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important result was that unlike the ideal link case, the steady-state
MSD, EMSE, and MSE are not monotonically increasing functions
of step-size when links are noisy. As our simulation results show,
there is a good match between theory (our derived expressions) and
computer simulations. It must be noted that different learning rules
(such as NLMS and RLS) can also be applied in the context of a
distributed network with incremental topology. In our future work we
will consider the effect of noisy links on the diffusion based distributed
adaptive estimation methods.
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Filter Bank Property of Multivariate Empirical
Mode Decomposition

Naveed ur Rehman and Danilo P. Mandic

Abstract—The multivariate empirical mode decomposition (MEMD) al-
gorithm has been recently proposed in order to make empirical mode de-
composition (EMD) suitable for processing of multichannel signals. To shed
further light on its performance, we analyze the behavior of MEMD in
the presence of white Gaussian noise. It is found that, similarly to EMD,
MEMD also essentially acts as a dyadic filter bank on each channel of
the multivariate input signal. However, unlike EMD, MEMD better aligns
the corresponding intrinsic mode functions (IMFs) from different channels
across the same frequency range which is crucial for real world applica-
tions. A noise-assisted MEMD (N-A MEMD) method is next proposed to
help resolve the mode mixing problem in the existing EMD algorithms. Sim-
ulations on both synthetic signals and on artifact removal from real world
electroencephalogram (EEG) support the analysis.

Index Terms—Filter bank, multivariate empirical mode decomposition
(MEMD), mode mixing, noise-assisted MEMD.

1. INTRODUCTION

The empirical mode decomposition (EMD) algorithm has become
an established tool for the decomposition and time-frequency analysis
of nonstationary signals [1]. In EMD, the original signal is decomposed
as a linear combination of data-driven set of basis functions known
as the intrinsic mode functions (IMFs). The IMFs are zero-mean
amplitude-frequency modulated (AM-FM) signals, especially de-
signed to ensure that the application of Hilbert transform, known as
Hilbert—Huang transform, yields physically meaningful instantaneous
frequency estimates of the input signal [2]. Due to the ability of EMD
and the Hilbert-Huang transform to process nonstationary data, it has
found a number of different real world applications [3], [4].

In recent years, the advances in data acquisition tools have high-
lighted the need for direct processing of multichannel (multivariate)
data; the corresponding multivariate signal processing tools should pro-
vide deeper insight into complex and nonstationary real world pro-
cesses such as wind and inertial body motion data [5]. Multivariate
extensions of EMD are a prerequisite for the time frequency analysis
of such processes since applying EMD separately on each channel gen-
erally yields a different number of misaligned IMFs. On the other hand,
recently developed multivariate extensions of EMD, including the com-
plex and bivariate EMD [6], [7], trivariate EMD [8], and multivariate
EMD (MEMD) [9] produce the same number of IMFs for all channels,
facilitating direct multichannel modelling.

The MEMD algorithm is the first generic extension of standard EMD
for multivariate data, and while it has been shown to perform well
in deterministic settings involving synthetic sinusoidal signals [9], for
its real world applications it is also important to investigate how it
behaves in the presence of multichannel white noise. Corresponding
analyses for standard EMD revealed that IMFs tend to mimic a filter
bank structure, similar to that observed in the case of wavelet decompo-
sitions [10], [11]. In the multivariate case, however, a filter bank struc-
ture must also ensure the overlapping of the frequency responses of the
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filters associated with the same-index IMFs from multiple channels,
as this allows to relate multiple components of a multivariate signal, a
crucial requirement in fusion applications [12], [13].

In this work we illustrate that the MEMD does act as a filter bank
on white Gaussian noise and show that standard EMD, when applied
separately on each channel, fails to effectively align the frequency re-
sponses from same-index IMFs of multiple channels. This problem of
standard EMD has prompted attempts to generate the so called corre-
lated IMFs from multiple channels, in terms of their frequency con-
tents [14]. MEMD, on the other hand, has been shown to be able to
align the frequency subbands from different channels both for single
and averaged noise realizations. Based on the improved alignment of
frequency subbands in the presence of noise within the MEMD algo-
rithm, a noise-assisted MEMD (N-A MEMD) method is then proposed
which tends to enforce quasi-dyadic filter bank structure within the de-
composed IMFs and, in turn, helps to accurately align the common
oscillatory modes in corresponding IMFs from multiple channels, thus
reducing the mode mixing problem across individual channels in mul-
tivariate IMFs. This approach is different from the ensemble EMD [15]
in which several realizations of white noise are added to the signal in
hand, processed via EMD, and then averaged.

II. AN INTRODUCTION TO MULTIVARIATE EMD

The multivariate EMD algorithm has been recently proposed in [9]
to process a general class of multivariate signals having an arbitrary
number of channels.! It extends the concept of bivariate EMD [6] and
trivariate EMD [8] by processing the input signal directly in a multidi-
mensional domain (n-space), where the signal resides. To achieve that,
input signal projections are taken directly along different directions in
n-dimensional spaces to calculate the local mean. This step is necessary
since calculation of the local mean, a crucial step in EMD algorithm, is
difficult to perform due to the lack of formal definition of maxima and
minima in higher dimensional domains.

In order to obtain projections of the input signal in n-dimensional
spaces, the sampling scheme based on low discrepancy Hammersley
sequence was used in [9]. Unlike conventional uniform angular sam-
pling schemes, the sampling scheme based on Hammersley sequence
belongs to a class of quasi-Monte Carlo methods, and provides rela-
tively more uniform sampling in higher dimensional spaces [16]. Once
the projections along different directions in multidimensional spaces
are obtained, their extrema are interpolated via cubic spline interpola-
tion to obtain multiple signal envelopes; these envelopes are then aver-
aged to obtain the local mean of a multivariate signal.

Algorithm 1: Multivariate Extension of EMD

1: Generate the pointset based on the Hammersley sequence for
sampling on an (n — 1)-sphere [9].

2: Calculate a projection, denoted by p”* (t)}7_1, of the input signal
{v(t)}Z, along the direction vector x* , for all k (the whole set
of direction vectors), giving p’* ()} £—, as the set of projections.

3: Find the time instants {t?" X, corresponding to the maxima of
the set of projected signals p* (1)},

4: Interpolate [t?" , v(fg" )], for all values of %, to obtain multivariate
envelope curves e”* ()11, .

5: For a set of K direction vectors, calculate the mean m(¢) of the
envelope curves as

K
m(t) = %Zey’“(t). (1)
k=1

IThe Matlab code for multivariate EMD along with some synthetic and real
world multivariate signals are available from http://www.commsp.ee.ic.ac.uk/
~mandic/research/emd.htm.
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6: Extract the “detail” d(¢) using d(¢) = x(¢) — m(¢). If the “detail”
d(t) fulfills the stoppage criterion for a multivariate IMF, apply
the above procedure to z(t) — d(t), otherwise apply it to d(t).

Consider a sequence of N-dimensional vectors {v(t)}i—; =
{v1(t),v2(t),...,vn(t)} representing a multivariate signal
with N components, and x’* = {zF, 25 ... 2%} denoting
a set of direction vectors along the directions given by angles
oF = {oF, 65, ..., 9£CN_1)} on an (n — 1)-sphere. Then the extraction
of the first IMF from the proposed multivariate extension of EMD is
summarized in Algorithm 1.

Once the first IMF is extracted, it is subtracted from the input signal
and the same process (Algorithm 1) is applied to the resulting signal
yielding the second IMF and so on; the process is repeated until all
the IMFs are extracted and only a residue is left; in the multivariate
case, the residue corresponds to a signal whose projections do not con-
tain enough extrema to form a meaningful multivariate envelope. The
sifting process for a multivariate IMF can be stopped when all the pro-
jected signals fulfill any of the stoppage criteria adopted in standard
EMD. One popular stopping criterion used in EMD stops the sifting
when the number of extrema and the zero crossings differ at most by
one for S consecutive iterations of the sifting algorithm? [17]. Another
commonly used criterion introduces an evaluation function based on
the envelope amplitude, defined as: a(t) = (1/K) 35, |e(’k(t) -
m(t)|. The sifting process is continued until the value of the evalua-
tion function, defined as f(¢t) = |(m(¢)/a(t))| where m(¢) is the local
mean signal, is less than or equal to some predefined thresholds o [18].
Both these criteria have been used in the simulations presented in this
work.

III. FILTER BANK PROPERTY OF MEMD

Filter banks represent a collection of bandpass filters designed to
isolate different frequency bands in the input signal. It was shown in
[10] and [11] that the IMFs obtained from standard EMD algorithm
provide frequency responses similar to that of a dyadic filter bank. In
this section, we set out to investigate whether this filter bank structure
is preserved by MEMD for multichannel input signals.

It is worth emphasizing that the idea of a filter bank for multivariate
inputs, in a strict sense, is still ambiguous since the concept of fre-
quency is not clearly defined for multivariate signals. However, even
if we consider the frequency response for the individual channels of a
multivariate signal, the filter bank structure imposes an additional con-
straint on the frequency output of each multivariate IMF—the overlap-
ping of the filter bands associated with the corresponding (same-index)
IMFs from multiple channels. This is vital for the IMFs obtained from
MEMD to be physically meaningful; any mismatch in the frequency
contents of the corresponding multichannel IMFs would render their
matching or subsequent fusion applications meaningless.

The frequency response and the corresponding filter bank property
of MEMD are first illustrated by applying MEMD on a single real-
ization of an eight-channel white Gaussian noise; the power spectra
of its resulting first fine IMFs are plotted in the top of Fig. 1. Next,
the same eight noise channels were separately processed via standard
EMD and the estimated power spectra of its IMFs are shown in the
bottom of Fig. 1. It can be seen that the overlapping of frequency bands
of same-index IMFs associated with different channels is much more
prominent in the case of MEMD as compared with standard EMD. The
alignment of IMF based frequency bands for single noise realization,
in case of MEMD, results in the stabilization of the shape of individual
spectra and allows for the estimation of these spectra using fewer noise

2Caution must be exercised while using this criterion for multivariate cases
as it has been found to be computationally very expensive for long signals.
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Fig. 1. Spectra of IMFs (IMF1-IMF9) obtained for a single realization of
an eight-channel white Gaussian noise via MEMD (top) and the standard
EMD (bottom). Overlapping of the frequency bands corresponding to the
same-index IMFs is more prominent in the case of MEMD based filters.

Averaged spectra of white noise realizations from MEMD
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Fig. 2. Averaged spectra of IMFs (IMF1-IMF9) obtained for a N = 500 real-
izations of eight-channel white Gaussian noise via MEMD (top) and the stan-
dard EMD (bottom). Overlapping of the frequency bands corresponding to the
same-index IMFs is improved in both cases but the MEMD bands clearly show
much better alignment.

realizations as illustrated in Fig. 2. In simulations, we used N = 500
noise realizations each of length 7' = 1000 which were then ensemble
averaged to yield an averaged power spectra; the stopping criteria used
is given in [17], with the value of S = 5. It is evident from the Fig. 2
that for a given number of noise realizations V, standard EMD failed
to properly align the bandpass filters associated with the corresponding
IMFs for different noise channels. Although this alignment is expected
to become better with an increase in the number of noise realizations,
MEMD based spectra achieved much better results with same number
of ensembles.
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Fig. 3. MEMD as a dyadic filter bank. Top: Average number of base-2 loga-
rithm of zero crossings plotted versus the IMF index for all eight channels. The
slope of —0.92 indicates similarity to a dyadic filter (with an ideal slope —1).
Bottom: Fourier spectra of IMFs from MEMD with IMF3-IMF9 shifted so as
to overlap with the spectrum associated with IMF2.

Since the number of zero crossings in an IMF is directly related to the
number of intrinsic oscillations, as a rough indicator of the frequency
content within the IMF, this makes it possible to analyze the nature of
MEMD as a filter bank with respect to the IMF index. For standard EMD,
it was shown in [10] and [11] that the IMFs followed the structure of a
dyadic filter with the linear (slope close to —1) relationship between the
base-2 logarithm of number of zero crossings and the IMF index. Fig. 3
(top) shows the results obtained by applying MEMD on eight-channel
white noise, plotted using the base-2 logarithm of zero crossings of IMFs
of individual channels against the IMF index. It revealed similar results
to those obtained from standard EMD, with the slope of approximately
—0.92 for all the eight channels individually, indicating a quasi-dyadic
filter bank nature of MEMD for white noise. The stopping criteria used
was the S-stopping criterion [17], with the value of S = 5. The filter
bank structure may be slightly affected by the number of sifting itera-
tions employed, and possibly by the type of stopping criteria used, as
mentioned briefly in [19], for a single-channel EMD.

Another important property of standard EMD based filter bank is the
self-similarity of its constituent bandpass filters [10]. To illustrate that
the IMFs of individual channels obtained from MEMD also exhibit this
self-similar behavior, let H.,,(f) denote the frequency response of the
nth IMF. Then due to the similarity between different IMF based band-
pass filters, the frequency response of kth IMF can be described by

Hi(f) = H.(H (7 F) )

where k& > n > 2. Parameter ~ can be calculated from the slope of the
straight line.3 between the number of zero crossings and the IMF index;
for a fully dyadic filter bank, its value is 2. Using the normalized (2),
the spectra of all the IMFs obtained from MEMD collapsed to a single
curve as shown in Fig. 3 (bottom).

3The empirical relationship between the center frequency and the bandpass
filter index (IMF index) can be approximated by log, F,, = ma + ¢, where
F, denotes the estimated center frequency corresponding to the IMF index x
and ¢ represents the y-intercept of the straight line and is dependent on the total
number of IMFs obtained [20].
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This shows that the IMFs obtained by MEMD follow the quasi-
dyadic filter bank structure similar to the IMFs from standard EMD
both for single channel and for multiple channels, facilitating applica-
tions based on vector sensors and in time-frequency data fusion.

IV. NOISE-ASSISTED MEMD

We now introduce a noise-assisted MEMD (N-A MEMD) method
which makes use of the quasi-dyadic filter bank properties of MEMD
on white noise, and show that it is capable of significantly reducing the
mode mixing problem* for classes of signals where the quasi-dyadic
filter bank structure proves useful.

Embarking upon the quasi-dyadic filter bank structure of standard
EMD for broadband noise, Wu et al. proposed the ensemble EMD
method in which multiple realizations of white noise are added to the
input signal before being decomposed via EMD. This helps to establish
a uniformly distributed reference scale which, in turn, results in corre-
sponding IMFs exhibiting a quasi-dyadic filter bank structure. Finally,
their ensemble mean is taken which cancels the noise effect within the
IMFs.

In the same spirit, to explore the benefits of quasi-dyadic filter bank
structure of MEMD on white noise, we propose to add extra channels
containing multivariate independent white noise to the original multi-
variate signal, and then process such a composite signal via MEMD.
The IMF channels corresponding to white noise are then discarded
yielding a set of IMFs associated with only the original input signal.
Since the added noise channels occupy a broad range in the frequency
spectrum, MEMD aligns its IMFs based on the quasi-dyadic filter bank,
with each component carrying a frequency subband of the original
signal. In doing so, IMFs corresponding to the original input signal
also align themselves according to the structure of a quasi-dyadic filter
bank (see Fig. 2); this, in turn, helps to reduce the mode mixing problem
within the extracted IMFs. The details of the NA-EMD method are out-
lined in Algorithm 2.

Algorithm 2: Noise-Assisted MEMD

1: Create an uncorrelated Gaussian white noise time-series
(m-channel) of the same length as that of the input;

2: Add the noise channels (1 -channel) created in Step 1 to the input
multivariate (n-channel) signal, obtaining an (n + m)-channel
signal;

3: Process the resulting (n + m)-channel multivariate signal using
the MEMD algorithm listed in Algorithm 1, to obtain multivariate
IMFs;

4: From the resulting (n + m)-variate IMFs, discard the 1 channels
corresponding to the noise, giving a set of n-channel IMFs
corresponding to the original signal.

However, it should be mentioned that the so-called noise-assisted
methods (both ensemble EMD and N-A MEMD) for reducing the mode
mixing problem are expected to be most useful for signals in which the
dyadic filter bank decomposition is relevant. For instance, if the de-
sired signal resides in multiple dyadic subbands, then choosing these
noise-assisted methods for decomposition may even “spread” the de-
sired signal across multiple IMFs, resulting in unwanted mode mixing.

To illustrate the operation of N-A MEMD further, consider a syn-
thetic signal consisting of a combination of three different tones; two

4Mode mixing is characterized by a single IMF containing multiple oscilla-
tory modes and/or a single mode residing in multiple IMFs which may compro-
mise the physical meaning of IMFs and practical applications in certain cases.
This problem may be caused by the intermittency of the input signal and/or vari-
ation of instantaneous amplitude and frequency of the modes and affects both
the standard and multivariate EMD.
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Fig. 4. IMFs of a synthetic signal obtained by applying standard EMD. Mode
mixing is evident in IMF1, IMF2 and IMF3 where either multiple modes are
present (IMF1 and IMF2) or a single mode is “leaked” into two IMFs (IMF2
and IMF3).
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Fig. 5. IMFs of synthetic signal obtained by applying the N-A MEMD (left
hand column); the IMFs of the two noise channels shown in the middle and
right hand column. Mode mixing observed in IMFs from standard EMD is sig-
nificantly reduced with IMF6, IMF7, and IMFS8 containing the three original
tones (see text for more detail).

low-frequency tones were added together along with a high-frequency
sinusoid which was only added between the time index 5000 and 8500.
The resulting signal is shown in the top of Fig. 4. Also shown in Fig. 4
are the IMFs obtained from applying standard EMD to the signal; mode
mixing is evident since IMF1 contains multiple modes. Similarly, mode
mixing can also be seen in IMF2 and IMF3. We next processed the
same signal using the proposed N-A MEMD method with two extra
noise channels (m = 2). The IMFs from the resulting trivariate signal
are shown in Fig. 5. Observe that the IMFs corresponding to the first
channel are now free of mode mixing, as all the tones are decomposed
as separate IMFs (IMF6, IMF7, and IMFS, respectively).

In the proposed N-A MEMD method, the number of noise channels
m and the amplitude of noise channels must be chosen so that the de-
sired dyadic filter bank structure is enforced. In our experiments with
the selected synthetic signals, as expected, we found a reduction in the
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Fig. 6. Decomposition of a synthetic bivariate tone signal using the bivariate
EMD. Mode mixing and mode misalignment are evident across all but the IMF1.
Simulations with different parameters for the stopping criterion yielded similar
results.

amount of mode mixing with an increase in both m and the amplitude
of the noise. However, it also caused some “leakage” from noisy chan-
nels into the input channel which resulted in slight disturbance in the
desired signal, implying a trade-off in practice, whose dependence on
MEMD parameters still needs to be further explored. The amount of
“leakage” was found to be small though and should be negligible in
most practical scenarios. In cases where it is significant, similarly to
approach used in ensemble EMD [15], we may consider adding mul-
tiple realizations of white noise to the input signal channel and average
them out to reduce the “leakage” effect; this correction would, how-
ever, result in increased computational complexity.

We next performed simulations on a synthetically generated com-
bination of tones> to show that the introduction of noise reduces the
“mode-misalignment” in multivariate extensions of EMD. As stated
earlier, mode alignment refers to the generation of similar frequency
modes across same-index IMFs in multiple channels, and is one of the
characteristics of multivariate extensions of EMD [9]. However, in ad-
dition to the mode mixing within IMFs of a single channel, as illustrated
in Fig. 4, the intermittence in the input data also results in mode-mixing
within the same-indexed IMFs of multiple channels (mode misalign-
ment). This is illustrated in Fig. 6, which shows the decomposition of
a synthetically generated bivariate tone signal via bivariate extension
of EMD [6]. While the highest frequency mode was correctly decom-
posed as IMF1, both mode mixing in a single channel and mode mis-
alignment across multiple channels are evident in the remaining IMFs;
a single frequency mode was shared in both IMF2 and IMF3 in the
first channel and also in IMF3 and IMF4 in the second channel (mode
mixing). Also, different frequency modes can be seen across different
channels in IMF3 (mode misalignment).

Fig. 7 shows the decomposition of the same bivariate signal obtained
by the proposed N-A MEMD method, with two extra channels of white
noise ("m = 2). For convenience, the channels corresponding to the

5The complex part is a combination of two tones (0.5 and 3 KHz), whereas
the real part consists of a combination of a tone of 1 KHz, and a tone of 3 KHz,
added only at the beginning and the end of the signal.
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Fig. 7. Decomposition of a synthetic bivariate tone signal via noise-assisted
MEMD for m = 2. Both the problems of mode mixing and mode misalignment
are clearly reduced. Again, the obtained results were generally found robust to
variations in the parameters.

white noise have not been plotted. It can be seen that, in this case, both
mode mixing and mode misalignment are significantly reduced, with
each IMF carrying only a single frequency mode, and no instance of
different modes across same-index IMFs of different channels. This
was expected because the quasi-dyadic structure enforced by the addi-
tion of noisy channels in N-A MEMD resulted in the alignment of fre-
quency subbands from different channels of the multivariate signal, in
turn, resulting in “aligned” IMFs in terms of their frequency contents.

V. REAL WORLD EEG SIGNAL PROCESSING VIA MEMD

In order to demonstrate the advantages of MEMD in multichannel
signal processing and its ability to align common frequency modes in
same-index IMFs, we applied the proposed method to the real world
electroencephalography (EEG) signals with an aim to separate the brain
electrical activity from unwanted artefacts, such as the electrooculo-
gram (EOG) and electromyogram (EMG). Data used in these simula-
tions were collected from 4 EEG channels (Fpl, Fp2,C3,C4), and
subjects were asked to move their eyes during the data collection, re-
sulting in the ocular interference in the recorded EEG signal. The four
channels were then processed by MEMD.

Owing to the property of MEMD to align IMF frequency subbands
from different channels, the decomposed EEG data was aligned in such
a way that the high-frequency neurophysiological signals were con-
tained in the lower-index IMFs, while low-frequency electrophysiolog-
ical signals (EMG and EOG) were present in the higher-index IMFs. A
simple threshold on the IMF index was then used to separate non-EEG
related interference from the underlying brain activity. The EOG and
clean EEG signal estimated in this way are shown in the middle and
right hand column of Fig. 8, with the original contaminated EEG sig-
nals shown in the left hand column. It is important to note that such
separation is difficult to achieve by applying univariate EMD to all
the channels separately, as this would result in spectrally uncorrelated
components, as evidenced in the bottom diagram of Fig. 2. For this
purpose, a complex clustering technique was used in the frequency
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Fig. 8. Artefact removal from four EEG channels (Fpl, Fp2,C3 and C4)
using the MEMD algorithm. The estimated eye muscle activity (artefact) has
been shown in the middle column, whereas the conditioned EEG signal is pre-
sented in the right hand column.

domain (Hilbert-Huang spectrum) in order to identify spatially cor-
related modes from univariate EMD decompositions [21]. However, as
EMD was applied channelwise, high-frequency components were still
present in the estimated EOG signal.¢

VI. CONCLUSION

We have shown that the multivariate empirical mode decomposi-
tion (MEMD) algorithm follows a filter bank structure (channelwise)
for a multivariate white noise input. It has also been shown that
MEMD aligns similar modes present across multiple channels in
same-index IMFs, which is difficult to obtain by applying standard
EMD channelwise. Furthermore, by using the property of MEMD
to behave as a filter bank in the presence of white noise, we have
proposed a noise-assisted MEMD (N-A MEMD) algorithm, whereby
by introducing extra channels of multivariate noise, the effects of
mode mixing and mode misalignment in multivariate IMFs have been
reduced. Unlike ensemble EMD, where several realizations of white
noise are directly added to the signal and then multiple instances of
EMD are run, the framework of MEMD allows adding white noise
in extra channels and hence only a single application of MEMD is
sufficient. The analysis is supported by simulations on both synthetic
and real world multivariate data.
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