructed as

y = waHxa

= gHx + hHxı + uHx + vHxκ (22)

The MSE solution based on the QWL model (22) is then given by

wa = E{xaxaH}−1E{xad∗} (23)

demonstrating that the QWL solution has the same form as the standard solution, but is based on

the augmented covariance matrixCa
xa

in (18). On the other hand, the corresponding real-valued

quadrivariate model relies on the real-valued covariance matrix in (20) [28]. This correspondence

can be used to establish the relationship between the eigenproperties ofCR andCxa
. Based on

the roots ofCR − λI = 0, the relationship (21), and the fact thatI = A−1A = AHA/4, we

obtain

CR − λI =
1

16
AH [Ca

xa
− 4λI]A (24)

that is, the eigenvalues of the augmented quaternion covariance matrix are four times those

of the quadrivariate real-valued correlation matrix. Hence, if the quaternion least mean square

(QLMS) algorithm exploits the widely linear model, it will converge four times faster than its

multichannel counterpart, for the same learning rate (see also [10]).

V. SECOND ORDER STATIONARITY

Recall that a real-valued quadrivariate variable is wide-sense stationary if all its four components

are wide-sense stationary [29]. Since the four quaternion-valued covariance matrices (12)-(15)

provide a full description of the second order statistics, we can now state that a quaternion-valued

random processq(n) is wide-sense stationary, provided

1) The mean is constant,µ = E{q(n)} = K ∀ n

2) The covariance and its complementary matrices are function of only the lagτ , that is

Cqq(n, τ) = E{q(n)qH(n + τ)}

Cqı(n, τ) = E{q(n)qıH(n + τ)}

Cq(n, τ) = E{q(n)qH(n + τ)}

Cqκ(n, τ) = E{q(n)qκH(n + τ)}
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3) The covariance matrix is finite,Cqq(n) = E{q(n)qH(n)} < ∞ ∀ n

Observation. It is sufficient to define stationarity in terms ofCqq, Cqı, Cq, and Cqκ, as they

provide the complete description of second order statistics5 (17).

VI. SECOND ORDER CIRCULARITY INH AND Q-PROPERNESS

The notion of second order circularity (or properness) in the complex domain refers to complex-

valued variables having rotation-invariant probability distributions, and consequently a vanishing

pseudocovariance [12]. The two conditions imposed on a complex variablez = za + ızb to be

proper (C-proper) are therefore

σ2
za

= σ2
zb

E{zazb} = 0 (25)

that is, the real and imaginary part are of equal power and notcorrelated, which amounts to a

vanishing pseudocovariance matrixP = E{zzT}.

By continuity, a quaternion-valued second order circular (Q-proper) variable should satisfy the

two conditions in (25) of aC-proper variable for the six pairs of axes:{1, ı}, {1, }, {1, κ},

{ı, }, {κ, } and{κ, ı}, where ‘1’ represents the real axis andı, , κ denote the corresponding

imaginary axes. In other words, the probability distribution of a Q-proper variable is rotation-

invariant with respect to all these six pairs of axes, leading to the properties of aQ-proper

variable summarised in Table III [18].

The first property, P1, states that all the four components ofa Q-proper variable have equal

powers. The property P2 implies that all the components ofq are uncorrelated. Property P3

indicates that the pseudocovariance matrix does not vanishfor Q-proper signals, in contrast to

the complex case. Finally, the fourth property illustratesthat the covariance of a quaternion

variable is a sum of the covariances of the process components. Notice that properties P1 and

P2 imply properties P3 and P4.

5However, if another basis was chosen
`

for instance{q, q∗, qı∗, q∗}
´

, then another set of covariance matrices
`

Cqq,Pq =

E{qq
T }, Pı

q = E{qq
ıT }, P

q = E{qq
T }

´

would be employed to define stationarity.
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TABLE III

PROPERTIES OF AQ-PROPER RANDOM VARIABLE

Property Mathematical description

P1 E{q2

δ} = E{q2

ǫ } = σ2 ∀ δ, ǫ = a, b, c, d

P2 E{qδqǫ} = 0 ∀ δ, ǫ = a, b, c, d andδ 6= ǫ

P3 E{qq} = −2E{q2

δ} = −2σ2 ∀ δ = a, b, c, d

P4 E{|q|2} = 4E{q2

δ} = 4σ2 ∀ δ = a, b, c, d

For quaternion random vectorsqϑ and qυ to be jointly proper, the composite random vector

having qϑ and qυ as subvectors also has to be proper. In addition, any subvector of a proper

random vector is also proper. To guarantee the jointQ-properness, each element of the vectorsqϑ

andqυ should satisfy properties P1 and P2 in Table III, and the elements should be uncorrelated

in the sense that their jointı--κ-covariance matrices vanish. This is discussed in more detail

below.

A. Augmented Statistics andQ-properness

Following on the notion of proper complex variables (as detailed in Section IIIA of [11]), we

now extend this definition to quaternion random vectors. Consider aQ-proper random vector

q = [q1 q2 · · · qN ]T ∈ HN×1. Then,Q-properness implies that the quaternion vectorq is not

correlated with its vector involutionsqı, q, qκ, that is6,

E{qqıH} = 0 E{qqH} = 0 E{qqκH} = 0 (26)

In other words, aQ-proper signal has a vanishing complementary covariance matrices, specified

in Table I and Table II. Also, the invariance of aQ-proper random vector under a linear or affine

transformation (shown in Appendix X-B) is similar to that inthe complex case (see Lemma

3 [11]). This invariance arises due to the properties in (16)and the condition of vanishing

6Similarly, for a complex-valued random vectorz, C-properness means thatz is not correlated withz∗ in ‘complex sense’,

becauseE{z(z∗)H} = E{zzT } = 0.
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ı−covariance matrix,Cqı = 0, in (13) is equivalent to the conditions

Cqbqa
= CT

qbqa
Cqcqd

= CT
qcqd

Cqcqa
= −CT

qcqa
Cqdqb

= −CT
qdqb

Cqdqa
= −CT

qdqa
Cqbqc

= −CT
qbqc

(27)

Similarly, the vanishing−covariance matrix,Cq = 0, in (14) implies

Cqbqa
= −CT

qbqa
Cqcqd

= −CT
qcqd

Cqcqa
= CT

qcqa
Cqdqb

= CT
qdqb

Cqdqa
= −CT

qdqa
Cqbqc

= −CT
qbqc

(28)

whereas, the vanishing theκ−covariance matrix,Cqκ = 0, in (15) yields

Cqbqa
= −CT

qbqa
Cqcqd

= −CT
qcqd

Cqcqa
= −CT

qcqa
Cqdqb

= −CT
qdqb

Cqdqa
= CT

qdqa
Cqbqc

= CT
qbqc

(29)

Observe thatCqbqa
= −CT

qbqa
for (28)-(29), whereasCqbqa

= CT
qbqa

for (27), meaning that

Cqbqa
= 0. Similar observations can be made for the other componentwise real-valued cross-

correlation matrices. In other words, the conditions (27)-(29) mean that for aQ-proper signal, all

the real-valued cross-correlation matrices of the components qa, qb, qc, andqd need to vanish.

This, in turn, means that all the four individual componentsof each quaternion variableqℓ are

uncorrelated
(
property P2 in Table III

)
. This also means that the components ofqℓ and q̺ are

uncorrelated forℓ 6= ̺ (in contrast to the complex case [11], [12]). We can therefore conclude

that the augmented covariance matrixCa
q

of a Q-proper random vectorq is real-valued, positive

definite, and symmetric.

For a Q-proper random vector, it follows from properties P2 and P4 in Table III, that the

covariance matrices (12-(15)) are real-valued and diagonal, and the covariance matrix of aQ-

proper process is positive definite, leading to a simpler structure of the augmented covariance
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matrix Ca
q

of a Q-proper random vector, given by viz.

Ca
q

=










Cqq 0 0 0

0 Cqıqı 0 0

0 0 Cqq 0

0 0 0 Cqκqκ










= 4σ2I (30)

Notice that the cross-covariance matricesCαβ also vanish and the determinant can be readily

expressed asdet(Ca
q
) = (4σ2)4N .

VII. A M ULTIVARIATE GAUSSIAN DISTRIBUTION FORQ-PROPER ANDQ-IMPROPER

VARIABLES

In the complex domain, based on the duality between a complexvariablez = za + ızb ∈ C and a

corresponding composite real variableω = [za, zb] ∈ R2, Van Den Bos proposed a generic

complex-valued Gaussian distribution to cater for bothC-proper andC-improper processes

[13]; this was further elaborated by Picinbono [30]. In the same spirit, we address probability

distributions of both proper and improper processes inH, and propose a generic Gaussian

distribution for multivariate quaternion valued variables.

We say that a quaternion valued random variable is Gaussian if all its components are jointly

normal, and their joint Gaussian probability distributionis given by

p(qa,qb,qc,qd) =
1

(2π)2N det(CR)
1

2

exp{−
1

2
f(qa,qb,qc,qd)} (31)

where

f(qa,qb,qc,qd) = qrTC−1
R qr = qrHC−1

R qr (32)

It is assumed thatqa, qb,qc and qd ∈ RN×1 have zero mean, but this does not restrict the

generality of the results. To make the Gaussian distribution (31) cater for bothQ-proper and

Q-improper signals, we need to express it in terms of the augmented quaternion valued vector

qa (9). To this end, the determinant of the quadrivariate covarianceCR and the quadratic function

(32) need to be further investigated.

To examine the duality between the real-valued quadrivariate matrixCR (20), and the augmented
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quaternion-valued covarianceCa
q

from (21), we shall first express the determinant ofCR as a

function of Ca
q
, that is

det(CR) = det(A−1Ca
q
A−H) (33)

= det(A−1) det(Ca
q
) det(A−H) (34)

whereA is given in (9). From (11),det(A) = 16N and sincedet(A−1) = det(A)−1, the above

expression can be further simplified to

det(CR) =

(
1

16

)2N

det(Ca
q
) (35)

The quadratic function (32) can be also expressed as a function of the augmented quaternion-

valued random vectorqa, given by

f(qa,qb,qc,qd) = qrHC−1
R qr

=

(

qaHA−H

)(

AHCa−1

q
A

)(

A−1qa

)

= qaHCa−1

q
qa = f(q,q∗,qı∗,q∗) (36)

By substituting (35) and (36) into (31), we can express the Gaussian probability density function

for an augmented multivariate quaternion-valued random vector qa as

p(qa) = p(q,q∗,qı∗,q∗) =
1

(π2/4)N det(Ca
q
)

1

2

exp{−
1

2
qaHCa−1

q
qa} (37)

For aQ-proper vector, it can be shown
(
using (30)

)
that the Gaussian distribution (37) simplifies

to

p(q,q∗,qı∗,q∗) =
1

(2πσ2)2N
exp

{

−
1

2σ2
qHq

}

(38)

that is, the argument in the exponential is a function of only|q|, thus highlighting the corre-

spondence with the real and proper complex Gaussian distributions [14].

VIII. A NOTE ON INFORMATION THEORETIC MEASURES

A. Entropy for Quaternion-valued Random Vectors

Based on Section VII and the results in [11], we can now generalise the maximum entropy

principle to the quaternion-valued multivariate case [11], [31]. The entropy of a generic (Q-

proper or Q-improper) quaternion-valued Gaussian random vector can be expressed as (the
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derivation is included in Appendix X-C)

H(q) = log
[
(πe/2)2N det(Ca

q
)

1

2

]
(39)

The upper bound on the entropy of a quaternion valued random vectorq is given by

H(q) ≤ 2N log
[
(2πeσ2)

]
= Hproper (40)

The equality (40) holds, if and only if,q is a centeredQ-proper Gaussian random vector (as

shown in Appendix X-D). It is straightforward to show that the entropy of a quaternion random

vector with an arbitrary probability density functionpA(q) cannot be greater than that of the

Gaussian distribution7 (40), thus confirming that aQ-proper Gaussian process attains the upper

entropy limit, as shown in Appendix X-D. In addition, the difference in entropy is due to the

improperness of a quaternion-valued Gaussian random vector can be quantified by the difference

between (40) and (39).

B. Beyond Mutual Information - Interaction Information

Another important information theoretic measure is mutualinformation (MI). Standard MI

considers only two variables, and we next provide its generalisation to higher dimensions using

the so-called ‘interaction information’I [33]. Unlike mutual information, interaction information

I can be negative; physical meaning of a positiveI can be interpreted as the consequence of

an increase in the degree of association between the variates of a multivariate quantity, when

one variable is kept constant. The reverse applies forI < 0 [33]. The interaction informationI

between quaternion-valued Gaussian random vectorsq, qı, q andqκ can be measured as

I(q;qı;q;qκ) = log

[
(8σ4)N

det(Ca
q
)

1

2

]

+H(qa,qb,qc) + H(qa,qb,qd) + H(qa,qc,qd) + H(qc,qb,qd)

−H(qa,qb) − H(qa,qc) − H(qa,qd) − H(qb,qc) − H(qb,qd) − H(qc,qd) (41)

which clearly attains the value ofI = 0, for Q-proper signals. The derivation is included in

Appendix X-E.

7The proof given on see p. 336 of [32].

November 18, 2009 DRAFT



18

IX. CONCLUSION

Second order statistics and information theoretic measures for general quaternion-valued ran-

dom variables and processes have been revisited. To make useof complete information within

quaternion-valued second order statistics, complementary statistical measures theı-covariance,

the -covariance, and theκ-covariance matrices have been employed. The so introducedaug-

mented statistics has served as a basis for a widely linear quaternion model, and the concept

of Q-properness (second order circularity) has been addressedbased on the properties of the

augmented covariance matrix. Further, the generic Gaussian multivariate distribution has been

extended to quaternion-valued data, so as to cater for bothQ-proper andQ-improper variables

and vectors. The upper bound on the entropy of multivariate quaternion-valued processes has been

provided, and it has been shown that this bound is attained for Q-proper processes. Comparative

analysis with real quadrivariate statistics supports the findings.

X. APPENDIX

A. The complete description of second order statistics withan alternative basis{q, q∗, qı∗, q∗}

We can express the componentwise real-valued correlation matrices of each single component

qa, qb, qc andqd of the quaternion random vectorq in terms of the quaternion-valued covariance

and pseudocovariance matricesPq = E{qqT}, P ı
q

= E{qqıT}, P
q

= E{qqT} as

Cqa
=

1

2
ℜ{Cq + Pq} Cqb

=
1

2
ℜ{Cq − P ı

q
}

Cqc
=

1

2
ℜ{Cq −P

q
} Cqd

= ℜ{Cq} −
(
Cqa

+ Cqb
+ Cqc

)

Cqbqa
=

1

2
ℑi{Cq + Pq} Cqcqa

=
1

2
ℑj{Cq + Pq}

Cqdqa
=

1

2
ℑk{Cq + Pq} Cqcqb

=
1

2
ℑk{Cq −P ı

q
}

Cqdqc
=

1

2
ℑi{Cq −P

q
} Cqdqb

= −
1

2
ℑj{Cq − Pκ

q
} (42)

This illustrates the validity of the above basis in augmented quaternion valued statistics.

B. Invariance ofQ-proper random vectors under an affine or linear transformation

Consider an affine processy = Aq + b, whereq is a Q−proper random vector∈ HN ,

A ∈ HM×N , andb ∈ HM are constant. Based on the proof of Lemma 3 of [11] and the special
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properties of complementary covariance matrices in (16),y is also aQ−proper random vector,

as shown by

Cyı = E{yyıH} = ACqıA
ıH = 0

Cy = E{yyH} = ACqA
H = 0

Cyκ = E{yyκH} = ACqκA
κH = 0

C. Derivation of the maximum entropy of a quaternion-valuedrandom vector

Let pA(q) be an arbitrary probability density function andp(q) the Gaussian distribution (37).

For convenience (with a slight abuse of notation), we denote
∫ ∫ ∫ ∫

· · ·
∫ ∫ ∫ ∫

by
∮

and

dqa,1dqb,1dqc,1dqd,1 · · · dqa,Ndqb,Ndqc,Ndqd,N by dq
∮

pA(q) log
[ 1

p(q)

]
dq =

∮

pA(q) log
[
(π2/4)N det(Ca

q
)

1

2 exp{
1

2
qaH

Ca−1

q
qa}

]
dq

≈

∮

pA(q) log
[
(π2/4)N det(Ca

q
)

1

2 exp{2N}
]
dq

≈ log
[
(π2e2/4)N det(Ca

q
)

1

2

]
∮

pA(q)dq

≈ log
[
(πe/2)2N det(Ca

q
)

1

2

]
(43)

For a Q-proper Gaussian random vector, the augmented covariance matrix has the special

structure (30), its determinant isdet(Ca
q
) = (4σ2)4N , and the expression (43) can be further

simplified into

Hproper = 2N log
[
(2πeσ2)

]
(44)

D. Maximisation of entropy for aQ-proper random variable

To demonstrate that the entropy ofq = qa + ıqb + qc + κqd ∈ H is maximised, for aQ-

proper random variable, we first address the maximum entropyof the corresponding real-valued

quadrivariate vectorqr
s = [qa qb qc qd]

T . According to the maximum entropy principle, the

entropy ofqr
s satisfies (see p. 234 [31])

H(qr
s) ≤

1

2
log

[
(2πe)4 det(CR)

]
(45)

where the equality holds, iffqr
s is a centered Gaussian random vector. Upon evaluating the

corresponding entropies forN = 1, observe that the real quadrivariate covariance matrixCR in
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(20) is positive definite and has a special block structure

CR =




Γ B

BT C



 (46)

which implies that (see p. 478 [34])

det(CR) = det(Γ) det(C −BTΓ−1B)

≤ det(Γ) det(C) (47)

and is maximised (equality holds) whenB = 0, yielding

E{qaqc} = E{qaqd} = E{qbqc} = E{qbqd} = 0 (48)

Since for the two2×2 matricesdet(Γ) = E{q2
a}E{q2

b}−E{qaqb}
2 anddet(C) = E{q2

c}E{q2
d}−

E{qcqd}
2, the determinantdet(CR) satisfies

det(CR) ≤
[
E{q2

a}E{q2
b} − E{qaqb}

2
][

E{q2
c}E{q2

d} − E{qcqd}
2
]

≤ E{q2
a}E{q2

b}E{q2
c}E{q2

d}+E{qaqb}
2E{qcqd}

2

︸ ︷︷ ︸

φ

+

−E{qaqb}
2E{q2

c}E{q2
d}

︸ ︷︷ ︸

χ

−E{qcqd}
2E{q2

a}E{q2
b}

︸ ︷︷ ︸

τ

(49)

By examining (49), and factorisingφ andχ as

φ + χ = E{qaqb}
2

[

E{qcqd}
2 − E{q2

c}E{q2
d}

]

≤ 0 (50)

the maximum value ofφ + χ = 0 indicates that either

E{qaqb}
2 = 0 (51)

or E{qcqd}
2 = 0 (52)

The same statement can be made forφ+ τ ≤ 0. Therefore, equations (48), and (51)-(52) satisfy

property P2 of aQ-proper variable (see Table III), and the determinant ofCR is upper bounded

by

det(CR) ≤ E{q2
a}E{q2

b}E{q2
c}E{q2

d} (53)

Using constrained equality based optimisation (Lagrange multipliers), we show below that in-

equality (53) is maximised when condition P1 ofQ-properness in Table III is satisfied, yielding

det(CR) ≤

(
E{|q|2}

4

)4

(54)
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This optimisation problem can be posed as

max

{

det(CR)

}

= max

{

E{q2
a}E{q2

b}E{q2
c}E{q2

d}

}

subject to E{q2
a} + E{q2

b} + E{q2
c} + E{q2

d} = E{|q|2}

and can be solved using Lagrange multipliers as

f

(

E{q2
a}, E{q2

b}, E{q2
c}, E{q2

d}, λ

)

= E{q2
a}E{q2

b}E{q2
c}E{q2

d}+

λ

(

E{q2
a} + E{q2

b} + E{q2
c} + E{q2

d} − E{|q|2}

)

(55)

Set the derivativedf = 0, to yield the system of equations

∂f

∂E{q2
a}

= E{q2
b}E{q2

c}E{q2
d} + λ = 0 (56)

∂f

∂E{q2
b}

= E{q2
a}E{q2

c}E{q2
d} + λ = 0 (57)

∂f

∂E{q2
c}

= E{q2
a}E{q2

b}E{q2
d} + λ = 0 (58)

∂f

∂E{q2
d}

= E{q2
a}E{q2

b}E{q2
c} + λ = 0 (59)

∂f

∂λ
= E{q2

a} + E{q2
b} + E{q2

c} + E{q2
d} − E{|q|2} = 0 (60)

Solving the equations (56)-(59) leads to

E{q2
a} = E{q2

b} = E{q2
c} = E{q2

d} (61)

which when replaced in (60) yields the solution

E{q2
a} = E{q2

b} = E{q2
c} = E{q2

d} =
E{|q|2}

4
(62)

Since the functionlog(·) is monotically increasing, we can substitute the maximum value of

det(CR) from (54) into (45), to obtain the upper entropy bound in the form

H(qr
s) ≤ log

[(
π2e2E{|q|2}2

4

]

≤ log

[

4π2e2σ4

]

(63)

This upper bound is equivalent to the entropy of aQ-proper Gaussian quaternion random variable

(40) whenN = 1, thus illustrating that the entropy of a quaternion variable q is maximised for

Q-proper random variables. This also confirms the validity ofthe introduced form of probability

density function (37) for quaternion random variables.
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E. Interaction InformationI(q;qı;q;qκ)

Prior to the formulation ofI(q;qı;q;qκ), note that the interaction informationI of qa =

[qT qıT qT qκT ]T ∈ H4N×1 is equivalent to that ofqr = [qT
a qT

b qT
c qT

d ]T ∈ R4N×1, due to

their deterministic relationship

qa = Aqr

The matrixA does not contribute to the interaction information ofqa, and therefore,

I(q;qı;q;qκ) = I(qa;qb;qc;qd)

= H(qa) + H(qb) + H(qc) + H(qd) − H(qa,qb,qc,qd)
︸ ︷︷ ︸

Hproper−H(q)

+H(qa,qb,qc) + H(qa,qb,qd) + H(qa,qc,qd) + H(qc,qb,qd)

−H(qa,qb) − H(qa,qc) − H(qa,qd) − H(qb,qc) − H(qb,qd) − H(qc,qd)

= log

[
(8σ4)N

det(Ca
q
)

1

2

]

+H(qa,qb,qc) + H(qa,qb,qd) + H(qa,qc,qd) + H(qc,qb,qd)

−H(qa,qb) − H(qa,qc) − H(qa,qd) − H(qb,qc) − H(qb,qd) − H(qc,qd)

(64)
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