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CHAPTER POINTS

• Quaternion-valued echo state networks (QESNs) are introduced for nonlinear adaptive filtering of 3D and 4D
signals.

• The exploitation of full quaternion nonlinear activation functions with local analyticity allows for first-order
differentiability at the operating point to design gradient descent–based quaternion nonlinear learning algo-
rithms.

• The widely linear model is incorporated into QESNs for optimal performance for second-order noncircular
quaternion signals.
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12.1 INTRODUCTION
Recurrent neural networks (RNNs) represent a large and varied class of computational models that are
designed by more or less detailed analogy with biological brain modules. In RNNs, numerous abstract
neurons are interconnected by abstracted synaptic connections, which enable activations to propagate
through the network. The characteristic feature of RNNs that distinguishes them from the feedforward
neural networks is that the connection topology possesses feedback cycles. The computational power
of RNNs stems from their ability to act as universal approximators for any continuous function on a
compact domain [1,2], and owing to their rich inherent memory through feedback, RNNs have found
wide applications in the modeling of highly nonlinear and nonstationary dynamic systems and the as-
sociated attractor dynamics, including system identification [3], time series prediction [4] and adaptive
noise cancellation [5], where, for the nonstationary and nonlinear nature of the signals and typically
long impulse responses, using the class of static feedforward networks or transversal filters would result
in undermodeling [2,6].

Recent progress in sensing technology has made possible the recording from multidimensional
data sources which are typically 3D and 4D, such as measurements from inertial sensors in body sen-
sor networks, three-axis ultrasonic anemometers in wind measurement and three-axis seismometers in
oil exploration. Real-valued multichannel signal processing considers these measurements as vectors
in R3 and R4 and cater for the “coupled” nature of the available information across data channels,
but the information in the correlation matrices is not easy to use, due to their multiple and scattered
block structures. In practice, when 4D data are modeled using real-valued vectors, they produce e.g.,
10 covariance matrices. Also, accuracy may be compromised due to the deficiencies of the nondivision
vector algebra (gimbal lock). These problems are largely mitigated when modeling 3D and 4D signals
by quaternions, a number system first introduced by William Rowan Hamilton in 1843, since its 4D
division algebra naturally accounts for the coupling between data channels and also provides parsimo-
nious representations, e.g., with only four covariance matrices needed. For this reason, quaternions,
which were traditionally used in aerospace engineering, because of their advantage in modeling 3D
rotations and orientations, are rapidly gaining popularity in various applications, including computer
graphics [7], molecular modeling [8], color image processing [9,10] and 3D polarized signal represen-
tation for vector sensor array processing [11,12].

In the context of learning systems, quaternion approaches include both Kalman filtering [13–15]
and stochastic gradient algorithms, such as the quaternion least mean square [16]. However, in the
context of nonlinear learning systems like RNNs, quaternion-valued processing is still relatively under-
explored, mainly because of problems arising from the lack of analytic nonlinearities in the quaternion
domain H. Although quaternion nonlinear functions have been implemented, for example, in the
quaternion independent component analysis [17], the analyticity of these functions has not been rigor-
ously examined, mainly because the very stringent Cauchy–Riemann–Fueter (CRF) conditions admit
only linear functions and constants as globally analytic quaternion-valued functions [18]. This is a seri-
ous obstacle that prevents us from choosing the standard nonlinear activation functions (tanh, logistic)
as the nonlinearities in the design of quaternion-valued nonlinear learning algorithms.

To partially overcome this issue, some approaches use a “split” quaternion function that treats each
quaternion component separately (as a real channel), passed through a real-valued smooth nonlinearity
[19,20]. Although this may yield enhanced performance over vector-based processing, the noncom-
mutativity aspect of the quaternion algebra is overlooked, thus prohibiting rigorous treatment of the
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cross-information and not exploiting the full potential of quaternions. Recognizing that gradient-based
learning algorithms, such as nonlinear gradient descent (NGD) and real-time recurrent learning (RTRL)
[2], require gradient evaluation at a point, it is possible to adopt a local alternative, such as the local
analyticity condition (LAC) [21], to relax the global analyticity requirement for quaternion nonlinear-
ities by the CRF conditions. The work in [22] uses LAC to establish a class of neural networks in H,
which are a generic extension of those in R and C, allowing us to use standard activation functions,
such as tanh. The learning algorithms introduced in this way include quaternion nonlinear gradient
decent for nonlinear FIR filters [22] and quaternion real-time recurrent learning for fully connected
neural networks [23]. However, another obvious obstacle which hinders the further development of
quaternion RNNs is the high computational complexity associated with their training, as a quaternion
addition requires four real-valued additions whereas a quaternion multiplication requires 16 real-valued
multiplications and 12 real-valued additions.

Recently, a class of discrete-time RNNs, called echo state networks (ESNs), has been introduced,
with the aim to reduce the complexity of computation encountered by standard RNNs [24,25]. The
principle behind ESNs is to separate the RNN architecture into two constituent components: a recur-
rent architecture, called the “dynamical reservoir” or “hidden layer” and a memoryless output layer,
called the “readout neuron.” The recurrent architecture consists of a randomly generated group of hid-
den neurons with a specified degree of recurrent connections and should satisfy the so-called “echo
state property” to maintain stability [24,26]. This way, the high computational complexity of RNNs is
significantly reduced due to the sparse connections among the hidden neurons; in addition, the learning
requirements are reduced to only the weights connecting the hidden layer and the readout neuron, and
the emergence of ESNs enables the possibility to design computationally efficient quaternion-valued
RNNs with moderate complexity.

As quaternions can be conveniently constructed as a pair of complex numbers through the Cayley–
Dickson representation, it is natural to ask whether some recent breakthroughs in statistical signal
processing of complex variables can be generalized to quaternions. One such breakthrough in complex-
valued signal processing has been due to the widely linear model and augmented complex statistics
[27,28]. This model, together with the corresponding augmented complex statistics, has been success-
fully used to design enhanced algorithms in communications and adaptive filters [29,30]. A number
of studies have shown that widely linear modeling offers theoretical and practical advantages over
the standard strictly linear model, and it is applicable to the generality of complex-valued random
signals, both second-order circular (proper) and noncircular (improper) [28,31–33]. The concept of
H properness was introduced in [34] as the invariance of the probability density function (pdf) of a
quaternion-valued variable q under some specific rotations around the angle of π/2, and this restric-
tion was later relaxed to an arbitrary axis and angle of rotation φ [35]. In this sense, a variable q is said
to be proper, if pdf(q) = pdf(epφq) for any pure unit quaternion p. These discoveries were followed by
the quaternion widely linear model, together with the augmented quaternion statistics, to account for
the generality of quaternion signals, both proper and improper [36–39]. Such models have been shown
to outperform the traditional strictly linear quaternion processing, which relies only on the standard
covariance matrix, and a rigorous quantitative analysis of statistical advantages of widely linear over
strictly linear processing in H has been performed in [40].

Therefore, in this chapter, we introduce quaternion-valued echo state networks (QESNs), as a
generic extension of real-valued and complex-valued ESNs [24,25,41], to enable the processing of
hypercomplex 3D and 4D signals. To further equip the QESNs with enhanced modeling capability
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for noncircular quaternion signals (rotation-dependent distribution), we incorporate the widely linear
model into QESNs, making them second-order optimal for the generality of quaternion signals (both
circular and noncircular) [42]. The so introduced widely linear model for state space estimation is not
limited to QESNs but is also applicable to general quaternion-valued RNN architectures. Simulations
and experimental results in the prediction setting on both benchmark circular and noncircular signals
and on real-world noncircular, nonlinear and nonstationary 3D body motion and wind data support the
analysis.

12.2 MATHEMATICAL BACKGROUND
The necessary mathematical background on the design of QESNs and the associated nonlinear learning
algorithms will be briefly discussed in this section.

12.2.1 QUATERNION ALGEBRA
As a noncommutative extension of the complex domain C, the quaternion domain H provides a natural
framework for processing 3D and 4D signals. A quaternion variable q ∈ H is a skew field over R and
comprises four real-valued components (qr , qı , qȷ and qκ ) and three imaginary units (ı, ȷ and κ), to
give

q = qr + ıqı + ȷqȷ + κqκ = Sq + V q. (12.1)

It can also be represented by a real part (scalar), denoted by Sq = ℜ(q) = qr , and a vector part V q

(also known as a pure quaternion ℑ(q)), consisting of the three imaginary components, V q = ℑ(q) =
ıqı + ȷqȷ + κqκ . The pure quaternions ℑ(q) are usually used for 3D signal modeling. The imaginary
units ı, ȷ and κ obey the following rules:

ıȷ = κ, ȷκ = i,κı = ȷ, ı2 = ȷ2 = κ2 = ıȷκ = −1. (12.2)

Note that the quaternion multiplication is not commutative, that is, ıȷ ≠ ȷ ı = −κ . For any two quater-
nions, q1 and q2, their product is given by

q1q2 = (Sq1+V q1)(Sq2+V q2)

= Sq1Sq2−V q1·V q2+Sq1V q2+Sq2V q1+V q1×V q2, (12.3)

where the symbol “·” denotes the dot-product and “×” the cross-product. The cross-product makes the
quaternion multiplication noncommutative. The norm of a quaternion variable q is given by

∥q∥ =
√

qq∗ =
√

q2
r + q2

ı + q2
ȷ + q2

κ (12.4)

while the quaternion conjugate of q , denoted by q∗, is given by

q∗ = Sq − V q = qr − ıqı − ȷqȷ − κqκ . (12.5)
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Another important notion in the quaternion domain is the so-called “quaternion involution,” which
defines a self-inverse mapping, analogous to the complex conjugate. The general involution of a quater-
nion variable q is defined as φα (q) ≡ qα = αqα−1 = −αqα, where α ∈ H, while the special cases of
involutions about the ı, ȷ and κ imaginary axes are given by [9]

qı = −ıqı = qr + ıqı − ȷqȷ − κqκ ,

qȷ = −ȷqȷ = qr − ıqı + ȷqȷ − κqκ ,

qκ = −κqκ = qr − ıqı − ȷqȷ + κqκ , (12.6)

with the following properties (∀η ∈ {ı, ȷ,κ}):

(qη)η = q, (qη)∗ = (q∗)η, (q1q2)
η = q

η
1 q

η
2 , (q1+q2)

η = q
η
1 +q

η
2 . (12.7)

Similar to the complex conjugate, involutions allow for the components of a quaternion variable q to
be expressed in terms of the actual variable q and its “partial conjugate,” qı , qȷ and qκ , that is,

qr = 1
4
(q + qı + qȷ + qκ), qı = 1

4ı
(q + qı − qȷ − qκ),

qȷ = 1
4ȷ

(q − qı + qȷ − qκ), qκ = 1
4κ

(q − qı − qȷ + qκ). (12.8)

In this way, the relationship between the involutions and the quaternion variable q and its conjugate is
specified by

q = 1
2
(qı∗ + qȷ∗ + qκ∗ − q∗), q∗ = 1

2
(qı + qȷ + qκ − q). (12.9)

12.2.2 QUATERNION WIDELY LINEAR MODEL AND QUATERNION AUGMENTED
STATISTICS

Now, consider a quaternion-valued mean square error (MSE) estimator given by

ŷ = E[y|q], (12.10)

where ŷ is the estimated process, q is the observed variable and E[·] is the statistical expectation
operator. For zero mean jointly Gaussian q and y, the strictly linear estimation solution, similar to
those in R and C, is given by [13,16]

ŷ = wTq, (12.11)

where w and q are, respectively, the coefficient and regressor vector. Observe, however, that for all the
components {yr , yı , yȷ , yκ}, we have

ŷη = E[yη|qr ,qı ,qȷ ,qκ ], η ∈ {r, ı, ȷ,κ}, (12.12)

so that by using the involutions in (12.6), we can express each element of a quaternion variable as in
(12.8). This gives, for instance, the real component of a quaternion variable qr = (q+qı +qȷ +qκ)/4,
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leading to the general expression for all the components

ŷη = E[yη|q,qı ,qȷ ,qκ ] and ŷ = E[y|q,qı ,qȷ ,qκ ] (12.13)

and allowing us to arrive at the widely linear model [36–38]

y = waTqa = aTq + bTqı + cTqȷ + dTqκ , (12.14)

where wa = [aT,bT, cT,dT]T is the augmented weight vector.
Current statistical signal processing in H by and large employs the strictly linear model in (12.11),

drawing upon the covariance matrix R = E[qqH], which is sufficient to describe only second-order
circular (proper) signals with equal power data components. However, based on (12.14), the modeling
of both the second-order circular (proper) and noncircular (improper) signals is only possible using the
augmented covariance matrix, given by [36–39],

Ra = E[qaqaH] =

⎡

⎢⎢⎣

R P S T
Pı Rı Tı Sı

Sȷ Tȷ Rȷ Pȷ

Tκ Sκ Pκ Rκ

⎤

⎥⎥⎦ , (12.15)

where R = E[qqH ] and the three pseudocovariances are termed the ı-covariance P, ȷ -covariance S
and κ-covariance T, given by

P = E[qqıH], S = E[qqȷH], T = E[qqκT]. (12.16)

Second-order circular (proper) quaternion-valued signals have probability distributions that are
rotation-invariant with respect to all the six possible pairs of axes (combinations of ı, ȷ and κ) [38] and
thus equal powers in all the components, so that the three pseudocovariance matrices P, S and T van-
ish. However, in most real-world applications, probability density functions are rotation-dependent and
hence require the use of the augmented quaternion statistics and the quaternion widely linear model.
Also note that real-valued multichannel processing in R4 requires ten covariance matrices, as opposed
to four in the quaternion domain, since only R, P, S and T are needed to fully describe Ra in (12.15).

12.2.3 HR-CALCULUS AND QUATERNION GRADIENT OPERATIONS
In the design of quaternion-valued adaptive learning systems, a common optimization objective is to
minimize a positive real function of quaternion variables. However, gradient-based optimization in H
is quite restrictive, as the standard CRF conditions do not admit derivatives of nonanalytic real-valued
cost functions [18]. It is only recently that the HR-calculus has made possible the differentiation of
both analytic and nonanalytic functions in H [43], through exploiting the duality with their isomorphic
quadrivariate real functions, which is built upon the relationships between quaternion involutions and
their four real-valued components, as indicated by (12.6). Compared with other existing quaternion
gradients, which typically consider the real part and the vector part of a quaternion separately [21,
44], the HR-calculus enables the possibility to treat a quaternion as an entry, giving more physically
intuitive gradient calculation results with compact expressions.
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The HR- and HR∗-derivatives are respectively given by [43]

∂f (q, qı, qȷ , qκ)

∂q
= 1

4

(
∂f

∂qr
−ı

∂f

∂qı
−ȷ

∂f

∂qȷ
−κ

∂f

∂qκ

)
(12.17)

and

∂f (q∗, qı∗, qȷ∗, qκ∗)
∂q∗ = 1

4

(
∂f

∂qr
+ı

∂f

∂qı
+ȷ

∂f

∂qȷ
+κ

∂f

∂qκ

)
. (12.18)

We shall now consider some examples on how to use the HR-calculus for derivatives typically encoun-
tered in the design of quaternion-valued RNNs.

• Derivative of the analytic function f (q) = q . We first express it in terms of the involutions
{q, qı, qȷ , qκ} using (12.9) and then differentiate it with respect to q , giving ∂f (q)/∂q = 1. This is
equivalent to the standard CRF derivative, which gives f ′(q) = 1.

• Derivative of the nonanalytic function f (q, q∗) = qq∗. Such a cost function is dependent on both
q and its conjugate q∗ and is nonanalytic in the CRF sense. However, the HR-calculus circumvents
this problem through (12.17) and (12.18). For example, consider ∂f (q, q∗)/∂q∗ = ∂(qq∗)/∂q∗ =
∂q/∂q∗ · q∗ + q · ∂q∗/∂q∗. The HR∗-derivative gives ∂q/∂q∗ = −1/2 and the HR-derivative
∂q∗/∂q∗ = ∂q/∂q = 1, and hence ∂f (q, q∗)/∂q∗ = ∂(qq∗)/∂q∗ = ∂q/∂q∗ · q∗ + q · ∂q∗/∂q∗= −
q∗/2 + q .

• Derivatives of involutions f (q) = qη, η = {ı, ȷ,κ}. As desired, the HR-derivatives give

∂qη

∂qθ
=

{
1, η = θ, η, θ ∈ {ı, ȷ,κ},
0, η ≠ θ, η, θ ∈ {ı, ȷ,κ}. (12.19)

12.2.4 QUATERNION NONLINEAR ACTIVATION FUNCTIONS
Hypercomplex nonlinear learning systems, like quaternion-valued RNNs, are more difficult to design
than their real-valued counterparts, owing to the lack of analytic nonlinear activation functions. This is
due to the stringent CRF conditions [18]. For instance, a CRF differentiable quaternion function f (q)

should satisfy

∂f

∂qr
+ ı

∂f

∂qı
+ ȷ

∂f

∂qȷ
+ κ

∂f

∂qκ
= 0 ⇔ ∂f

∂q∗ = 0. (12.20)

It is important to note that only linear quaternion functions and constants fulfill these conditions, yet
nonlinear learning algorithms in H require differentiable nonlinear functions. To circumvent the ana-
lyticity problem, recent work in [22] adopted the local analyticity condition (LAC) [21], based on a
complex-valued representation of a quaternion, to give

∂f

∂qr
= −ζ

∂f

∂α
, (12.21)
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where ζ and α are respectively given by

ζ = ıqı + ȷqȷ + κqκ

α
, α =

√
q2
ı + q2

ȷ + q2
κ . (12.22)

In this way, an “imaginary” unit ζ comprises the vector part of quaternions. Although the local an-
alyticity condition only guarantees first-order differentiability at the current operating point, this is a
perfect match for gradient descent–based quaternion-valued learning algorithms, which require gradi-
ent evaluation at a point only.

Proposition 1. The quaternion exponential eq = eqr+ıqı+ȷqȷ +κqκ satisfies the LAC in (12.21).

Proof. We can expand eq using the Euler formula as

eq = eqr (cos(α)+ζ sin(α))

= eqr

(
cos(α)+ ıqısin(α)

α
+ȷqȷ sin(α)

α
+κqκsin(α)

α

)
, (12.23)

where ζ and α are defined in (12.22), to give

∂eq

∂qr
= eq = −ζ

eq

α
. (12.24)

Note that the quaternion exponential e−q = e−(qr+ıqı+ȷqȷ +κqκ ) also satisfies the LAC in (12.21). This
is straightforward to show using the same approach as in Proposition 1. In this way, quaternion tran-
scendental nonlinear functions, constructed on the basis of quaternion exponentials eq and e−q , are a
generic extension of those in R and C, and they also satisfy the LAC [22]. In this chapter, we employ
a fully quaternion hyperbolic tangent function to design the quaternion ESNs, defined as [22]

tanh(q) = eq − e−q

eq + e−q
= e2q − 1

e2q + 1
, (12.25)

for which the first derivative is given by

∂tanh(q)

∂q
= sech2(q), sech(q) = 2

eq + e−q
. (12.26)

12.3 QUATERNION ESNS
The existence of fully quaternion nonlinear activation functions enables the design of RNNs in H [22,
23]. In this section, the quaternion ESNs (QESNs) and its augmented (widely linear) variant (AQESNs)
are introduced.

12.3.1 STANDARD QESNS
The architecture of a standard ESN, which is a recurrent discrete-time neural network composed of K
external inputs, N internal neurons (also referred to as dynamical reservoir) and L readout neurons, is
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FIGURE 12.1

The architecture of an Echo State Network (ESN).

shown in Fig. 12.1. The N × K weight matrix Wip and the N × N weight matrix Win respectively
contain the connections between the input units and the internal units and those between the internal
units themselves, whereas the feedback connections between the internal neurons and the readout neu-
rons are stored in the N × L feedback weight matrix Wb . The N × 1 internal state vector xn, K × 1
input vector un and L × 1 output vector yn are all at time instant n. By concatenating the input un, the
internal state xn and the delayed output yn−1, the overall network state, denoted by sn, is defined as

sn = [u(n), . . . , u(n − K + 1), x1(n), . . . , xN(n), y(n − 1), . . . , y(n − L)]T, (12.27)

while the internal unit dynamics are updated according to

xn = *
(
Wipun + Winxn−1 + Wbyn−1

)
, (12.28)

where *(·) here is a quaternion-valued nonlinear activation of the neurons within the reservoir. The
echo state property plays a key role in ensuring adequate operation of the dynamical reservoir of ESNs,
which means that the internal neurons xn within the dynamical reservoir of ESNs should display sys-
tematic variants of the exciting external signal un, working as its echo functions. A practical procedure
to ensure well-prepared RNNs with echo state property adopts a two-step operation on Win: (1) an
internal weight matrix Win is randomly drawn from a uniform distribution over a symmetric interval,
(2) Win is rescaled by Win ← Win/|λmax|, where |λmax| is the largest absolute eigenvalue of Win

(spectral radius). In this way, the initialization of input and feedback connections stored in Wip and
Wb can be arbitrary [24,25]. To find recent advances in echo state property analysis, readers are advised
to refer to [45–47]. The output of a nonlinear output mapping of ESNs is given by

y(n) = *
(
wT

nsn

)
, (12.29)

where wn is the weight vector associated with the output layer, for which the value is updated by
minimizing suitable cost functions. The cost function chosen here is the instantaneous squared error,
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defined as

E(n) = 1
2
|e(n)|2 = 1

2
e(n)e∗(n), (12.30)

where d(n) is the desired (teaching) signal and e(n) is the instantaneous output error, given by e(n) =
d(n) − y(n). Note that E(n) in (12.30) is real-valued, dependent on both quaternion-valued e(n) and
e∗(n), and for such functions, it has been shown by HR calculus that the maximum change of gradient
lies in the direction of the conjugate gradient, which is in accordance with the corresponding solution
in C [43]. In this way, the minimization of E(n) through gradient descent is given by

wn+1 = wn − µ∇w∗E(n), (12.31)

where µ is the step size, a small positive constant. Using the chain rule, the gradient ∇w∗E(n) in
(12.31) can be derived as

∇w∗E(n) = 1
2

∂|e(n)|2
∂w∗

n

= 1
2

(
e(n)

∂e∗(n)

∂w∗
n

+ ∂e(n)

∂w∗
n

e∗(n)

)
, (12.32)

where

e(n) = d(n) − y(n) = d(n) − *
(
wT

nsn

)
. (12.33)

Note that due to the noncommutativity of the quaternion product, the partial derivatives in (12.32)
cannot be swapped with e(n) and e∗(n). Using the fact that *∗(q) = *(q∗) and (q1q2)

∗ = q∗
2 q∗

1 , the
output error conjugate e∗(n) can be derived as

e∗(n) = d∗(n) − *∗(wT
nsn

)

= d∗(n) − *
(
(wT

nsn)
∗)

= d∗(n) − *
(
sH
n w∗

n

)
. (12.34)

Substituting it into the first gradient on the right-hand side of (12.32), we have

∂e∗(n)

∂w∗
n

= ∂
(
d∗(n) − *(sH

n w∗
n)

)

∂w∗
n

= −∂*
(
sH
n w∗

n

)

∂w∗
n

= −*′(sH
n w∗

n

)∂
(
sH
n w∗

n

)

∂w∗
n

= −*′∗(wT
nsn

)
s∗
n, (12.35)
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where the last step is achieved by using the HR-derivative introduced in (12.17) in Section 12.2.3. On
the other hand,

∂e(n)

∂w∗
n

= ∂
(
d(n) − *(wT

nsn)
)

∂w∗
n

= −∂*(wT
nsn)

∂w∗
n

= −*′(wT
nsn)

∂
(
wT

nsn

)

∂w∗
n

. (12.36)

Using the HR∗-derivative given in (12.18), we obtain

∂
(
wT

nsn

)

∂w∗
n

= − sn

2
(12.37)

and hence

∂e(n)

∂w∗
n

= *′(wT
nsn

)
sn

2
. (12.38)

Finally, we arrive at the update of the weight vector wn in the output layer, given by

wn+1 = wn − µ∇w∗E(n)

= wn + µ
(
e(n)*′∗(wT

nsn

)
s∗
n − 1

2
*′(wT

nsn

)
sne

∗(n)
)
, (12.39)

where the factor 1/2 in the cost function (12.30) is absorbed into the step size µ.

12.3.2 AUGMENTED QESNS
In order to make QESNs optimal for general quaternion signals (both second-order circular and noncir-
cular), we use recent developments in augmented quaternion statistics, as described in Section 12.2.2,
to incorporate the widely linear model into the QESN architecture, which gives the augmented version
of QESNs (AQESNs). This means that the network state should be “augmented” in such a way as

sa
n =

[
un,uı

n,uȷ
n,uκ

n,xa
n,yn

]T
. (12.40)

This augmented network state design is generally applicable for not only the architecture of QESNs,
but also quaternion-valued extensions of other types of RNNs. Since the input weights of QESNs
contained in the matrix Wip are randomly chosen prior to training, we can use three other matrices
Wip1, Wip2 and Wip3 to initialize the weights associated with the input involutions uı

n, uȷ
n, uκ

n . To this
point, the update of the internal state dynamics within the AQESNs is given by

xa
n=*

(
Wipun + Wip1uı

n + Wip2uȷ
n + Wip3uκ

n + Winxn−1 + Wbyn−1
)
. (12.41)
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Due to the specific properties of the ESN output layer, the output y(n) is now governed by an asym-
metric version of the quaternion widely linear model in (12.14) to yield

net (n) = aT
nvn + bT

nuı
n + cT

nuȷ
n + dT

nuκ
n,

y(n) = *
(
net (n)

)
, (12.42)

where vn = [u(n), . . . , u(n − K + 1), xa
1 (n), . . . xa

N(n), y(n − 1), . . . , y(n − L)]T is a subset of the
augmented network state sa

n and has the same dimension (K + N + L) as the state vector sn within
standard ESNs; however, the internal state dynamics are updated using (12.41). The recursion of the
output weight vectors {an,bn, cn,dn} are made gradient adaptive according to

an+1 = an − µ∇a∗E(n),

bn+1 = bn − µ∇b∗E(n),

cn+1 = cn − µ∇c∗E(n),

dn+1 = dn − µ∇d∗E(n). (12.43)

We notice that the gradient ∇a∗E(n) in (12.43) and its counterpart ∇s∗E(n) in (12.31) are equivalent,
so that they have the same dimension, and hence

an+1 = an + µ
(
e(n)*′∗(net (n))v∗

n − 1
2
*′(net (n))vn

)
. (12.44)

The error gradient ∇b∗E(n) for the weight vector bn corresponding to the ı-involution uı
n of the input

u is given by

∇b∗E(n) = 1
2

(
e(n)

∂e∗(n)

∂b∗
n

+ ∂e(n)

∂b∗
n

e∗(n)

)
, (12.45)

where

∂e∗(n)

∂b∗
n

= −∂*
(
net∗(n)

)

∂b∗
n

= −*′∗(net (n)
)∂net∗(n)

∂b∗
n

= −*′∗(net (n)
)
uı∗

n (12.46)

and

∂e(n)

∂b∗
n

= −∂*
(
net (n)

)

∂b∗
n

= −*′(net (n)
)∂net (n)

∂b∗
n

= 1
2
*′(net (n)

)
uı

n. (12.47)
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Substituting the partial derivatives in (12.46) and (12.47) into the error gradient ∇b∗E(n) given in
(12.45) yields

bn+1 = bn + µ
(
e(n)*′∗(net (n)

)
uı∗

n − 1
2
*′(net (n)

)
uı

ne
∗(n)

)
.

Proceeding in a similar manner, the weight updates for cn and dn are found to be

cn+1=cn + µ
(
e(n)*′∗(net (n)

)
uȷ∗

n − 1
2
*′(net (n)

)
uȷ

ne
∗(n)

)
(12.48)

and

dn+1=dn + µ
(
e(n)*′∗(net (n)

)
uκ∗

n − 1
2
*′(net (n)

)
uκ

ne∗(n)
)
. (12.49)

For convenience, the final weight update of the gradient decent algorithm used to train the output layer
of the AQESNs can be written in an augmented form using (12.40) as

wa
n+1 = wa

n + µ
(
e(n)*′∗(net (n)

)
sa∗
n − 1

2
*′(net (n)

)
sa
ne

∗(n)
)
, (12.50)

where wa
n = [aT

n,bT
n, cT

n,dT
n]T is the augmented weight vector and net (n) = waT

n sa
n.

12.3.3 STABILITY ANALYSIS OF QESNS AND AQESNS
In order to ensure satisfactory performances of both QESNs and AQESNs, we now address the set
bounds on the values of the step size µ to guarantee their stability. Following the approach from [2],
we employ the mean square convergence criterion, given by

E
[
|ē(n)|2

]
< E

[
|ẽ(n)|2

]
, (12.51)

where ē(n) and ẽ(n) are respectively the a posteriori and the a priori output error, defined as

ē(n) = d(n) − *
(
wT

n+1sn

)
,

ẽ(n) = d(n) − *
(
wT

nsn

)
. (12.52)

The error terms ē(n) and ẽ(n) in (12.52) can be related by the first-order Taylor series expansion (TSE)
as [48]

|ē(n)|2 = |ẽ(n)|2 + ∂|ẽ(n)|2
∂wT

n

,wn + ∂|ẽ(n)|2
∂wıT

n

,wı
n + ∂|ẽ(n)|2

∂wȷT
n

,wȷ
n + ∂|ẽ(n)|2

∂wκT
n

,wκ
n

= |ẽ(n)|2 + 4ℜ
(

∂|ẽ(n)|2
∂wT

n

,wn

)
. (12.53)



280 CHAPTER 12 ECHO STATE NETWORKS FOR MULTIDIMENSIONAL DATA

To simplify the derivation of (12.53), notice that ℜ(q1q2) = ℜ((q1q2)
∗) = ℜ(q∗

2 q∗
1 ) for any pair

{q1, q2} ∈ H to give

|ē(n)|2 = |ẽ(n)|2 + 4ℜ
(

,wH
n

∂|ẽ(n)|2
∂w∗

n

)
, (12.54)

where the partial derivative ∂|ẽ(n)|2/∂w∗
n is effectively the gradient of the cost function with respect

to w∗
n, given in (12.32). The term ,wH

n can be expressed by using (12.39) as

,wH
n =

(
wn+1 − wn

)H

= µ
(
ẽ(n)*′∗(wT

nsn

)
s∗
n − 1

2
*′(wT

nsn

)
snẽ

∗(n)
)H

= µ
(

sT
n*′(wT

nsn

)
ẽ∗(n) − 1

2
ẽ(n)sH

n *′∗(wT
nsn

))
. (12.55)

Substituting (12.32) and (12.55) into the TSE in (12.54) yields

|ē(n)|2 = |ẽ(n)|2 − 4µℜ
((

sT
n*′(wT

nsn)ẽ
∗(n) − 1

2
ẽ(k)sH

n *′∗(wT
nsn)

)

·
(
ẽ(n)*′∗(wT

nsn)s∗
n − 1

2
*′(wT

nsn)snẽ
∗(n)

))

= |ẽ(n)|2
(

1−5µ|*′(wT
nsn)|2∥sn∥2

2|
)

+ 4µℜ
(

sT
n*′(wT

nsn

)
ẽ∗(n)*′(wT

nsn

)
snẽ

∗(n)
)
. (12.56)

Given that the term ℜ(·) is negligible, upon applying the statistical expectation operator on both sides
of (12.56), we have

E
[
|ē(n)|2

]
= E

[
|ẽ(n)|2

(
1 − 5µ|*′(wT

nsn)|2∥sn∥2
2|

)]
. (12.57)

By using the standard statistical independence assumption between ẽ(n) and sn, we have

E
[
|ē(n)|2

]
= E

[
|ẽ(n)|2

]
E

[
1 − 5µ|*′(wT

nsn)|2∥sn∥2
2

]
. (12.58)

Therefore, the convergence condition in (12.51) is satisfied for

0 < E
[
5µ|*′(wT

nsn)|2∥sn∥2
2

]
< 1. (12.59)

Solving for µ, we obtain the range of the step size for QESNs to converge as

0 < µ <
1

E
[
5|*′(wT

nsn)|2∥sn∥2
2

] . (12.60)
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Similarly, the bounds on µ to ensure the convergence of AQESNs are given by

0 < µ <
1

E
[
5|*′(waT

n sa
n)|2∥sa

n∥2
2

] . (12.61)

The upper bounds of both (12.60) and (12.61) are governed by the expected value of the network state
vector and the gradient of the fully quaternion nonlinearity. However, we should note that the upper
bound of µ for the AQESNs in (12.61) is smaller than that of the standard QESNs in (12.60), due to
the larger size of the augmented network state vector sa

n.

12.4 SIMULATIONS
To verify the suitability of QESNs to cater for 3D and 4D nonlinear processes and our idea of exploiting
the noncircularity of multidimensional data through the widely linear model, simulations in a prediction
setting were performed for both benchmark synthetic second-order circular (proper) and noncircular
(improper) 3D and 4D signals and real-world noncircular, nonlinear and nonstationary 3D body motion
and wind data. In order to implement the adequate buildup of QESNs, which are guaranteed to maintain
the echo state property, the randomly selected input, internal and feedback weights Wip , Win and Wb

were generated from a uniform distribution in range [−1,1], and the spectral radius of Win was 0.8.
The internal weights connections contained in Win were sparse with 5% interconnectivity, so that
the reservoir contained many loosely coupled subsystems, and a rich variety of dynamics of different
internal units can be achieved [24,25]. The fully quaternion tanh(q) function was employed as the
activation function of QESNs. The step size µ of the gradient descent algorithms used to train the
output layers of QESNs and augmented (widely linear) QESNs (AQESNs) was set at µ = 0.02. To
assess the quantitative performance of learning algorithms, it is convenient to use the prediction gain
Rp, defined as

Rp = 10log10
σ̂ 2

q

σ̂ 2
e

, (12.62)

which is a logarithmic ratio between the estimated signal variance σ̂ 2
q and estimated prediction error

variance σ̂ 2
e . Five input neurons and five output neurons were used and the different dynamical reservoir

sizes of ESNs were investigated. Due to their random network preparation, all the simulation results
were obtained by averaging 100 independent simulation trials.

In the first set of simulations, we considered a benchmark synthetic second-order circular (proper)
4D autoregressive AR(4) process, given by [2]

u(n) = 1.79u(n − 1) − 1.85u(n − 2) + 1.27u(n − 3) − 0.41u(n − 4) + q(n), (12.63)

driven by a circular quaternion white Gaussian noise (QWGN) q(n) = qr(n) + ıqı(n) + ȷqȷ (n) +
κqκ (n), where qr(n), qı(n), qȷ (n) and qκ(n) are independent realizations of real-valued WGN ∼
N (0,1).
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FIGURE 12.2

Geometric view of circularity via a 3D scatter diagram. (A) Circular 4D AR(4) signal. (B) Noncircular and
nonlinear 3D chaotic Lorenz signal. For illustration purpose, only the ı-, ȷ - and κ-components of the
quaternion AR(4) signal are provided.

Table 12.1 Comparison of pre-
diction gains Rp of standard
QESNs and AQESNs, as well
as strictly linear QLMS and its
augmented (widely linear) ver-
sion AQLMS adaptive learning
algorithms, for the benchmark
signals

Rp [dB] 4D AR(4) 3D Lorenz
QLMS 3.42 5.24

AQLMS 3.38 10.02
QESNs 3.39 14.54

AQESNs 3.35 17.96

The benchmark noncircular and nonlinear signal considered was the chaotic 3D Lorenz attractor,
governed by coupled partial differential equations [49]

∂x

∂t
= α(y − x),

∂y

∂t
= x(ρ − z) − y,

∂z

∂t
= xy − βz, (12.64)

where α = 10, ρ = 28 and β = 8/3, and it was constructed as a pure quaternion by using the three
imaginary components.

Fig. 12.2 shows the 3D scatter plots of the considered benchmark signals, in which the 4D AR(4)
process had a rotation invariant distribution (circular), while the 3D Lorenz signal possessed an ob-
vious noncircular nature. Table 12.1 compares the prediction gains Rp of QESNs and AQESNs with
100 internal neurons in the dynamical reservoir, as well as strictly linear quaternion least mean square
(QLMS) and its widely linear version augmented QLMS (AQLMS) adaptive learning algorithms [16,
37,43], for the benchmark signals considered. For the strictly linear and circular 4D AR(4) signal,
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FIGURE 12.3

One-step ahead prediction of the noncircular and nonlinear 3D Lorenz signal using QESNs and AQESNs.
Amplitudes of the actual and predicted signals are plotted. (A) ȷ -component. (B) κ-component.

the performance of AQESNs was comparable but slightly worse than that of QESNs. This is because
the widely linear model–based input layer of AQESNs simplifies into the strictly linear one used in
QESNs, as the weights associated with the involutions of the input vector, that is, {b, c, d} in (12.41),
vanish theoretically; however, in practice, small weight deviations from zero arise from the employed
learning algorithm. For the noncircular 3D Lorenz signal, there was a significant overall performance
improvement in terms of the prediction gain Rp when the widely linear model–based AQESNs were
employed as compared with the strictly linear QESNs. This is due to their faster and more accurate
tracking capability of the signal dynamics arising from their natural exploitation of data noncircularity,
as indicated by Fig. 12.3. The main motivation to design quaternion-valued nonlinear learning algo-
rithms with enhanced modeling capacities for nonlinear dynamic systems, as compared with the strictly
linear learning algorithms, has been also justified by observing the higher prediction gains achieved by
QESNs and AQESNs than those of QLMS and AQLMS algorithms, on the nonlinear and noncircular
3D Lorenz signal. As expected, for strictly linear and circular 4D AR(4) process, all the considered
learning algorithms yielded comparable prediction results.

In the next set of simulations, we investigated the usefulness of the QESNs and AQENs for a
real-world 3D noncircular and nonstationary body motion tracking experiment. The 3D motion data
were recorded using the XSense MTx 3-DOF orientation tracker, placed on the left and right hands,
the left and right arms and the waist of an athlete performing Tai Chi movements. The movement of the
left arm was used as a pure quaternion input, and QESNs and AQESNs with 200 internal neurons were
employed for this experiment. Fig. 12.4A–C show that along all the three dimensions, AQESNs were
able to track the left arm dynamics of the athlete more quickly and more accurately than their strictly
linear counterparts, which is further supported by the evolution of their mean square errors (MSEs),
shown in Fig. 12.4D.

Wind forecasting at short scales plays an important role in renewable energy, smart grids, air pol-
lution modeling and aviation safety [50]. To further demonstrate the modeling ability of the designed
quaternion-valued nonlinear learning systems in the fusion of heterogeneous data sources, a 4D wind
model was considered in such a way that the 3D noncircular, nonlinear and nonstationary wind speed
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FIGURE 12.4

Tracking capabilities and MSE performances, evaluated over all the three dimensions, of QESNs and AQESNs
on a one-step ahead prediction of the 3D left arm motion of an athlete performing Tai Chi movements.
(A) ı-component. (B) ȷ -component. (C) κ-component. (D) MSE (dB).

data in east, north and vertical directions constituted the vector part of the quaternion, and the air tem-
perature was used as a scalar (real) part. Note that the validity of incorporating air temperature in wind
forecasting has been justified by the fact that the air temperature has a high degree of correlation with
the wind speed [51]. Fig. 12.5A shows the overall prediction performance over the three dimensions of
the wind speed data for QESNs with 100 internal neurons, where an improved accuracy was achieved
by incorporating the widely linear model into QESNs. It is interesting to note that the widely linear
model enabled AQESNs to more closely follow the highly nonstationary trend of the air temperature,
as indicated by Fig. 12.5B. From Fig. 12.5A and Fig. 12.5B, we also observe that the strictly linear
QLMS learning algorithm, and even its augmented version AQLMS, were not able to track the highly
nonlinear dynamics of the heterogeneous 4D wind data. To further illustrate the robustness of the per-
formance advantage of using widely linear model within QESNs, we compared the performances of
both augmented and standard QESNs against the size of the dynamical reservoir, an important param-
eter that influences the performance of ESNs, as it reflects their universal approximation capability.
Generally speaking, an ESN with a larger reservoir can learn the signal dynamics with higher accu-
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FIGURE 12.5

One-step ahead prediction of the 4D wind data using QESNs and AQESNs with 100 internal neurons, and
strictly linear QLMS and AQLMS learning algorithms. (A) Magnitude of the 3D wind speed. (B) Air temperature.

FIGURE 12.6

Performance comparison of QESNs and AQESNs over a range of reservoir sizes on one-step ahead prediction
of the 4D wind data.

racy. This is confirmed in Fig. 12.6, where the performances of QESNs and AQESNs are investigated
against the reservoir size. In all cases, the AQESNs outperformed their standard counterparts.



286 CHAPTER 12 ECHO STATE NETWORKS FOR MULTIDIMENSIONAL DATA

12.5 DISCUSSION AND CONCLUSION
We have introduced QESNs for nonlinear adaptive filtering of 3D and 4D processes. This is achieved
by employing full quaternion nonlinear activation functions with local analyticity, allowing for first-
order differentiability at the operating point to design quaternion-valued gradient descent algorithms.
Unlike currently existing quaternion-valued RNNs, such as the fully connected quaternion RNNs and
the quaternion Hopfield neural networks [52], with well-prepared sparse connected dynamical reser-
voir prior to training, QESNs require training only for the weights connecting the hidden layer and the
readout neurons, significantly reduce computational complexity and, hence, enable the possibility to
build up large-scale quaternion RNNs with acceptable computational costs. To further make QESNs
optimal for the generality of quaternion-valued signals (both second-order circular and noncircular),
the widely linear model has been incorporated into QESNs to introduce AQESNs. The performance
advantage of exploiting data noncircularity through the widely linear model has been illustrated by
simulations over a range of noncircular synthetic 3D and 4D signals and for real-world noncircular,
nonlinear and nonstationary 3D body motion recordings and 4D wind data via a fusion of heteroge-
neous data sources.
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