
Neural Networks letter

Recurrent neural networks with trainable amplitude of activation functions

Su Lee Goh*, Danilo P. Mandic

Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK

Accepted 9 May 2003

Abstract

An adaptive amplitude real time recurrent learning (AARTRL) algorithm for fully connected recurrent neural networks (RNNs) employed as

nonlinear adaptive filters is proposed. Such an algorithm is beneficial when dealing with signals that have rich and unknown dynamical

characteristics. Following the approach from [Trentin, E. Networkwith trainable amplitude of activation functions, Neural Networks 14 (2001) 471],

three different cases for the algorithm are considered; a common adaptive amplitude shared among all the neurons; each layer has its own adaptive

amplitude; different adaptive amplitude for each neuron. Experimental results show the AARTRL outperforms the standard RTRL algorithm.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The most frequently applied neural network architectures

are the feedforward networks and recurrent networks.

Feedforward (FF) networks represent static nonlinear

models and can have multilayer architecture. Recurrent

networks are dynamic networks and their structures are

fundamentally different from the static ones, because they

contain feedbacks (Mandic & Chambers, 2001). Recurrent

neural networks (RNNs) can yield smaller structures than

nonrecursive feedforward neural networks in the same way

that infinite impulse response (IIR) filters can replace longer

finite impulse response (FIR) filters. The feedback charac-

teristics of RNNs enable them to acquire state represen-

tation, which make them suitable for applications such as

nonlinear prediction and modelling, adaptive equalization

of communication channels, speech processing, plant

control and automobile engine diagnostics (Haykin, 1999).

Thus, RNNs offer an alternative to the dynamically driven

feedforward networks (Haykin, 1999). RNNs have tra-

ditionally been trained by the Real Time Recurrent Learning

(RTRL) algorithm (Williams & Zipser, 1989) which

provides the training process of the RNN. Another

algorithm referred to as Back-propagation-through-time

(BPTT) can also be used for training the RNN. However,

due to the computational complexity of the BPTT algorithm

compared to the more simpler and efficient RTRL

algorithm, we will be using the RTRL algorithm to train

the RNN. In the paper by Trentin (2001), he has showed the

importance of having adaptive amplitude of activation

functions for the case of FF neural networks. Here, we

embark upon the concept by Trentin and extend the

derivation of the RTRL algorithm and introduce trainable

amplitude of the activation function. This is important for

nonlinear activation function since this way there is no need

to standardised and rescale input signals to match the

dynamical range of the activation function. The RTRL

equipped with the adaptive amplitude can be employed

where the dynamical range of the input signal is not known a

priori. This way, the Adaptive Amplitude Real Time

Recurrent Learning (AARTRL) algorithm is derived. The

analysis is supported by examples of nonlinear prediction

and Monte Carlo Analysis in which the AARTRL outper-

forms the RTRL.

2. Derivation of the fully connected recurrent neural

network for the formulation of the real time learning

algorithm

The set of equations which describe the RNN given in

Fig. 1 is

yiðkÞ ¼ FðviðkÞÞ; i ¼ 1;…;N ð1Þ
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viðkÞ ¼
XpþqþN

n¼1

wi;nðkÞunðkÞ ð2Þ

uT
i ðkÞ ¼½sðk 2 1Þ;…; sðk 2 pÞ; 1; y1ðk 2 1Þ;…; y1

ðk 2 qÞ; y2ðk 2 1Þ;…; yNðk 2 1Þ� ð3Þ

where the unity element in Eq. (3) corresponds to the bias

input to the neurons. The output values of the neurons are

denoted by y1;…; yN and the input samples are given by s:

For the nth neuron, its weights form a ðp þ q þ NÞ £ 1

dimentional weight vector wT
i ¼ ½wi;1;…;wi;pþqþN�; where

p is the number of external inputs, q the feedback

connection of the first neuron and N is the number of

neurons in the RNN. RTRL based training of the RNN for

nonlinear adaptive filtering is based upon minimising the

instantaneous squared error at the output of the first neuron

of the RNN (Williams & Zipser, 1989), which can be

expressed as minðe2ðkÞÞ ¼ minð½sðkÞ2 y1ðkÞ�
2Þ; where eðkÞ

denotes the error at the output of the RNN and sðkÞ is the

desired signal. This way, for a cost function EðkÞ ¼ 1
2

e2ðkÞ;

the weight matrix update becomes

Dwi;nðkÞ ¼ 2h
›EðkÞ

›wi;nðkÞ
¼ 2heðkÞ

›eðkÞ

›wi;nðkÞ
ð4Þ

Since the external signal vector s does not depend on the

elements of w; the error gradient becomes

›eðkÞ

›wi;nðkÞ
¼ 2

›y1ðkÞ

›wi;nðkÞ
ð5Þ

This can be rewritten as

›y1ðkÞ

›wi;nðkÞ
¼F0ðv1ðkÞÞ

›v1ðkÞ

›wi;nðkÞ

¼F0ðv1ðkÞÞ
XN
i¼1

›yiðk21Þ

›wi;nðkÞ
w1;iþpþqðkÞþdinunðkÞ

 !
ð6Þ

where

din¼
1 i¼n

0 i–n

(
ð7Þ

Under the assumption, also used in the RTRL algorithm

(Williams & Zipser, 1989), that when the learning rate h is

Fig. 1. Full recurrent neural network for prediction.
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sufficiently small, we have

›yiðk21Þ

›wi;nðkÞ
<

›yiðk21Þ

›wi;nðk21Þ
; i¼1;…;N ð8Þ

›y1ðk2iÞ

›wi;nðkÞ
<

›y1ðk2iÞ

›wi;nðk2iÞ
; i¼1;2;…;q ð9Þ

Introducing a triply indexed set of variables p
j
i;n to

characterize the RTRL algorithm for the RNN, the

sensitivities

›yjðkÞ

›wi;lðkÞ

(Haykin, 1999; Williams & Zipser, 1989) become

p
j
i;nðkÞ¼

›yjðkÞ

›wi;nðkÞ
1#j;i#N;1#n#pþqþN ð10Þ

p
j
i;nðkþ1Þ¼F0ðvjðkÞÞ

XN
m¼1

wj;mðkÞp
m
i;nðkÞþdijunðkÞ

" #
ð11Þ

with initial conditions

p
j
i;nð0Þ¼0 ð12Þ

To simplify the presentation, we introduce three new

matrices, the N£ðNþpþqÞ matrix PiðkÞ; the N£ðNþpþqÞ

matrix UjðkÞ; and the N£N diagonal matrix FðkÞ as (Haykin,

1999)

PjðkÞ¼
›yðkÞ

›wjðkÞ
; y¼½y1ðkÞ;…;yNðkÞ�;j¼1;2;…;N ð13Þ

ð14Þ

FðkÞ¼diagðF0ðuTðkÞw1ðkÞÞ;…;F0ðuTðkÞwNðkÞÞÞ ð15Þ

Pjðkþ1Þ¼FðkÞ½UjðkÞþWaðkÞPjðkÞ� ð16Þ

where Wa denotes the set of those enteries in W which

correspond to the feedback connections.

3. Derivation of gradient-based algorithms to learn

amplitudes

The AARTRL algorithm relies on the amplitude of the

nonlinear activation function to be adaptive according to

the change in the dynamics of the input signals. Extending

the approach from Trentin (2001), we can express the

activation function as

FðkÞ ¼ liðkÞ �FðkÞ ð17Þ

where li denotes the amplitude of the nonlinearity, FðkÞ;

whereas �FðkÞ denotes the activation function with a unit

amplitude. Thus if li ¼ 1 it follows that FðkÞ ¼ �FðkÞ: The

update for the gradient adaptive amplitude is given by

(Trentin, 2001)

liðk þ 1Þ ¼ liðkÞ2 r7liðkÞ
EiðkÞ ð18Þ

EiðkÞ ¼
1
2

e2
i ðkÞ ¼

1
2
½sðkÞ2 yiðkÞ�

2 ð19Þ

where 7liðkÞ
EiðkÞ denotes the gradient of the cost function

with respect to the amplitude of the activation function l

and r denotes the step size of the algorithm and is a small

constant. From Eq. (19), the gradient can be obtained as

7liðkÞ
EiðkÞ ¼

›EiðkÞ

›liðkÞ
¼ eiðkÞ

›eiðkÞ

›liðkÞ
¼ 2eiðkÞ

›yiðkÞ

›liðkÞ
ð20Þ

where

yiðkÞ ¼ liðkÞ �FðviðkÞÞ ¼ liðkÞ �FðuT
i ðkÞ·wiðkÞÞ ð21Þ

From Eqs. (20) and (21), we compute the partial derivative

as
›yiðkÞ

›liðkÞ
¼ �FðuT

i ðkÞ·wiðkÞÞ þ liðkÞ �F
0ðuT

i ðkÞ·wiðkÞÞ

�
›½uT

i ðkÞ·wiðkÞ�

›liðkÞ

¼ �FðuT
i ðkÞ·wiðkÞÞ þ liðkÞ �F

0ðuT
i ðkÞ·wiðkÞÞ

�
›

›liðkÞ

Xp

n¼1

wi;nsðk 2 nÞ þ wi;pþ1ðkÞ

 

þ
Xq

m¼1

wi;pþmþ1ðkÞy1ðk 2 mÞ

þ
XN
l¼1

w1;pþqþlðkÞylðk 2 lÞ

!
ð22Þ

Since
›liðk 2 1Þ

›liðkÞ
¼ 0

the second term of Eq. (22) vanishes. This way we have

7liðkÞ
EiðkÞ ¼

›EiðkÞ

›liðkÞ
¼ 2eiðkÞ �FðviðkÞÞ ð23Þ

We next consider three cases, that is when all the neurons in

the RNN share a common l; when l is kept common within

a layer and when every neuron has a different l:

3.1. Case 1: single l over the whole network

In this case liðkÞ ¼ lðkÞ for all units for which Eq. (18)

holds. Thus we could write

yiðkÞ ¼ FðviðkÞÞ ¼ lðkÞ �FðviðkÞÞ ð24Þ
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lðk þ 1Þ ¼ lðkÞ2 r7lðkÞE1ðkÞ

¼ lðkÞ þ re1ðkÞ �Fðv1ðkÞÞ ð25Þ

3.2. Case 2: different l for each layer

In this case, the fully connected recurrent network can be

considered to have two layers. The first layer consists of the

output neuron and the second layer contains the rest of

the neurons in the network. This way

yiðkÞ ¼ FðviðkÞÞ ¼
l1ðkÞ �FðviðkÞÞ; i ¼ 1

l2ðkÞ �FðviðkÞÞ; i ¼ 2;…;N

(
ð26Þ

l1ðk þ 1Þ ¼ l1ðkÞ þ reiðkÞ �FðviðkÞÞ

l2ðk þ 1Þ ¼ l2ðkÞ þ reiðkÞ �FðviðkÞÞ

ð27Þ

3.3. Case 3: different li for each neuron of the network

This is the most general case where each neuron has it

own amplitude adaptation l: In this case the equation

becomes

yiðkÞ ¼ FðviðkÞÞ ¼ liðkÞ �FðviðkÞÞ ð28Þ

liðk þ 1Þ ¼ liðkÞ2 r7liðkÞ
EiðkÞ

¼ liðkÞ þ reiðkÞ �FðviðkÞÞ ð29Þ

4. Simulations

For the experiments, the amplitude of the input signals

were scaled to be within the range [0,0.1] and the

nonlinearity at the neuron was chosen to be the logistic

sigmoid function,

FðxÞ ¼
lðkÞ

1 þ e2bx
ð30Þ

with a slope b ¼ 1; learning rate h ¼ 0:3 and an initial

amplitude lð0Þ ¼ 1: The step size of the adaptive amplitude

was chosen to be r ¼ 0:15: The architecture of the network

for this experiment consists of five neurons with tap input

length of 7 and feedback order of 7. The input signal was a

AR(4) process given by

rðkÞ ¼ 1:79rðk 2 1Þ2 1:85rðk 2 2Þ þ 1:27rðk 2 3Þ

2 0:41rðk 2 4Þ þ nðkÞ ð31Þ

with nðkÞ , N(0,1) as the driving input. The noise was

normally distributed Nð0; 1Þ: The nonlinear input signal

Fig. 2. Performance curve for recurrent neural networks for prediction of coloured input.
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was calculated as (Narendra & Parthasarathy, 1990)

zðkÞ ¼
zðk 2 1Þ

ð1 þ z2ðk 2 1ÞÞ
þ r3ðkÞ ð32Þ

Monte Carlo analysis of 100 iterations was performed on

the prediction of the coloured and nonlinear input signals.

Figs. 2 and 3 show, respectively, the performance curve of

the RTRL and AARTRL algorithm on coloured and

nonlinear input signals. For both cases, the AARTRL

algorithm outperformed the RTRL algorithm. The

AARTRL algorithm gives a faster error convergence. To

further investigate the algorithm, the AARTRL algorithm

was used to predict signals with rich dynamics such as

speech. Fig. 4 shows the plot of the adaptive amplitude, l:

Fig. 3. Performance curve for recurrent neural networks for prediction of nonlinear input.

Fig. 4. Adaptive amplitude for AARTRL having the same l in the whole network on speech signals.
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It is clearly shown that the amplitude of l adapts to the

dynamics of the signal accordingly. The quantitative

results simulations are summarized in Table 1. This table

shows the evaluation of the performance of the resulting

network given in terms the average value of the cost

function EðkÞ: From the experiment, case 3 has the best

performance compared to cases 1 and 2. According to

Trentin, although case 3 may seem more powerful,

allowing for training of individual amplitudes, the resulting

algorithm has more parameters meaning more compli-

cation and complexity involved.

5. Conclusion

The amplitude of the activation function in the RTRL

algorithm has been made adaptive by employing a gradient

descent based approach trainable amplitude. The proposed

algorithm has been shown to converge faster than the

standard RTRL algorithm for nonlinear adaptive prediction.
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Table 1

Mean Squared Error (MSE) obtained for each model on nonlinear and

coloured input

Learning algorithm model MSE obtained

Nonlinear input Coloured input

Average SD Average SD

RTRL with fixed amplitude 0.0146 0.0115 0.0309 0.019

RTRL with single trainable

amplitude

0.0118 0.0161 0.0120 0.0172

RTRL with ‘layer-by-layer’

trainable amplitude

0.0115 0.0182 0.0119 0.0172

RTRL with neuron-by-neuron

trainable amplitude

0.0110 0.0177 0.0116 0.0166
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