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I. INTRODUCTION

Standard techniques employed in statistical multichapnetessing typically do not fully ex-
ploit the ‘coupled’ nature of the available information kit the channels. In other words,
most practical approaches are based on channelwise piragetfss is often inadequate as the
components of a multichannel process are typically caedleOn the other hand, the quaternion
domainH facilitates the modelling of three- and four-dimensionigingls. The resurgence in
guaternion signal processing is due to the advantages démpian algebra over real-valued
guadrivariate vector algebra in the modelling of such dAfaplications of quaternions include
those in information forensics [1], instrumentation [2pnemunications [3], robotics [4], neural
networks [5], and seismics & oceanics [6]. In the signal pssing community, quaternions have
been employed in Kalman filtering [7], the well-known MUSI€chnique [8], singular value

decomposition for vector sensing [9] and the least-meamiggestimation [10].

As quaternions are a hypercomplex extension of complex ewsnlit is natural to investigate
whether the recent developments in so called augmentediersiatistics can be extended to the
guaternion domain, in order to cater for the generality ofdam signals. One of the pioneering
results in augmented complex statistics is the work by Neasd Massey, who introduced the
concept of properness (second order circularity, rotathvariant probability distribution) into
complex-valued statistics. They demonstrated that thar@wvceE{zz” } of a complex random
vectorz alone is not adequate to provide a complete second ordastisttdescription [11] and
that the pseudocovariande{zz’} also needs to be considered in order to cater for improper
signals. Their work was followed by Picinbono [12] and VamBos, who formulated a generic
Gaussian distribution of both proper and improper complexgsses, to show that the traditional
definition of the complex Gaussian distribution (based andbvariance) is only a special case,
applicable to proper processes only [13]. These foundatiwewve been successfully used to
design novel algorithms in adaptive signal processing, [@¢dinmunications [15], autoregressive
moving average (ARMA) modelling [16], and independent comgnt analysis [17]. By virtue
of augmented complex statistics, all these results areicaigbé to the generality of complex

signals, both second order circular and noncircular.
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The results of work on quaternion-valued second orderssiegi are still emerging and are
scattered in the literature [18], [19]. The existing appiues typically take into account only the
information contained in quaternion-valued covarianck [B], [8], [20] and by analogy with
the complex domain, they are bound not to maximise the useaiahle statistical information.
However, despite quaternions being a natural generaisati complex numbers (their hyper-
complex extension), the developments in the ‘augmentedissics of general processes (both
second order circular and noncircular) in the quaterniomaia are still in their infancy. In this
connection, Vakhania extended the concept of ‘propernesie quaternion domain, however,
his definition ofQ-properness was restricted to the invariance of the prdbatensity function
(pdf) under some specific rotations around angler¢f [18]. Amblard and Le Bihan relaxed

the conditions ofQ-properness to an arbitrary axis and angle of rotatiothat is [19]
g=e%qg Vo (1)

for any pure unit quaternion (whose real part vanishes); symbdldenotes equality in terms
of pdf. Although these results provide an initial insightar)-properness, they are restricted
to single quaternion variables and it is not straightfodver apply them to quaternion-valued

processes.

The augmented statistics of complex variables and signassasldressed in detail in [21], [22].
We here extend this analysis to cater for the quaternion doamal derive conditions for complete
second order statistical description of such signals. & ¢md, this work introduces a generic
framework for second order statistical analysis of the gaitg of quaternion-valued random
variables and vectors, both second order circular and narar. It is demonstrated that in
order to exploit complete second order information, it isggsary to incorporate complementary
covariance matrices, thus accounting for a possible imgrregss of quaternion processes. The
benefits of such an approach are thus likely to be analogaie tadvantages that the augmented
statistics provides for noncircular complex-valued ddtd][[23]. Our analysis shows that the
basis for augmented quaternion statistics should alsadechjuaternion involutions, and that
the so introduced augmented covariance matrix containeegiéssary second order statistical
information, also leading to the introduction of widelydgr modelling inH. Next, multivariate

Gaussian distribution is revisited to cater for generaltgpumon processes, leading to enhanced
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entropy based descriptors. Finally, conditions fdproperness (second order circularity) are

presented, and it is shown th@proper Gaussian processes attain maximum entropy.

The organisation of the paper is as follows: in Section Il weeftly review the elements of
guaternion algebra. In Section Ill, novel statistical mgas for quaternion-valued variables
are introduced and the duality with their quadrivariatel @@main counterparts is addressed.
Next, Section VI revisits the fundamentals @fproperness and illustrates its implications for
guaternion statistics. Section VII formulates a generia$s&n distribution to cater for botf-
proper andQ-improper signals. In Section VIII, the upper bound of thé&repy of a multivariate
guaternion-valued data is derived, and it is shown that iatisined forQ-proper signals.
Further, the so-called interaction information, an exiem®f mutual information to multivariate

processes, is introduced. We conclude this work in Secfion |

I[I. PROPERTIES OFQUATERNION RANDOM VECTORS
A. Quaternion Algebra

The quaternion domain provides a natural framework for diethtreatment of three- and four-

dimensional processes and can be regarded as a non-coimmaiaénsion of complex numbers

[24]. A quaternion variableg € H comprises a real pafk{-} (denoted by subscript) and

a vector-part, also called a pure quaternigfi-}, consisting of three imaginary components

(denoted by subscripts ¢, andd), and can be expressed as:

g = R{g}+3q}
= R{q} +Su{a} +95{a} + £Su{a}

= Qo+ + 99 +rqy €H (2)

The orthogonal unit vectors, j, « not only describe the three vector dimensions of a quaternio

but are also imaginary numbers; their relationships arergly
1) = K JE=1 Kt =17

Yk = 1© = 5 =k = —1 3)
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For everyq,, ¢» € H, quaternion multiplication is defined as

Gt = @@}l + SH{ae}
where R{q12} = QG2+ Qales + Qefoe + Qa2
MHauet = 6,.5{e} + @S{at +S{a} x e} (4)

where the symbol X” denotes the vector product; observe thab = ¢2q1 —23{q2} X {1 } #
¢2q1- The non-commutativity of the quaternion product is a consace of the vector product.

The quaternion conjugate is defined as
¢ = R{q}—{q}

= Qo — Wy — J4c — KQq (5)

B. Quaternion Involutions and the augmented basis vector

Complex calculus allows for the real and imaginary part ofomplex number: = z, + 12,

to be calculated as, = 3(z + z*) and z, = 5-(z — z*). The necessity to use both and

2* to describe the elements of the corresponding bivariateaimp R? is used as a basis for
the augmented complex statistics, where the ‘augmentesis beector is[z 2*|”. However,
the quaternion domain does not permit such convenient makatipn and the correspondence
between the elements of a quadrivariate vectoRtnand the elements of a quaternion valued
variable inH is not straightforward. To circumvent this problem, we e to employ the three

perpendicular quaternion involutions (self-inverse nag@g), given by

¢ = —1qt=qq+1q — Jqc — Kqq
¢ = —79) =G — Q@ + Jqc — Kqq
¢ = —KQK = (4 — Gy — JGc + KQq (6)

The four components of the quaternion variablean now be expressed as [25]
1 1

qa=§(q+Q) szz(q_Q)
= Lig—¢") = - @)
€ =5 (1—a Ga=5-(a—4

Notice that the quaternion conjugate operatiori is also an involution, that is

1
q*=§(qZ+q’+q“—Q) (8)
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By introducing the augmented quaternion statistics, we taimstablish the duality between the
second order statistics of ‘augmented’ quaternion presags c H*V*! and quadrivariate real

valued vectors iR*¥*1, To make the augmented statisticsHhsuitable for the description of

both second order circular and noncircular signals, falhgwon (see pp. 118-119 [26]), we need
to establish a one-to-one correspondence between the cemisoof a quadrivariate real variable
and its quaternionic counterpart. For convenient mantmuieof the components of quaternion
variables, we shall use a combinattaof {¢, ¢*, ¢*, ¢’, ¢}, and thus define the augmented

quaternion vector® = [q” g ¢’* ¢*T]" as

qCL — AqT
[ | (1 I kI 17 da ]
g I O —yI —kI d
9)
q’ I —I I —kI dec
| 9" ] | I —d —I kI | | qq |

whereI € RV*Y s the identity matrix, andy = [q; ¢ ---qy]? € HY*; similar description
also applies tay', o/, q° € HY*!, andq,, qv, q. andqq € RY¥*1. The4N x 4N matrix A
provides an invertible mapping between the augmented mquarevalued signak® ¢ H*V*!
and the quadrivariate ‘composite’ real valued veafor= [ql q qf ql]* € R**! and its
inverse is

1
ATl =AY (10)

thus yieldingq” = iAHq‘l. The determinant oA can be calculated as a product of its singular
values, and so e.g. fav = 1, det(A) = 16. For any arbitraryV, the determinant oA therefore
becomes

det(A) = 16~ (11)

The basis{q, ¢*, ¢’, ¢"} in (9) has been selected so as to make the makriis unitary, which
facilitates its algebraic manipulation. In the sequel, wi show that due to the relation (8), any
other combination of four elements §§, ¢*, ¢', ¢°, ¢*}, for instance the basify, ¢*, ¢**, ¢’*}

is also valid, but this does not guarantee a unitAry

2Any four of {q,q",¢",¢’,¢"} or their conjugates can be used with the same effect.
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[1l. QUATERNION STATISTICS
A. Preliminaries

The standard covariance matiy, of a quaternion random vecter= [q; - - - qx|” is given by

qu = E{qu}
= §R{qu} + Z%Z{qu} + ]gy{cqq} + KSH{qu} (12)

and its structure is shown in Table |. Observe that the redligraginary parts o€, are linear
functions of the real-valued covariance and cross-coneeanatrices of the component vectors
da, 95, 9 @andqy € RY*1, From Table |, the cross-correlation matrices have spsgiametry

properties, €.0Cq,q. = CX .., and it thus becomes apparent thiC,,,} is Symmetric, whereas

qaqp’
3{Cqq} is Skew-symmetric, thus explaining the Hermitian propaty’,,.

Based on (7) and (9), the real-valued componentwise ctioelanatrices of the components
44, 95, 9. andq, cannot be estimated from the quaternion-valued covariamateix C, alone.
Hence, second order information within the quaternionwedlvectorq cannot be characterised
completely by the covariance matrix, and complementaryetation matrices: the-covariance
Cq., they-covariance’y,, and thex-covariance’,,. need to be used. They augment the information

within the covariance, and are given by

Cq = FE{aq"}

= R{Ca} +13u{Ca} +135{Cq} + £Se{Ca} (13)

Cy = FE{aq"}

= R{Cq)} +18{Cq} + 19{Cqy} + £S3u{Cq)} (14)
Cae = E{aq™}
= R{Cqu}t + 13 {Car} + 18 {Can} + rSu{Cqs} (15)

where the structures of the real and imaginary part§,nfC,,, andC,, are given in Table | and
Table Il. Observe that, e.g. all the components of#tgevarianceC,, are symmetric, except for

the :-component3,{Cq,} Which has a skew-symmetric structure, giving rise to:itdermitian
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TABLE |
STRUCTURES OF THE QUATERNIONVALUED COVARIANCE MATRICES IN TERMS OF THEIR QUADRIVARIATE
REAL-VALUED COUNTERPARTS

Covariance matrix Caq = E{aq”™} Cq. = E{qq'"}
8%{} Can + Cqb +Cqc + C% Can + Cqb —Cq. — CQd
S} Capaa = Casar +Cagac = Cacaq | Capaa — Cawar + Cacas — Cagac
SJ{} Cacan — Caaac + Cqb% - C%qb Canae T Cacan — C%qb - Cqb%
Se{-} Cagaa — Casaq T Cacay — Cayac | Cagan +Casay + Cayag + Cayay
TABLE I

STRUCTURES OF THE QUATERNIONVALUED COVARIANCE MATRICES IN TERMS OF THEIR QUADRIVARIATE
REAL-VALUED COUNTERPARTS

Covariance matrix Cqy = E{qq’™} Car = E{aq"™}
R{-} Caa —Cay +Ca. — Caq Caa —Cay — Ca. +Cqy
S} Cayas + Canay T Cayac +Cacay | Cayan +Cana, — Cacag — Cagac
S{} Cacaa — Casac + Cagay, —Capas | Cawae +Cacan +Caga, + Capas
%’i{} Cqua + anqd - CQbQC - Cchb quQO. - anQd + CQbQC - CQCQb

property. Similarly, they-covarianceC,, and thex-covarianceC,, are respectively-Hermitian

and k-Hermitian, that is

Cq = Clf
Cqy = CH
Caw = CL (16)

These properties do not arise in the statistics of compléxedarandom variables [14], [17],

and are unique to the quaternion domain.

B. Duality between quaternionic and quadrivariate statist

Advances in the statistics of complex variables have shtwahthe covariance matrix alone is

not adequate to completely describe the second ordert&taltiproperties of general complex-
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valued random vectotsz = z, + 1z,. Picinbono showed that the complete description of the

second order statistics i@, catering for both proper and improper signals, can be aebie

if the real valued bivariate covariance matrices can be emegpfrom their complex valued

counterparts (see pp. 118-119 [26]). In Section II, we h&vesvd that components of a composite

guadrivariate real variable corresponding to the quatarniariableq cannot be completely

expressed based on onjyand ¢*, and to be able to introduce augmented statisticljrwe

need to consider an augmented basis comprising the ineobit and¢’ and¢”. Following on

these results, we can obtain a complete second order isttidescription inH, provided that

the quadrivariate real-valued correlation matrices ohesingle componeni,, q,, q. andq, of

the quaternion random vectgrcan be expressed in terms of the quaternion-valued cowearian

and the complementary covariance matrices as

1
Ca. = 7R{Caq + Car + Cay + Car}

1

— fR{qu - qu + COU - an}
1("

Cayan = E\Sz{cqq +Cq +Cqy + qu-e}

Ca

1
quqa = Zgn{cqq + qu + qu + an}

1
= _Z%J{qu + qu - qu - an}

CQd Qv

1
CClb = Z%{qu + qu - Cou - an}

1
Z%{qu - qu - qu + an}

1
chqa = Zgy{cqq + qu + Cou + an}

CQd =
chqb = _%H{qu + qu - qu - quf}

3 {Caq — Cq + Cqp — Cac} (17)

qu dc =

AN Iy

3In the complex domain, both the covariarée= E{zz"} and the pseudocovarian@®, = E{zz"} should be used, that is

Con = %m{cz 4P

1
Czazb - Egz{Pz - Cz}

Cap = %a%{cz — P,y

Copza = Co-

ZaZp

whereC,, andC,, are respectively the componentwise covariance matricethefreal partz, and the imaginary parky,

whereas’,, ., andC.,., denote the cross-covariance matrices.

“If a different basis, e.g{q, ¢*, ¢'*, ¢"*} is chosen, the full description of the second order stais still achieved, as shown

in Appendix X-A; this applies to any other combination of duaples based ofq, ¢*,¢", ¢’,,q"}.
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10

The augmented quaternion-valued covariance matrix of ggmaunted random vectog* =

[q” g7 @’ q"T]" (see also (9) is therefore given by,

Cqq Cq C
C

cH ¢ C
a a al . Lagr Lagy  Laas
Cq = FE{q"q""} = 4 (18)

qui quqz quqy quq"‘f

H
L qui CCIHCIZ CCIHCU CCIHCIH _

where the submatrices in (18) are calculated according to

Q) CqH

Cs = E{qé"} Cop = E{aB"}
0 €{q, d, q"} a,Be{qd,d,9"} (19)

To verify that the augmented covariance matrix in (18) pilegi a complete second order
statistical description, we need to show that it permitsadicstinvertible one-to-one mapping

with the corresponding real valued quadrivariate covaeamatrixCr, defined as

CCI(L CCI(L 1} CQa dc CCI(L a4

C C C C
CR _ E{qrqu} _ qpda dp qpdc qpdd (20)

CQCQa CQCQb ch CQCQd

L quqa CClde COldQc CCld n
Based on the relationship between the augmented quateraioad vectorq® and the corre-
sponding real valued ‘composite’ vectqf in (9), and since from (10y" = A~'q® = iAan,
the real valued covariance matrix can indeed be expressedns of the augmented quaternion
valued covariance matrix in (18) as
Cp = A‘lch‘H

€

16
where A= = (A—l)H. This completes the derivation of the augmented quatersiatistics,

ATCIA (21)

suitable for the description of both proper and impropertgumaon random processes.

IV. QUATERNION WIDELY LINEAR MODEL

To exploit the complete second order statistics of quad@rmalued signals in linear mean-

squared error (MSE) estimation, we need to consider a fijemodel similar to the widely
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11

linear model developed for the complex case [27]. Based drarfé (18), it is the augmented
random vectorx® = [x? x7 x/T x*T]T that contains all the required second order statistical
information. Then, the quaternion widely linear model (Q\\dan be constructed as

aH _a
Yy = WX

= glx+ hix" 4+ uf’x’ + vIIx"® (22)
The MSE solution based on the QWL model (22) is then given by

w = B{x"x“"V T p{x"d*} (23)
demonstrating that the QWL solution has the same form astémelard solution, but is based on
the augmented covariance matég in (18). On the other hand, the corresponding real-valued
guadrivariate model relies on the real-valued covarianatirin (20) [28]. This correspondence
can be used to establish the relationship between the eigsenies ofCr and(C,,. Based on
the roots ofCr — M = 0, the relationship (21), and the fact thht= A~'A = A7 A /4, we
obtain

1

Cr— M= EAH[C,‘; — 4ANIJA (24)

that is, the eigenvalues of the augmented quaternion @n@ei matrix are four times those
of the quadrivariate real-valued correlation matrix. Heni¢ the quaternion least mean square
(QLMS) algorithm exploits the widely linear model, it willbbaverge four times faster than its

multichannel counterpart, for the same learning rate ($s®[a0]).

V. SECOND ORDER STATIONARITY

Recall that a real-valued quadrivariate variable is widissg stationary if all its four components
are wide-sense stationary [29]. Since the four quatera@uned covariance matrices (12)-(15)
provide a full description of the second order statistios,oc&n now state that a quaternion-valued
random processg(n) is wide-sense stationary, provided
1) The mean is constant,= E{q¢(n)} = K Vn
2) The covariance and its complementary matrices are fumatf only the lagr, that is
Caa(n, 7) = E{a(n)a” (n + 1)}
Cqu(n,7) = E{q(n)q" (n + 1)}
Cay(n,7) = E{q(n)g’ (n + 1)}
Cau(n,7) = E{q(n)q"(n+ 1)}
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3) The covariance matrix is finit€,q(n) = £{q(n)q”(n)} <oo Vn

Observation. It is sufficient to define stationarity in terms 6fq, Cq,, Cq;, andCq,., as they

provide the complete description of second order stass{it7).

VI. SECOND ORDER CIRCULARITY INH AND Q-PROPERNESS

The notion of second order circularity (or properness) em¢bmplex domain refers to complex-
valued variables having rotation-invariant probabilitgtdbutions, and consequently a vanishing
pseudocovariance [12]. The two conditions imposed on a t®mriablez = z, + 12, to be

proper C-proper) are therefore

ol = o
E{zz} = 0 (25)

that is, the real and imaginary part are of equal power andccootlated, which amounts to a

vanishing pseudocovariance matfx= E{zz"}.

By continuity, a quaternion-valued second order circulgspfoper) variable should satisfy the
two conditions in (25) of aC-proper variable for the six pairs of axet,:}, {1,,}, {1,x},
{1,7}, {r,7} and{k,}, where 1’ represents the real axis andj, x denote the corresponding
imaginary axes. In other words, the probability distribatiof a Q-proper variable is rotation-
invariant with respect to all these six pairs of axes, legdim the properties of &-proper
variable summarised in Table Il [18].

The first property, P1, states that all the four componenta Qf-proper variable have equal
powers. The property P2 implies that all the componentg afe uncorrelated. Property P3
indicates that the pseudocovariance matrix does not vdarsf-proper signals, in contrast to
the complex case. Finally, the fourth property illustratleat the covariance of a quaternion
variable is a sum of the covariances of the process companiotice that properties P1 and

P2 imply properties P3 and P4.

SHowever, if another basis was chos@‘mr instance{gq, q*,q”,qj*}), then another set of covariance matric(éslq,Pq =

E{aq"}, P4 = E{aq'"}, P4 = E{qq’"}) would be employed to define stationarity.
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TABLE 1l

PROPERTIES OF AQ-PROPER RANDOM VARIABLE

Property Mathematical description

Pl E{g;} = E{¢Z} = 0° Vée=a,b,cd
P2 E{gsqe} =0 V8, e=a,b,c,dandd # e
P3 E{qq} = —2E{q} = 207 Vé=ua,b,cd
P4 B{|q|’} = 4E{¢}} = 40” Vé=ab,cd

For quaternion random vectorg’ and qv to be jointly proper, the composite random vector
having q” and q” as subvectors also has to be proper. In addition, any sulvetia proper
random vector is also proper. To guarantee the jQhproperness, each element of the vectgts
andq" should satisfy properties P1 and P2 in Table Ill, and the elgmshould be uncorrelated
in the sense that their jointj-x-covariance matrices vanish. This is discussed in moreildeta

below.

A. Augmented Statistics ari@rproperness

Following on the notion of proper complex variables (as idkdiain Section IlIA of [11]), we
now extend this definition to quaternion random vectors. Stter aQ-proper random vector
q=[q ¢ -qv)t € HY*L Then,Q-properness implies that the quaternion veejois not

correlated with its vector involutiong’, ¢’, ~, that ig,

E{qq"} =0 E{q¢"}=0 E{qq""} =0 (26)

In other words, &)-proper signal has a vanishing complementary covarianddaes, specified
in Table | and Table II. Also, the invariance of@&proper random vector under a linear or affine
transformation (shown in Appendix X-B) is similar to that the complex case (see Lemma

3 [11]). This invariance arises due to the properties in (@6dl the condition of vanishing

bSimilarly, for a complex-valued random vecter C-properness means thatis not correlated withz* in ‘complex sense’,
becauseF{z(z*)"} = E{zz"} = 0.
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1—covariance matrixCq, = 0, in (13) is equivalent to the conditions

_ T — 0T
qula - CCIbCIa Cchd - chqal

quqa = —C,, Cqch =—Co (27)
Similarly, the vanishing—covariance matrixCy, = 0, in (14) implies

CQan = _CT CQCQd = _CT

Av9a

chqa =C; CQde =C;

dc9a

quqa =-C} Cqch =-C} : (28)

ddqa

whereas, the vanishing the-covariance matrixC,,, = 0, in (15) yields

CQan = _CT CQCQd = _CT

db9a

CQcQa = _Cg;cqa CQdCIb = _ngqb
Cqua = ngqa CQbQC = Cgl—;)qc (29)
Observe thatCq,q, = —Cl . for (28)-(29), whereag’y,q, = CL . for (27), meaning that

Cq,q. = 0. Similar observations can be made for the other componsatveal-valued cross-
correlation matrices. In other words, the conditions (29} mean that for &-proper signal, all
the real-valued cross-correlation matrices of the comptng,, q;, q., andq, need to vanish.
This, in turn, means that all the four individual componesitach quaternion variablg are
uncorrelated(property P2 in Table IDI. This also means that the components;ofind ¢, are
uncorrelated for # o (in contrast to the complex case [11], [12]). We can theeefmonclude
that the augmented covariance matixof a Q-proper random vectay is real-valued, positive

definite, and symmetric.
For a Q-proper random vector, it follows from properties P2 and R4Table lll, that the

covariance matrices (12-(15)) are real-valued and didgama the covariance matrix of @-

proper process is positive definite, leading to a simplarcsétire of the augmented covariance
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matrix Cq of a Q-proper random vector, given by viz.

0
Ct = = 40’1 (30)
0

0 0 0 Cqrqr ]
Notice that the cross-covariance matricggs also vanish and the determinant can be readily

expressed adet(C%) = (402)*V.

VIl. A M ULTIVARIATE GAUSSIAN DISTRIBUTION FOR@Q-PROPER ANDQ-IMPROPER

VARIABLES

In the complex domain, based on the duality between a conyaleablez = 2z, +12, € C and a
corresponding composite real variable= [z,,z,] € R?, Van Den Bos proposed a generic
complex-valued Gaussian distribution to cater for b&tproper andC-improper processes
[13]; this was further elaborated by Picinbono [30]. In tleane spirit, we address probability
distributions of both proper and improper processesHinand propose a generic Gaussian

distribution for multivariate quaternion valued variahle

We say that a quaternion valued random variable is Gauskialhits components are jointly
normal, and their joint Gaussian probability distributiengiven by

1
(27)2N det(Cp)?

1
P(da> b, e, Qa) = exp{—§f(qa, b, dc; 9d) } (31)

where
f(Qa, A, Aesq0) =97 Cr'q" = qCR'q" (32)

It is assumed thaty,, q»,q9. and q; € RV*! have zero mean, but this does not restrict the
generality of the results. To make the Gaussian distribufgil) cater for bothQ-proper and
Q-improper signals, we need to express it in terms of the anggdequaternion valued vector
q” (9). To this end, the determinant of the quadrivariate davaeCr and the quadratic function

(32) need to be further investigated.

To examine the duality between the real-valued quadriter@atrixCr (20), and the augmented
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quaternion-valued covariana, from (21), we shall first express the determinantCef as a

function of Cg, that is
det(Cr) = det(A~'CtA™H) (33)
— det(A™") det(C%) det(AH) (34)
where A is given in (9). From (11)det(A) = 16" and sincedet(A™') = det(A)~!, the above

expression can be further simplified to

2N
det (Cp) = (%) det(C?) (35)

The quadratic function (32) can be also expressed as a &unofi the augmented quaternion-

valued random vectod®, given by
flaw @ ae00) = aCr'd
_ <anA—H> (AH631A> (A—lqa)
= q"C¢'q" = f(a.q", 9", q”) (36)

By substituting (35) and (36) into (31), we can express thassian probability density function

for an augmented multivariate quaternion-valued randootove;® as

1 1 “1
ay _ : *’ 2*7 VLA —exp{—= aHC(l a 37
r(a") =pla,q9",9",q") (72 /)N det(Ca)’ p{—54""Cq d'} (37)
For aQ-proper vector, it can be shOV\(mlsing (30) that the Gaussian distribution (37) simplifies
to
pla, a4 = ———expd — ——qfq (38)
B (2mo2)2N 202

that is, the argument in the exponential is a function of dilly thus highlighting the corre-

spondence with the real and proper complex Gaussian disoiis [14].

VIIl. A NOTE ON INFORMATION THEORETIC MEASURES
A. Entropy for Quaternion-valued Random Vectors

Based on Section VII and the results in [11], we can now gdiserdhe maximum entropy
principle to the quaternion-valued multivariate case [1B]l]. The entropy of a genericQf

proper or Q-improper) quaternion-valued Gaussian random vector carexpressed as (the
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derivation is included in Appendix X-C)
H(q) = log [(me/2) det(C2)?] (39)
The upper bound on the entropy of a quaternion valued randmtong is given by
H(q) < 2Nlog [(2mea?)] = Hproper (40)

The equality (40) holds, if and only iig is a centered)-proper Gaussian random vector (as
shown in Appendix X-D). It is straightforward to show thaetbntropy of a quaternion random
vector with an arbitrary probability density functign(q) cannot be greater than that of the
Gaussian distribution(40), thus confirming that &-proper Gaussian process attains the upper
entropy limit, as shown in Appendix X-D. In addition, the fdifence in entropy is due to the
improperness of a quaternion-valued Gaussian randommnemtobe quantified by the difference
between (40) and (39).

B. Beyond Mutual Information - Interaction Information

Another important information theoretic measure is mutudibrmation (MI). Standard Mi

considers only two variables, and we next provide its gdisatson to higher dimensions using

the so-called ‘interaction informatio [33]. Unlike mutual information, interaction information

7 can be negative; physical meaning of a positivean be interpreted as the consequence of

an increase in the degree of association between the \s@hta multivariate quantity, when

one variable is kept constant. The reverse appliegfar0 [33]. The interaction informatiod

between quaternion-valued Gaussian random veetoeg, ¢’ andq* can be measured as
(804)Y }

det(C2)?

+H(Qa, b, Ac) + H(da, A, 9a) + H(da, Ge, aa) + H(qe, Qv da)

—H(qe,q5) — H(da,9e) — H(Aa, 9a) — H(qp, qc) — H(qp, qa) — H(qe, qq) (41)

I(q;q 9’ q%) = log {

which clearly attains the value of = 0, for Q-proper signals. The derivation is included in
Appendix X-E.

"The proof given on see p. 336 of [32].
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IX. CONCLUSION

Second order statistics and information theoretic meastoe general quaternion-valued ran-
dom variables and processes have been revisited. To makaf gsenplete information within
guaternion-valued second order statistics, complememstatistical measures thecovariance,
the j-covariance, and the-covariance matrices have been employed. The so introdacgd
mented statistics has served as a basis for a widely lineatequon model, and the concept
of Q-properness (second order circularity) has been addrdsasetl on the properties of the
augmented covariance matrix. Further, the generic Gaussidtivariate distribution has been
extended to quaternion-valued data, so as to cater for @gphoper andQ-improper variables
and vectors. The upper bound on the entropy of multivariateernion-valued processes has been
provided, and it has been shown that this bound is attaine@{proper processes. Comparative

analysis with real quadrivariate statistics supports theirfigs.

X. APPENDIX
A. The complete description of second order statistics a#itralternative basiqq, ¢*, ¢"*, ¢’*}

We can express the componentwise real-valued correlatairiaes of each single component
4., 9, 9. @andq, of the quaternion random vectqrin terms of the quaternion-valued covariance
and pseudocovariance matricBg = E{qq’}, P, = E{qq""}, P} = E{qq’"} as

Car = §R(Ca+Pa}  Cap = ZRIC— Py}
Ca = §R{Ca—PL}  Ca, = R{Ca} — (Ca +Ca, +Ca)
Caae = 53ilCat Pal  Coua = 535{Ca+ P}
Casa = 53K{Ca+ Pa}  Caray = 594{Ca — Pi}
Casae = 530Ca~P3}  Casa = —35{Ca— P%) @2)

This illustrates the validity of the above basis in augmeérgaaternion valued statistics.

B. Invariance ofQ-proper random vectors under an affine or linear transforioat

Consider an affine process = Aq + b, whereq is a Q—proper random vectoe HY,

A € HY*N "andb € HM are constant. Based on the proof of Lemma 3 of [11] and theiapec
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properties of complementary covariance matrices in (¥6% also aQ—proper random vector,

as shown by
Cy, = FE{yy"'} =AC A" =0
Cy, = E{yy"}=ACy A" =0

Cyr = E{yy™ = ACu A =0

C. Derivation of the maximum entropy of a quaternion-valuaadom vector

Let pa(q) be an arbitrary probability density function apfq) the Gaussian distribution (37).
For convenience (with a slight abuse of notation), we derfofef [--- [ [ [ [ by § and
dqa1dgy1dqe1dqa - - - dge, ndgy, Ndge ndga v DY dg

1

f pa(q)log [m}dq = 7{ pa(q)log [(W2/4)Ndet(C§)5eXp{%q“HCéi1qa}}dq

Q

jq{ pa(Q) log [(72/4)N det(C2)* exp{2N}]dq

~ log[(x*/1)" det(Cy)!] f pala)da

~ log [(me/2)*N det(C2)?] (43)
For a Q-proper Gaussian random vector, the augmented covariaratexnhnas the special
structure (30), its determinant iet(CZ) = (40%)"", and the expression (43) can be further

simplified into
Hproper= 2N log [(2mec?)] (44)

D. Maximisation of entropy for &)-proper random variable

To demonstrate that the entropy @f= ¢, + 1, + jq. + kga € H is maximised, for aQ-
proper random variable, we first address the maximum entodplye corresponding real-valued
quadrivariate vecto’ = [q. ¢ ¢. q4)*. According to the maximum entropy principle, the

entropy ofq’, satisfies (see p. 234 [31])
H(Q) < 5 log [(2ne)* det(C)] (45)

where the equality holds, if§. is a centered Gaussian random vector. Upon evaluating the

corresponding entropies fa¥ = 1, observe that the real quadrivariate covariance matsixn
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(20) is positive definite and has a special block structure

I B ]
(46)

Cr =
BT C

which implies that (see p. 478 [34])
det(Cr) = det(T)det(C —B'T'B)
< det(T) det(C) (47)
and is maximised (equality holds) wh&h= 0, yielding
E{dagc} = E{¢aqa} = E{@q-} = E{qpqa} =0 (48)

Since for the twa x 2 matricesdet(T") = E{¢*} E{¢?} — E{q.q}* anddet(C) = F{¢*} EF{q>}—
F{q.q4}?, the determinandet(Cr) satisfies

det(Cr) < [E{}E{@}} — E{t.0}*][E{}E{q}} — E{a.q4}"]

< BloE{a}B{a: E{aq} +E{9ua}* E{geqa)” +
¢
—E{a.0}* E{q;} E{qa} —E{q.qa}* E{qz } E{qp } (49)
X T
By examining (49), and factorising and y as
¢+ X = E{qun}’ | E{qcqa}* — E{@2}E{q3}| <0 (50)
the maximum value ob + x = 0 indicates that either
E{q.qs}> = 0 (51)
or B{q.qa}® = 0 (52)

The same statement can be madedarr < 0. Therefore, equations (48), and (51)-(52) satisfy

property P2 of &)-proper variable (see Table Ill), and the determinant gfis upper bounded
by

det(Cr) < E{q}E{q}E{¢}E{q3} (53)

Using constrained equality based optimisation (Lagrangétipfiers), we show below that in-

equality (53) is maximised when condition P1@fproperness in Table 11l is satisfied, yielding

det(Cr) < (%q'?}) 4 (54)
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This optimisation problem can be posed as
o { det(Ca) b = max { () BV E G} L)}
subject to  E{q;} + E{q;} + E{q’} + BE{qi} = E{l¢[*}
and can be solved using Lagrange multipliers as

/ (E{qS}, Bla}, B{¢®}, E{al). A) = B B BV E L) +

A(B(@)+ B(R)+ B2 + B () - E(aP)) (55)
Set the derivativelf = 0, to yield the system of equations
0
9E{];Z} = BE{g}E{¢}E{qi} + 1 =0 (56)
B N N
GG E{q;tE{q:} E{qz} + A =0 (57)
0
Thi = BBl + A =0 (59
af _ 2 2 2 _
DE{T E{q;tE{qy } E{q:} + A =0 (59)
O = B+ B+ B + B~ B{laP) = 0 (60
Solving the equations (56)-(59) leads to
E{q;} = B{q;} = E{a’} = E{q3} (61)
which when replaced in (60) yields the solution
B{qt} = Blg}) = B{g) = B(gh) = 200 (62

Since the functiorlog(-) is monotically increasing, we can substitute the maximunuesaf
det(Cg) from (54) into (45), to obtain the upper entropy bound in thenf

H(q) < log { M#}

< log [471‘2620’4:| (63)
This upper bound is equivalent to the entropy @-groper Gaussian quaternion random variable
(40) whenN = 1, thus illustrating that the entropy of a quaternion vagapis maximised for

Q-proper random variables. This also confirms the validityhaf introduced form of probability

density function (37) for quaternion random variables.
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E. Interaction InformatiorZ(q; q'; 9’; q*)

Prior to the formulation ofZ(q; q"; q’; q*), note that the interaction informatiah of q* =
[a” qT g7 q"T]7 € H*M*! is equivalent to that of/” = [q] qf qI q}]7 € R*¥*! due to

their deterministic relationship

The matrix A does not contribute to the interaction informationgdf and therefore,
Z(a;9d’59") = Z(9a; ab;qc; da)

= H(qa) + H(qw) + H(qe) + H(qa) = H(da, b, Ge, qa)
Hproper‘:H(Q)

+H(qq, A, 9c) + H(qq, A, 9a) + H (Ao, e, da) + H (e, Db, da)

—H(da, q) — H(Qa, 9c) — H(da, qa) — H(a, dc) — H (s, dq) — H(qe, 9a)
(0]

5 [det C“ }
+H(qa7 Qqp, Qc) + H(qa7 Qqp, Qd) + H(qa7 qc, Qd) + H(q07 qp, Qd)

—H(qa,q) — H(da,qc) — H(4a, 94) — H(ap,9e) — H(9p, 9a) — H (e, a)

(64)

—
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