
Computers in Human Behavior 27 (2011) 1512–1518
Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh
Interactive component extraction from fEEG, fNIRS and peripheral biosignals
for affective brain–machine interfacing paradigms

Tomasz M. Rutkowski a,⇑, Toshihisa Tanaka b,a, Andrzej Cichocki a, Donna Erickson c,a, Jianting Cao d,a,
Danilo P. Mandic e

a Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi 351-0198, Japan
b Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
c Showa Music University, 1-11-1 Kamiasao, Asao-ku, Kawasaki-shi, Kanagawa 215-8558, Japan
d Saitama Institute of Technology, Saitama 369-0293, Japan
e Communication and Signal Processing Research Group, Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT, United Kingdom

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 3 November 2010

Keywords:
Brain/human–computer interaction
EEG
Intelligent brain signal processing
EMD application to EEG
Interactive brain–computer interfacing
Affective human/brain–computer
interfacing paradigm
0747-5632/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.chb.2010.10.016

⇑ Corresponding author. Tel.: +81 484679666; fax:
E-mail addresses: tomek@brain.riken.jp (T.M. Rutk

(T. Tanaka), a.cichocki@riken.jp (A. Cichocki), erickso
Erickson), cao@sit.jp (J. Cao), d.mandic@imperial.ac.uk
This paper investigates whether some well understood principles of human behavioral analysis can be
used to design novel paradigms for affective brain–computer/machine interfaces. This is achieved by
using the visual, audio, and audiovisual stimuli representing human emotions. The analysis of brain
responses to such stimuli involves several challenges related to the conditioning of brain electrical
responses, extraction of the responses to stimuli and mutual information between the several physiolog-
ical recording modalities used. This is achieved in the time–frequency domain, using multichannel
empirical mode decomposition (EMD), which proves very accurate in the joint analysis of neurophysio-
logical and peripheral body signals. Our results indicate the usefulness of such an approach and confirm
the possibility of using affective brain–computer/machine interfaces.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

‘‘Human factors” and ‘‘human behavioral” aspects in design of
contemporary interactive communication systems play an impor-
tant role, especially when efficiency is paramount, as shown by
Rutkowski, Mandic, and Barros (2007). Human–computer/ma-
chine-interfacing (HCI/HMI) and a more recent field of brain–ma-
chine/computer-interfacing (BCI/BMI) (as reviewed by Cichocki
et al. (2008)), are emerging topics of research, lending themselves
to more smooth or natural interaction between humans and ma-
chines/computers. While HCI/HMI interfaces rely on peripheral or
more generally muscle movements learned or adopted by users,
BCI/BMI technologies aim to interpret brain activity which pre-
cedes real movements or is related to movements/actions planning
(Cichocki et al., 2008; Wolpaw & McFarland, 2004; Wolpaw, Bir-
baumer, McFarland, Pfurtscheller, & Vaughan, 2002).

Already established neuroscience tools such as functional elec-
troencephalography (fEEG) and functional near infrared spectros-
copy (fNIRS) correlate conscious and affective experiences with
ll rights reserved.
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electric field activity and oxygenation changes localized in cortical
areas of the brain. Additional peripheral body measurements such
as skin conductance, heart-rate, breath and pulse variability, as
well facial muscle and eye-movement characteristics also correlate
to emotional arousal (Rutkowski et al., 2007, Rutkowski, Cichocki,
Ralescu, & Mandic, 2008b). These physically based measures pro-
vide an objective way to explore the realm of perception, experi-
ence, mind and emotional processes estimate in real-time from
human subjects exposed to external stimuli. The multimodal stim-
uli can be presented in the form of mythology, stories, and multi-
media through the use of imagination, images, music, sounds, and
movies. All these influence the mind to evoke a wide range of emo-
tions (Rutkowski et al., 2008b). Emotional or more generally affec-
tive stimuli are chosen by the authors due to their importance in
decision making process in human brains as discussed extensively
by Lehrer (2009).

Today’s interactive media such as video games provide a highly
interactive platform to test how users interact with the environ-
ment based upon their unique experiences and anatomical struc-
ture of prefrontal cortices. Interactive multimedia combined with
neuro- or biofeedback provide a unique platform for conducting
objective investigations into the mind–body relationship; in con-
nection with interactive communication (Rutkowski et al., 2007)
paradigms these can be further utilized in brain–machine-interfac-
ing technologies.
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Fig. 1. Multimodal bio-signals recorded from subject’s body surface. The top panel presents stimulus onset and offset times. The second from the top panel presents 16 fEEG
channels plotted together, while next two panels depict ECG and pulse oximetry time series. The two following panels labeled vEOG and hEOG show vertical and horizontal
eye movements, respectively. The two bottom panels depict fNIRS recordings from left and right frontal cortices. All signals were recorded synchronously with g.USBamp and
NIRO-200 devices connected to a single workstation running Matlab.
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Recent advances in BCI/BMI technologies also reveal a need to
search for new and more challenging paradigms which would al-
low more natural interaction of humans and machines by exploit-
ing the information in these new communication channels
(Cichocki et al., 2008).

There are two recognized general classes of BCI/BMI paradigms:
those related to external environment stimuli and the other which
are completely independent from environmental stimulation and
relay only on internal (imaginary) brain activity managed by the
users will. The second class of imaginary paradigms is usually more
difficult for non-trained subjects, since they require learned brain
activity patterns to be captured by non-invasive brain activity meth-
ods such as fEEG and fNIRS. In this paper, we focus on the first class of
dependent and stimuli driven paradigms, with an interactivity con-
cept involved, utilizing emotional empathy paradigms (Mehrabian &
Epstein, 1972). We provide insights into mind–body relationship
and show that in general brain activity related signals are correlated
with peripheral electrophysiological and physiological responses.

2. Methods

In order to evaluate mind–body interactions and illustrate the
possibility to recognize patterns of reactions to presented multi-
modal emotional stimuli, the following experimental procedure
is proposed. The recording experiments combining fEEG, fNIRS
and peripheral electrophysiological signals were conducted at the
Advanced Brain Signal Processing Laboratory of the RIKEN Brain
Science Institute, Wakoshi, Japan. The experimental procedure fol-
lowed the guidelines for experiments with human subject of insti-
tute’s ethical committee. Brain and body electrophysiological
responses were recorded using two synchronized g.USBamp bio-
signal data acquisition systems with 16 fEEG electrodes placed
over frontal, temporal and parietal lobes; two channels of vertical
and horizontal EOG; a single ECG channel; and pulse. Additionally
two frontal fNIRS channels were recorded synchronously with
NIRO-200 cerebral oxygenation recorder. An example of such mul-
timodal recording is shown in Fig. 1.

The subjects were given audio-only and video-only affective
presentations from the emotional utterances corpus (Baron-Cohen,
2004) as performed by five British English professional actors. Both
the video and audio presentations portrayed affective expressions
of six basic emotions. The video-only presentations involved short
(2–5 s long) movies; the audio-only involved short (also 2–5 s
long) sentences. After attaching the monitoring electrodes, the
subjects were instructed to look at a white cross mark on the com-
puter screen and to try not to blink or move in order to minimize
muscular noise. The subjects were instructed to answer a question
on the screen after the audio or visual presentation which emotion
did they perceive. The purpose of these questions was to focus sub-
jects attention on the task and to give them a period of relaxation
time, and their answers were not analyzed. The main goal of the
experiment was a search for interactive (‘‘emotional synchrony”)
responses captured within neurophysiological and peripheral elec-
trophysiological signals carrying very short emotional empathy
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Fig. 2. Emerging patterns of fEEG, fNIRS and peripheral bio-signals for pre-stimulus and stimulus conditions compared in the form of multimodal correlation data analysis
results for a subject stimulated with angry emotional display in visual (top panels) and auditory (bottom panels). The channels numbers are as follows: 1–16 = fEEG;
17 = ECG; 18 = horizontal EOG; 19 = vertical EOG; 20 = pulse (pulseoximetry); 21–24 = left forehead fNIRS: L–dO2Hb, L–dHHb, L–TOI, and L–nTHI, respectively; 25–28 = right
forehead fNIRS: R–dO2Hb, R–dHHb, R–TOI, and R–nTHI, respectively. The sizes of correlation matrix rings visualize the coefficients values, where black color = �1 and
white = +1. In this result the correlation patterns change within fEEG (1–16) channels as well fEEG/fNIRS (1–16)/(21–26) in both auditory and visual condition identifies
subject’s interactive response.
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signatures. A concept of empathy is characterized as a capability to
share ones feelings and understand another’s emotion and feelings
and it was shown previously by the authors that empathy response
could be recognized and classified from the fEEG responses only
(Rutkowski et al., 2008b).
2.1. Multimodal biosginals preprocessing

The multimodal fEEG, fNIRS, EOG, ECG and pulse signals (see
Fig. 1) had to be first preconditioned, due to their different sam-
pling frequencies and dynamics. In order to obtain common coher-
ent interactive responses carrying empathy responses an approach
described in Rutkowski et al. (2009) was utilized. All signals were
first decomposed using empirical mode decomposition (EMD), and
later clusters of similar components in Huang–Hilbert spectral do-
main were obtained. This method allowed for identification of
those components within each channel which exhibited similar
spectral patterns across all data, as well as those synchronized with
onsets and offsets of the stimuli as shown in the top panel of Fig. 1.
2.1.1. Application of EMD to multichannel EEG
EMD utilizes empirical knowledge of oscillations intrinsic to a

signal in order to represent them as a superposition of compo-
nents, defined as intrinsic mode functions (IMF), with well defined
instantaneous frequencies. In order to obtain an IMF from a single
channel of a biosignal recording it is necessary to remove local rid-
ing waves and asymmetries (originating usually from non-body-
related sources), which are estimated from local envelope of min-
ima and maxima of the waveform being processed. Search for IMFs
corresponds thus to separation of band-limited and semi-orthogo-
nal components from the an analyzed signal. It also corresponds to
eliminating riding-waves, which ensures that the IMF will have no
fluctuations caused by an asymmetric waveform. In each decom-
position cycle, the IMF is defined by zero crossings and involves
only one mode of oscillation (thus complex waves are not allowed).
Notice that IMF is not limited to be a narrow band signal, as it
would be in case of contemporary time–frequency analysis meth-
ods (Fourier analysis, wavelets, etc.). In fact, an IMF can be both
amplitude and frequency modulated simultaneously, as well as
non-stationary or non-linear, which is a strongest point of this
technique applied for as complex signals as EEG, EMG, EOG, ECG,
fNIRS, etc.

EMD decomposes the biosignals within each channel modality
into IMFs (Huang et al., 1998). The method allows to represent
them in form of ‘‘oscillatory modes” which satisfy the following
conditions:

(i) The number of extrema and the number of zero crossings of
each IMF should be either equal or differ at most by one.

(ii) At any point, the mean value of the envelopes defined by the
local maxima and the local minima should be zero.Since IMF
represents an oscillatory mode within a signal; its periods,
which are defined by zero crossings, correspond to the only
single mode of oscillation which is a frequency-band-limited
activity preferably originating from a single source in human
body or brain. Both the amplitude and frequency of this
oscillation may fluctuate over time, in other words, the oscil-
lation is not necessarily stationary nor narrow-band.

The process of extracting an IMF from a signal x(t) is called ‘‘sift-
ing” (Huang et al., 1998) and it consists of the following steps:

1. First determine the local maxima and minima of the signal x(t).
2. Next generate the upper and lower signal envelopes by connect-

ing the local maxima and minima, respectively, utilizing an
interpolation method (e.g., linear, spline, piece-wise spline
(Huang et al., 1998, Rutkowski, Cichocki, & Mandic, 2008a)).
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Fig. 4. Emerging patterns of fEEG, fNIRS and peripheral bio-signals for pre-stimulus and stimulus conditions compared in the form of multimodal correlation data analysis
results for a subject stimulated with positive emotional display in visual (top panels) and auditory (bottom panels). The channels numbers are as follows: 1–16 = fEEG;
17 = ECG; 18 = horizontal EOG; 19 = vertical EOG; 20 = pulse (pulseoximetry); 21–24 = left forehead fNIRS: L–dO2Hb, L–dHHb, L–TOI, and L–nTHI, respectively; 25–28 = right
forehead fNIRS: R–dO2Hb, R–dHHb, R–TOI, and R–nTHI, respectively. The sizes of correlation matrix rings visualize the coefficients values, where black color = �1 and
white = +1. In this result the correlation patterns change of fEEG/fNIRS (1–16)/(21–26) in both auditory and visual condition indicates subject’s interactive response.
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Fig. 3. Emerging patterns of fEEG, fNIRS and peripheral bio-signals for pre-stimulus and stimulus conditions compared in the form of multimodal correlation data analysis
results for a subject stimulated with neutral emotional display in visual (top panels) and auditory (bottom panels). The channels numbers are as follows: 1–16 = fEEG; 17 =
ECG; 18 = horizontal EOG; 19 = vertical EOG; 20 = pulse (pulseoximetry); 21–24 = left forehead fNIRS: L–dO2Hb, L–dHHb, L–TOI, and L–nTHI, respectively; 25–28 = right
forehead fNIRS: R–dO2Hb, R–dHHb, R–TOI, and R–nTHI, respectively. The sizes of correlation matrix rings visualize the coefficients values, where black color = �1 and
white = +1. In this result the correlation patterns change within fEEG channels (1–16) in both auditory and visual condition identifies subject’s interactive response.
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Fig. 6. Hierarchical clustering result of multimodal biosignal correlation patterns
visualized in Fig. 3 with five major clusters depicted in red. The so obtained clusters
for pre-stimuli and stimuli conditions of neutral emotional display in visual (top
panels) and auditory (bottom panels) present opposite rearrangement (compare
Fig. 5) of fEEG and fNIRS modalities into a single cluster, but with a similar
transition of both EOG channels into a single cluster. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Hierarchical clustering result of multimodal biosignal correlation patterns
visualized in Fig. 2 with five major clusters depicted in red. The so obtained clusters
for pre-stimuli and stimuli conditions of angry emotional display in visual (top
panels) and auditory (bottom panels) present similar rearrangement with very
interesting transition of both EOG channels into a single cluster and separation of
fEEG and fNIRS modalities. In both stimuli cases also ECG modality became
separated into a single cluster. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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3. After that calculate a local mean m1(t), by averaging the upper
and lower signal envelope.

4. Finally subtract the local mean from the data:
h1ðtÞ ¼ xðtÞ �m1ðtÞ: ð1Þ

Ideally, h1(t) should satisfy the above criteria 1.–4. of an IMF estima-
tion, however, typically this procedure needs to be repeated until
the first IMF is successfully extracted. In order to obtain the second
IMF the sifting process is applied to the residue e1(t) = x(t) � IMF1(t),
obtained by subtracting the first IMF from x(t); the third IMF is in
turn extracted from the residue e2(t) and so on. The decomposition
is finished when the two consecutive sifting results are similar and
no more IMF could be found. The empirical mode decomposition of
the signal x(t) may be written as a summation of n estimated IMFs
and a residuum en(t) which is either a mean trend originating from
amplifier’s baseline drift or a constant:

xðtÞ ¼
Xn

k¼1

IMFkðtÞ þ enðtÞ: ð2Þ
2.2. Correlation patterns analysis

The preprocessed multimodal neurophysiological and periphe-
ral electrophysiological signals carrying only components exposing
synchrony with the emotional stimuli presented to the subjects (a
trigger signal marking stimuli onsets and offsets as in top panel of
Fig. 1) can now be analyzed for their cross-correlations patterns
during subject interactions with them. This is visualized in the
form of scatter plots of pairwise Pearson’s correlation coefficients
matrices as in Figs. 2–4, for emotional stimuli displays of angry,
neutral and positive in visual and auditory domains, presented to
the subjects. The Pearson’s correlation coefficient values in the fig-
ures are visualized in the form of rings whose sizes depict the val-
ues, whereby the black color indicates negative and white positive
ones. For each visual and auditory stimuli conditions the cases of
pre-stimuli (preSTIM) and emotional display presentation (STIM)
multimodal biosignal windows are presented. Very interesting
and stable within different emotional display changes in brain
and peripheral biosignals patterns can be observed.
2.3. Clustering of preprocessed biosignals

In order to further analyze and visualize differences in
responses three emotional displays within all preprocessed biosig-
nals we evaluate their similarity across the channels for both pre-
stimuli and stimuli conditions. A distance measure chosen was
(1 � correlation) based on Pearson’s correlations coefficients be-
tween vectors being evaluated similarly as Section 2.2. We dis-
cussed several distance measures possible to utilize in our
previous work (Rutkowski, Toshihisa, Cichocki, & Mandic, 2008c)
and the above mentioned (1 � correlation) was identified as the
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Fig. 7. Hierarchical clustering result of multimodal biosignal correlation patterns
visualized in Fig. 4 with five major clusters depicted in red. The so obtained clusters
for pre-stimuli and stimuli conditions of positive emotional display in visual (top
panels) and auditory (bottom panels) present similar rearrangement with very
interesting transition of both EOG channels into a single cluster (similar as in both
cases in Figs. 5 and 6) and separation of fEEG into a single and fNIRS into two
clusters modalities. In both stimuli cases also ECG modality became separated into a
single cluster similar as in previous case visualized in Fig. 6. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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most suitable for multimodal biosignals recorded during interac-
tion with affective stimuli.

The distances among preprocessed signals were evaluated in
form of a hierarchical cluster analysis (HC). In this approach ini-
tially each vector representing each modality channel was assigned
to its own cluster (bottom-up-strategy) and then the algorithm pro-
ceeded iteratively, at each stage joining the two most similar clus-
ters. Such procedure continued until there was just a single cluster.
At each stage distances between clusters were recomputed by a
Lance–Williams dissimilarity update formula with a single linkage
method clustering method. The single linkage method is closely re-
lated to the minimal spanning tree concept and it adopts a ‘‘friends
of friends” strategy for clustering (Murtagh, 1985).

The clusters of components obtained with the above two strat-
egies are presented in Figs. 5–7 for affective responses to angry,
neutral and positive emotional stimuli. In all cases very interesting
and stable among visual and auditory modalities clustering transi-
tions were observed allowing to identify with which visual or audi-
tory emotional stimuli subject was interacting.

For affective responses to angry emotional display stimuli (see
Fig. 5) a rearrangement with very interesting transition of both
EOG channels into a single cluster and separation of fEEG and fNIRS
modalities was observed. In both stimuli cases also ECG modality
became separated into a single cluster exposing ‘‘desynchrony” of
heart activity for remaining biosignal modalities.
In case of neutral emotional display an opposite rearrangement
(compare angry example in Fig. 5) of fEEG and fNIRS modalities
into a single cluster, but with a similar transition of both EOG chan-
nels into a single cluster was observed.

The third case of ‘positive” emotional displays presents similar
rearrangement with very interesting transition of both EOG chan-
nels into a single cluster (similar as in both angry and neutral cases
in Figs. 5 and 6) and separation of fEEG into a single and fNIRS into
two clusters modalities. In both stimuli cases also ECG modality be-
came separated into a single cluster similar as in previous case
visualized in Fig. 6.
3. Conclusions

We have observed changes in correlation patterns during inter-
active presentation of three different emotional stimuli in visual
and auditory domains as depicted in Figs. 2–4. The internal fEEG,
fEEG/fNIRS as well fEEG/fNIRS/biosignals correlation patterns
showed significant differences for the three experimental condi-
tions. Further conducted hierarchical cluster analysis of so ob-
tained Pearson’s coefficients utilized as distance measures
confirmed existence of different response patterns to various emo-
tional stimuli in brain and peripheral body measures. This opens a
possibility to utilize emotional responses in human–computer/ma-
chine interaction in real world conditions.

The observed mind–body correlations pattern changes for pre-
stimuli and stimuli conditions show potential possibility in hu-
man–computer/machine interactions design based on behavioral
based interfaces using an online feedback from the users con-
nected/wired as in classical BCI/BMI applications. Smooth and nat-
ural human–machines interactions should adopt to users mental/
emotional states.

We have shown than that interactive empathy responses to
emotional stimuli in auditory and visual domains are good candi-
dates for their utilization in intelligent computing applications
such as BCI/BMI since it is possible to discriminate the response
patterns from neurophysiological signals (fEEG and fNIRS) together
with periphery electrophysiological ones (ECG, EOG, pulse).
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