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Nonlinear Adaptive Prediction of Complex-Valued
Signals by Complex-Valued PRNN

Su Lee Goh, Student Member, IEEE, and Danilo P. Mandic, Senior Member, IEEE

Abstract—A complex-valued pipelined recurrent neural net-
work (CPRNN) for nonlinear adaptive prediction of complex
nonlinear and nonstationary signals is introduced. This architec-
ture represents an extension of the recently proposed real-valued
PRNN of Haykin and Li in 1995. To train the CPRNN, a complex-
valued real time recurrent learning (CRTRL) algorithm is first de-
rived for a single recurrent neural network (RNN). This algorithm
is shown to be generic and applicable to general signals that have
complex domain representations. The CRTRL is then extended to
suit the modularity of the CPRNN architecture. Further, to cater
to the possibly large dynamics of the input signals, a gradient
adaptive amplitude of the nonlinearity within the neurons is in-
troduced to give the adaptive amplitude CRTRL (AACRTRL). A
comprehensive analysis of the architecture and associated learning
algorithms is undertaken, including the role of the number of
nested modules, number of neurons within the modules, and input
memory of the CPRNN. Simulations on real-world and synthetic
complex data support the proposed architecture and algorithms.

Index Terms—Complex-valued analysis, multidimension fore-
casting, nonlinear adaptive prediction, RNNs.

I. INTRODUCTION

REAL-world data are often subject to environmental noise
and acquisition errors, which makes the application of

standard linear modeling and adaptive filtering techniques
difficult or inadequate. In addition, novel signal processing
disciplines focus on classes of signals where nonlinearity and
multimodality play a major role. Therefore, there is a need for
advanced adaptive signal processing algorithms for all aspects
of adaptive filtering applications. In this context, applications
of adaptive prediction are manifold and include not only the
common applications in signal processing but applications in
the areas of biological and medical engineering, physics, and
earth sciences as well [13], [28].

The theory of linear adaptive filters is already well estab-
lished [2], [23], whereas architectures and algorithms for non-
linear adaptive filtering are still emerging [28]. Some recent re-
sults have shown that neural networks (NNs) are powerful tools
for nonlinear adaptive filtering of real-world data [4], [6], [28],
which is mainly due to their ability to uniformly approximate
any continuous function on a compact domain [5], [7], [15],
[20]. Given their ability to learn from examples, the applica-
tion of neural networks in the area of nonlinear adaptive predic-

Manuscript received August 14, 2003; revised June 9, 2004. The work
of D. Mandic was supported in part by the Royal Society under Grant
G503/24543/SM. The associate editor coordinating the review of this manu-
script and approving it for publication was Prof. Tulay Adali.

The authors are with the Department of Electrical and Electronic En-
gineering, Imperial College London, London SW7 2AZ, U.K. (e-mail:
su.goh@imperial.ac.uk; d.mandic@imperial.ac.uk).

Digital Object Identifier 10.1109/TSP.2005.845462

tion and modeling offers potentially better performance com-
pared with standard statistical and linear filtering methods [13],
[28]. In this context, the so-called time delay neural networks
(TDNNs) have been employed traditionally as nonlinear adap-
tive filters; however, due to the fact that they carry no memory,
the memory of such a system is governed by the size of the
time delay input line [4], [38]. This, in turn, restricts their prac-
tical applicability since, for quality performance, the length of
the tap input line required increases with the complexity of a
signal in hand. This represents a major obstacle for applications
in real-time signal processing, since, for instance, the backprop-
agation algorithm requires a large number of training data and
a great deal of training to converge [13], [33], [38].

Unlike “static” feedforward networks, recurrent neural net-
works (RNNs) possess rich internal nonlinear dynamics, which
makes them capable of modeling more complex processes than
their feedforward counterparts1 [4], [29], [30]. Fully connected
recurrent neural networks (FCRNNs) with internal feedback
(memory) allow for modeling of complex dynamics [29] and,
hence, have been recently considered as flexible tools for
nonlinear adaptive filtering [28]. For real-time applications, the
Real Time Recurrent Learning (RTRL) algorithm (see Williams
and Zipser [40]) has been widely used to train FCRNNs. To
process highly nonlinear real-valued nonstationary signals,
Haykin and Li introduced the Pipelined Recurrent Neural
Network (PRNN) [14]: a computationally efficient modular
nonlinear adaptive filter. Based on a concatenation of
modules, each consisting of FCRNNs with neurons, the
PRNN was proven to possess improved capability of tracking
nonlinearity as compared to single RNNs while maintaining
low computational complexity ( for the PRNN with

modules, as compared to for the FCRNN). The
PRNN architecture also helps to circumvent the problem of
vanishing gradient, due to its spatial representation of a tem-
poral pattern and feedback connections within the architecture
[27], [36]. This architecture has been successfully employed
for a variety of applications where complexity and nonlinearity
pose major problems, including those speech processing [24],
ATM traffic modeling [3], and communications [16], [34].
More insight into the PRNN performance is provided in [14],
[26], and [27].

In modern disciplines, efficient data models are often
complex-valued (communications, biomedical, radar), and
consequently, adaptive filtering algorithms have been extended
to process signals in the complex domain . Notice that prop-

1Nonlinear autoregressive (NAR) processes can be modeled using feedfor-
ward networks, whereas nonlinear autogressive moving average (NARMA) pro-
cesses can be represented using RNNs.
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erties of complex signals are not only varying in terms of their
statistical nature but also in terms of their bivariate or complex
nature [8]. To process such signals, in 1975, Widrow et al. intro-
duced the complex least mean square (CLMS) algorithm [39].
Later in the 1990s, to cater for the possibly nonlinear nature
of complex signals, extensions of real-valued algorithms to the
complex domain include the class of complex backpropagation
algorithms [9], [18], [22]. For the case of RNNs, a complex
variant of the RTRL algorithm has been introduced in [17]. No-
tice that these extensions are nontrivial, especially in the case of
neural nonlinear adaptive filters, where one of the major issues
to be solved is that of a suitable complex nonlinear activation
function (see Kim and Adali [20]), [37]. According to Liou-
ville’s theorem, the only bounded and analytic function in is
constant [31], and to that cause, meromorphic functions2 have
been employed as complex nonlinear activation functions (due
to their property that they are analytic everywhere except for a
discrete subset of ). At their singular points, these functions
tend to infinity, thus removing the possibility of encountering
essential singularities3 [19], [20]. Due to these problems, for
convenience, previous studies have mostly focused on the
so-called split-complex activation functions4 (AF) [1], [20].
The split-complex approach has been shown to yield reasonable
performance for some applications in channel equalization [1],
[17], [22], as well as for applications where there is no strong
coupling between the real and imaginary part within the com-
plex signal. However, for the common case where the inphase
(I) and quadrature (Q) components are strongly correlated,
algorithms employing the split-complex activation function
tend to yield poor performance [8]. Notice that split-complex
algorithms cannot calculate the true gradient unless the real and
imaginary weight updates are mutually independent. Therefore,
the problems encountered with split-complex learning algo-
rithms for nonlinear adaptive filtering include the following: i)
The solutions are not general since split-complex AFs are not
universal approximators [20]; ii) split-complex AFs are not an-
alytic, and hence, the Cauchy–Riemann equations do not apply
[19], [37]; iii) split-complex algorithms are strictly speaking
not “fully” complex [20], and such algorithms underperform in
applications where complex signals exhibit strong component
correlations [28]; iv) these algorithms do not have a generic
form of their real-valued counterparts, and hence, their signal
flow-graphs are fundamentally different [32].

Although there have been attempts to devise fully complex
algorithms for RNNs, a general fully complex CRTRL has been
lacking to date. To this cause, we first derive a CRTRL for a
single recurrent neural network with a general “fully” complex

2A meromorphic function is a single-valued function that is analytic in all
but possibly a discrete subset of its domain, and at those singularities, it must
approach infinity “like a polynomial” (these exceptional points must be poles
and not essential singularities).

3A singularity that is neither removable nor isolated is known as essential
singularity [31].

4In a split-complex AF, the real and imaginary component of the complex-
valued input signal x are split and fed through the real-valued activation func-
tion f (x) = f (x), x 2 . The functional expression of the split-complex
activation function is given by f(x) = f (Re(x)) + jf (Im(x)). Notice that
this approach does not account for a “fully” complex signal, where the signal
components are not independent.

Fig. 1. Fully connected recurrent neural network for prediction.

activation function. This makes complex RNNs suitable for
adaptive filtering of general complex-valued nonlinear and non-
stationary signals. In addition, the derived CRTRL algorithm
is generic and represents a natural extension of the real-valued
RTRL. Next, for real-time applications, to be able to cope with
unknown and large dynamics of the inputs, we introduce an
adaptive amplitude into the nonlinear activation function of
a neuron within an RNN. This way, following the approach
from [10], [35], the adaptive amplitude CRTRL (AACRTRL)
algorithm is derived. The complex PRNN (CPRNN) is then
introduced as an extension of the real PRNN [14], and both
the CRTRL and AACRTRL algorithms are modified to suit the
CPRNN architecture. The analysis is supported by examples on
prediction for several fundamental classes of complex-valued
signals, including complex nonlinear, complex colored, and
real-life complex-valued nonstationary signals.

The paper is organized in the following manner. In Section II,
we present a general CRTRL algorithm for the FCRNN. In Sec-
tion III, the CPRNN is introduced. In Section IV, an adaptive
amplitude CRTRL algorithm for the CPRNN is derived. This
followed by comprehensive simulations in Section V. Finally,
the paper concludes in Section VI.

II. COMPLEX-VALUED REAL-TIME RECURRENT LEARNING

(CRTRL) ALGORITHM

A. Complex RNN

Fig. 1 shows an FCRNN, which consists of neurons with
external inputs and feedback connections. The network has

two distinct layers, namely, the external input-feedback layer
and a layer of processing elements. Let denote the com-
plex-valued output of a neuron at time index
and the external complex-valued input vector. The
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overall input to the network then represents a concatena-
tion of vectors , and the bias input and is given
by

(1)

where , denotes the vector transpose operator,
and superscripts and denote, respectively, the real and
imaginary part of a complex number or complex vector.

For the th neuron, its weights form a -di-
mensional weight vector ,

, which are encompassed in the complex-valued
weight matrix of the network .

The output of every neuron can be expressed as

(2)

where is a complex nonlinear activation function of a neuron,
and

net (3)

is the net input to th node at time index . For simplicity, we
state that

(4)

B. Complex-Valued RTRL Algorithm

For nonlinear adaptive prediction applications, there is only
one neuron for which the output is defined by The output
error, which consists of its real and imaginary part,
can be expressed as

(5)

(6)

where is the teaching signal. For real-
time applications and gradient descent algorithms, the cost func-
tion is given by [39]

(7)

where denotes the complex conjugate operator. The CRTRL
aims at minimizing the error by recursively altering the weight
cofficients based on the gradient descent. Thus, for every weight

, , , we have

(8)

where is the learning rate, which is typically a small positive
constant. Notice that is a real-valued function, and to cal-
culate the gradient, we are required to derive partial derivates

of with respect to both the real and imaginary part of the
weight coefficients separately, that is

(9)

Calculating the gradient of the cost function with respect to
the real part of the complex weight gives5

(10)

Similarly, the partial derivative of the cost function with re-
spect to the imaginary part of the complex weight yields

(11)

The terms , ,
, and are measures of the

sensitivity of the output of the th neuron at time instant to
a small variation in the value of . For convenience, we
denote the above sensitivities as ,

, ,
and . For a gradient algorithm to
be operating in the complex domain, we require a complex
activation function to be analytic in , that is, it needs to
satisfy the Cauchy–Riemann6 equations. To make use of the
Cauchy–Riemann equations, the partial derivatives of
(sensitivities) along the real and imaginary axes should be
made equal, that is, for every neuron [19]

(12)

Equating the real and imaginary parts on both sides of (12),
we obtain

(13)

A compact representation of becomes

(14)

with the initial condition

(15)

5We derive the CRTRL for adaptive filtering applications (only one output
y ); however, the derivation is general enough to be straightforwardy extended
to an RNN with more than one output.

6Cauchy–Riemann equations state that the partial derivatives of a function
f(z) = u(x; y)+ jv(x; y) along the real and imaginary axes should be equal:
f (z) = (@u=@x) + j(@v=@x) = (@v=@y) � j(@u=@y). Therefore, we
obtain the Cauchy–Riemann equations as (@u=@x) = (@v=@y), (@v=@x) =
�(@u=@y).
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Fig. 2. Pipelined Recurrent Neural Network (PRNN).

Extending the approach from [40] to the complex-
valued case, the update for the sensitivity

can be derived as

(16)

where

(17)

is the Kronecker delta. Finally, the total weight matrix update is
given by

(18)

where are the matrix sensitivities , ,
. This completes the derivation of the gen-

eral “fully” complex RTRL. Notice that the derived algorithm
has a generic form of the real-valued RTRL [40].

III. COMPLEX-VALUED PIPELINED RECURRENT NEURAL

NETWORK (CPRNN)

The nonlinear adaptive filtering architecture, as proposed
by Haykin and Li, consists of two sections, namely, the non-
linear and linear one. The nonlinear section, which is called
the pipelined recurrent neural network (PRNN), is essentially
a modular RNN and performs nonlinear filtering, whereas the
linear section represented by a finite impulse response (FIR) filter
performs linear filtering of the signal. This cascaded combination
of the PRNN and an FIR filter has been shown to be suitable
for nonlinear prediction of real-valued nonstationary signals.

A. Complex PRNN

The CPRNN architecture contains modules of FCRNN’s
connected in a nested manner, as shown in Fig. 2. The

-dimensional external complex-valued signal vector
is delayed by time steps

before feeding the module , where , de-
notes the -step time delay operator, and is the -di-
mensional identity matrix. The complex-valued weight vectors

are embodied in an dimensional weight
matrix . All the modules operate using the
same weight matrix (a full mathematical description of the
PRNN is given in [14] and [26]). The following equations pro-
vide a mathematical description of the CPRNN

(19)

(20)

for (21)

for (22)

For simplicity, we state that

(23)

The overall output of the CPRNN is , that is, the output
of the first neuron of the first module. At every time instant ,
for every module , , the one-step-ahead instan-
taneous prediction error associated with a module is then
defined as

(24)

We can split the error term into its real and imaginary part,
given by

(25)
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Fig. 3. An FIR filter.

Since the CPRNN consists of modules, a total of for-
ward prediction error signals are calculated. The cost function of
the PRNN introduced in [14] is now modified to suit processing
in the complex domain and is given by

(26)

which represent the weighted sum of instantaneous squared er-
rors from outputs of the CPRNN modules, where is a (pos-
sible variable) forgetting factor. The forgetting factor
plays a very important role in nonlinear adaptive filtering of
nonstationary signals and is usually set to unity for stationary
signals. Since, for gradient descent learning, we aim to mini-
mize (26) along the entire CPRNN, the weight update for the

th weight at neuron at the time instant is calculated as

(27)

Following the derivation of the CRTRL, for and
, the weight update of every weight within

the CPRNN can now be expressed as

(28)

Notice that this weight update has the same generic form as
the weight update of the real-valued PRNN [14].

B. Linear Subsection

The linear subsection of the CPRNN consists of an FIR filter,
which is shown in Fig. 3. The complex-valued least mean square

(CLMS) algorithm is used to update the tap weights of this filter,
for which the output is given by

(29)

where is the output

from the first CPRNN module ,
the complex weight vector, and

the number of tap inputs. The output is a prediction of
the sample of the original signal. The error signal
required for adaptation of finite weights is obtained as the
difference between the desired response and the output of
the filter and is given by

(30)

The weight update term for the CLMS algorithm is given by
[39]

(31)

where is the learning rate.

IV. ADAPTIVE AMPLITUDE CRTRL (AACRTRL) ALGORITHM

Before performing the actual nonlinear filtering by neural
nonlinear filters, a signal is usually first standardized to match
the dynamical range of the nonlinearity within the neuron
model.7 Therefore, making the amplitude of the activation
fuction adaptive might prove beneficial and help avoid some
common problems experienced in neural network training,
such as saturation, which dramatically slows down learning
when the net input is mapped onto the tails of the sigmoid. In
this section, we derive such a direct gradient descent algorithm
for complex RNNs equipped with an adaptive amplitude of
the activation function, which is called the adaptive amplitude
CRTRL algorithm (AACRTRL).

The idea behind this learning algorithm is to obtain an acti-
vation function that adapts its range according to the dynamical
changes of the input signal. Following the approach from [35],
we can rewrite the nonlinear activation function as

net net (32)

where is a variable that governs the amplitude of
, and is the (referent) activation

function with a unit amplitude. Thus, if , then
. To make the amplitude of

7For instance, if the activation function of a real-valued neuron is the logistic
function �(x) = (1=1+ e ) for which the mean is 1/2, then the range of the
output is (0,1), and the inputs should be rescaled to match the mean and range of
the logistic function. This causes problems in real-time signal processing when
the range of the input is not known beforehand. Notice that such problems are
not experienced with linear filters.
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be time varying, we propose the update for the
gradient adaptive amplitude as8 [11], [21], [35]

(33)

where denotes the gradient of the objective function
with respect to the amplitude of the activation function ,

and denotes the step size of the algorithm and is chosen to be
a small positive constant. From (33), we have

(34)

where

(35)

The partial derivatives from (34) can be computed as

(36)

Since , the second term in (36)
vanishes. This way, we have

(37)

For simplicity, let all the neurons in the complex RNN share
a common amplitude , that is, , to yield

(38)

This way, a simplified gradient update of the adaptive ampli-
tude of the activation function of a neuron becomes

(39)

which concludes the derivation of the AACRTRL.

V. SIMULATIONS

For the experiments, the nonlinearity at the neuron was
chosen to be the complex logistic sigmoid function

(40)

where . The value of the slope of was ,
and the value of the learning rate for the CPRNN architecture
was , whereas the learning rate for the FIR filter was

. The forgetting factor for the CPRNN architecture was

8Notice that this strategy can be applied for all the nonlinear functions for
which �( ; x) =  �(x), which is the case with the logistic, tanh, and many
other commonly used activation functions.

TABLE I
PREDICTION GAIN R VERSUS THE NUMBER OF MODULES M FOR

WIND SIGNAL, WITH p = 1 AND p = 4

Complex-valued signals used for simulations were chosen to
belong to different classes of signals, namely, nonlinear (42),
colored (41), two complex-valued nonstationary (synthetic)
speech signals , ,9 real-life wind data10 (velocity and direc-
tion), and radar data.11 The colored input signal was a stable
complex process given by

(41)

with complex white Gaussian noise (CWGN)
as the driving input. The real and imaginary com-
ponent of the CWGN were mutually
independent sequences having equal variances so that

. The complex nonlinear input signal was [30]

(42)

The measurement used to assess the performance was the pre-
diction gain given by [14]

db (43)

where denotes the variance of the input signal , whereas
denotes the estimated variance of the forward prediction

error . Following the approach from [14], the initializa-
tion procedure for all the experiments was epochwise, with 200
epochs consisting of 1000 samples each.

A. Effect of the Number of Modules and Tap Input Signals

To investigate the effect of the number of tap inputs to
the performance, the prediction gain was calculated for the
number of modules varying from to and
for a fixed number of neurons within a module . No-
tice that corresponds to the case of a single FCRNN.
Table I shows the prediction gains for a complex real-world
nonlinear and nonstationary wind signal for both and

and all the other relevant parameters shared. The case
with achieved better performance as compared to the
case with . The prediction gain increased with the number
of modules of CPRNN. Notice that in both cases, saturated
after . Table II further illustrates the relationship between

and with (stable performance) for a complex wind
signal. The results shows that improves with increasing

9Publicly available from “http://www.commsp.ee.ic.ac.uk/~mandic.”
10Publicly available from “http://mesonet.agron.iastate.edu./request/awos/

1min.php.”
11Publicly available from “http://soma.ece.mcmaster.ca/ipix/.”
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TABLE II
PREDICTION GAIN R VERSUS THE NUMBER OF EXTERNAL INPUTS

p FOR WIND SIGNAL

TABLE III
PREDICTION GAIN R VERSUS THE NUMBER OF NEURONS N FOR

WIND SIGNAL

Fig. 4. Relationship between prediction gainR , number of modulesM , and
number of neurons N for nonlinear prediction of the complex wind signal.

from to but started to decrease from
onwards, which is attributed to overfitting. On the whole, the
CPRNN showed a fairly consistent performance over a range of
input sizes .

B. Effect of the Number of Neurons Within a Module

To investigate the effect of the number of neurons within a
module on the performance, prediction gain was calculated
for the number of neurons within each FCRNN, representing
a module of the FCRNN varying from to .
From the previous experiments, the number of modules was
set to , and the number of tap inputs . Table III
shows the prediction gains for the complex wind signal and all
the other learning parameters shared. From Table III, increasing
the number of neurons within a module did not improve the
performance of the network. Fig. 4 illustrates the results shown
in Tables I and III. From Fig. 4, CPRNN is robust to the change
of the number of neurons within the modules and performs con-
sistently for . There is a saturation in performance for
large number of modules and neurons within a module.

C. Effect of Employing Adaptive Amplitude in the Nonlinearity

For the experiments in this section, the step size of the adap-
tive amplitude adaptation was set to . The number of

modules was , the number of neurons within a module
, and the number of tap inputs . For simulations,

100 iterations of independent trials were averaged on prediction
of the colored (41) and nonlinear (42) input signals.

Sensitivity of CRTRL to the choice of initial amplitude
is illustrated in Table IV, where the influence of the initial am-
plitude is depicted for both the colored (41) and non-
linear (42) stochastic inputs. From Table IV, the performance
improved with the increase in . However, for initial values

, the algorithm did diverge. For further simulations,
we chose . The reason for the algorithm to diverge
for initial values is due to the relationship in
RNNs.12 As the initial amplitude increases, the effective
steepness of increases, and the sigmoid approaches a hard
limiter, which is equivalent to an increase in the learning rate.
The relationship between the slope within a general activation
function and the learning rate in the RTRL-based learning of
a general RNN and PRNN is thoroughly addressed in [12] and
[25].

Table V shows a comparison of the prediction gains between
the CRTRL and AACRTRL for various classes of signals.
From the experiment, we can see that employing an adaptive
amplitude in the nonlinearity improves the performance of the
CPRNN architecture for all the input classes used at a cost of a
small increase in computational complexity.

Fig. 5 shows the averaged performance curves over 100
iterations of independent trials for the complex-value real-time
recurrent learning (CRTRL) algorithm and the adaptive ampli-
tude complex-valued real-time recurrent learning (AACRTRL)
algorithm on prediction of nonlinear (42) and colored (41)
input by CPRNN. From Fig. 5, the AACRTRL exhibits a faster
initial convergence than CRTRL, together with an improved
performance.

To further depict the behavior of the gradient adaptive ampli-
tude of the activation function, Fig. 6 illustrates a time variation
of the adaptive amplitude tested on a real-world speech
recording that, for the purpose of this experiment, was made
complex valued. The AACRTRL was clearly able to adapt the
amplitude of the nonlinearity according to the changes in the
dynamics of the input.

To verify the advantage of using the fully CRTRL over split
CRTRL, we compared the performances of CPRNN trained
with these algorithms in experiments on real-world radar and
wind data. The results of simulations for radar data are shown
in Fig. 7. Observe that the fully CRTRL algorithm was more
stable and has exhibited better and more consistent performance
than the split CRTRL algorithm. Fig. 8 shows the prediction
performance of the CPRNN applied to the complex-valued
real-world (velocity and angle components) wind signal in both
the split and fully CRTRL case. The CPRNN was able to track
the complex wind signal when the fully CRTRL algorithm was
employed, which was not the case for split CPRNN.

12For example, consider functions � = (1=1 + e ), � = (3=1 +
e ), and � = 1. The derivatives of those functions at the origin are � =
1=4 and � = 3=4, which is due to the difference in their amplitudes. Notice
that the slope � in both functions was identical.
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TABLE IV
PREDICTION GAIN R VERSUS INITIAL AMPLITUDE  (0) FOR THE NONLINEAR (42) AND COLORED (41) SIGNAL

TABLE V
COMPARISON OF PREDICTION GAINS R BETWEEN THE FIXED AND TRAINABLE AMPLITUDE CRTRL

Fig. 5. Performance of CPRNN on a nonlinear and colored signals. (a) Performance of CPRNN on prediction of nonlinear input (42). (b) Performance of CPRNN
on prediction of colored input (41).

Fig. 6. Adaptive amplitudes for AACRTRL on complex speech signal s1.

Table VI shows the comparison of average prediction gains
(average over 100 independent trials) between the CPRNN +
FIR and a single FCRNN for several general classes of complex
signals. In all the cases, there was a significant improvement in
the prediction gain when the CPRNN + FIR architecture was
employed over the performance of a single module FCRNN.

Fig. 7. Performance curve of fully CRTRL and split CRTRL for radar signal.

VI. CONCLUSIONS

A complex-valued pipelined recurrent neural network
(CPRNN) for prediction of nonlinear and nonstationary com-
plex-valued signals has been presented. First, the complex-
valued real-time recurrent learning (CRTRL) algorithm for
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Fig. 8. Prediction of complex wind signal using CPRNN+FIR. Solid curve: actual wind signal. Dashed curve: nonlinear prediction. (a) Performance based on
fully complex activation function; (b) performance based on split complex activation function.

TABLE VI
COMPARISON OF PREDICTION GAINS R BETWEEN THE CPRNN + FIR AND FCRNN SCHEME

single fully connected complex-valued recurrent neural net-
works (FCRNNs) has been introduced, which has been derived
for a general meromorphic complex activation function of a
neuron. The proposed CRTRL algorithm has been shown to
be generic and applicable for a variety of classes of complex
signals, including those with strong component correlations.
The CRTRL has then been modified to suit the CPRNN archi-
tecture. For nonlinear prediction of nonlinear and nonstationary
complex-valued signals with an unknown dynamical range,
a variant of the CRTRL algorithm with a gradient adaptive
amplitude of the nonlinearity within the neurons (AACRTRL)
has been derived. The performance of the CPRNN architecture
and proposed algorithms has been evaluated on the classes of
complex-valued nonlinear, colored, and real-life signals. Both
synthetic and real-life complex-valued nonstationary signals
have been used in the experiments to further demonstrate the
performance improvement provided by the CPRNN over a
single FCRNN.
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