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Abstract

A real time recurrent learning (RTRL) algorithm with an adaptive-learning rate for nonlinear adaptive "lters realised
as fully connected recurrent neural networks (RNNs) is derived. The algorithm is obtained by minimising the instan-
taneous squared error at the output neuron for every time instant while the network is running. The algorithm normalises
the learning rate with the L

2
norm of the external input vector and a measure of the gradients at the neurons within the

network, and is hence referred to as the normalised RTRL (NRTRL) algorithm. Indeed, the algorithm degenerates into
the normalised least mean square (NLMS) algorithm for a linear-single-neuron network. For a neuron with a contractive
nonlinear activation function, the algorithm is shown to impose additional stability and faster convergence to the RTRL,
without signi"cant demands on additional computational complexity. The bounds imposed on the learning rate which
preserve convergence of the algorithm are also provided. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Es wird ein rekursiver Lernalgorithmus in Echtzeit (RTRL) mit adaptiver Lernrate fuK r nichtlineare adaptive Filter
abgeleitet, wobei es als vollstaK ndig verbundenes rekursives Neuronales Netzwerk realisiert wird. Der Algorithmus basiert
auf der Minimierung des augenblicklichen quadratischen Fehlers am Ausgangsneuron, der, waK hrend das Netzwerk
arbeitet, fuK r jeden Zeitpunkt berechnet wird. Der Algorithmus normalisiert die Lernrate mit Hilfe einer Kombination aus
der L

2
-Norm des externen Eingangsvektors und einer Messung der Gradienten an den Neuronen innerhalb des

Netzwerkes. Deshalb wird er als normalisierter RTRL-Algorithmus (NRTRL) bezeichnet. Der Algorithmus vereinfacht
sich zu einem normalisierten Kleinste-Quadrate Algorithmus mit gleitender Mittelung (NLMS), wenn das Netzwerk nur
aus einem einzelnen linearen Neuron besteht. FuK r ein Neuron mit kontrahierender nichtlinearer Anregungsfunktion
liefert der Algorithmus im Vergleich zum RTRL zusaK tzliche StabilitaK t und schnellere Konvergenz, ohne signi"kant
hoK here Rechenleistung zu benoK tigen. Die Grenzen der Lernrate, die eine Konvergenz des Algorithmus sicherstellen,
werden ebenfalls gegeben. ( 2000 Elsevier Science B.V. All rights reserved.

Re2 sume2

Nous deH rivons un algorithme d'apprentissage reH current en temps reH el (RTRL) à taux d'apprentissage adaptatif pour
du "ltrage adaptatif non lineH aire reH aliseH comme des reH seaux de neurones reH currents entièrement connecteH s. L'algorithme
est obtenu par minimisation de l'erreur quadratique instantaneH e au neurone de sortie pour chaque instant
temporel lorsque le reH seau est en marche. L'algorithme normalise le taux d'apprentissage avec la norme L

2
du

vecteur d'entreH e externe et une mesure du gradient aux neurones dans le reH seau, et est donc reH feH rence comme eH tant
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l'algorithme RTRL normaliseH (NRTRL). En e!et, l'algorithme deH geH nère en l'algorithme des moindres carreH s moyens
normaliseH s pour un reH seau à neurone unique lineH aire. Pour un neurone avec une fonction d'activation non lineH aire
contractive, on montre que l'algorithme impose une stabiliteH additionnelle et une convergence plus rapide par rapport au
RTRL, sans exigences signi"catives sur la complexiteH de calcul additionnelle. Nous fournissons eH galement les limites
imposeH es au taux d'apprentissage qui preH servent la convergence de l'algorithme. ( 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The most popular gradient-based algorithms for
training recurrent neural networks (RNNs) are the
backpropagation through time (BPTT) [24], recur-
rent backpropagation (RBP) [21], and real time
recurrent learning (RTRL) [25] algorithms. Among
them, the RTRL is best suited for real time appli-
cations [9]. However, it su!ers from a slow
convergence, which is typical for all gradient-based
algorithms.

In the area of linear adaptive "lters, the problem
of slow convergence of the least mean square
(LMS) algorithm has been addressed by utilising an
adaptive learning rate (step-size). The idea behind
the variable learning-rate LMS is that the algo-
rithm should be normalised by a function of the
input data to the "lter, in order to provide faster
convergence of the algorithm, and a smaller value
of misadjustment [10]. Some of the criteria which
have been proposed for the adaptive step size LMS
are: squared instantaneous error [12]; sign changes
of successive samples of the gradient [7]; reducing
the squared error at each instant [19]; cross cor-
relation of input and error [23]; and the square of
a time-averaged estimate of the autocorrelation of
two consecutive error terms [2]. The most popular
variant of the LMS algorithm which uses an adap-
tive step size is the normalised LMS (NLMS) algo-
rithm, whose derivation involves optimisation by
the method of Lagrange multipliers [10].

In the area of feedforward neural networks,
backpropagation is the most widely used gradient-
based algorithm. The most popular algorithm for
backpropagation with an adaptive learning rate is
the delta-bar-delta rule [11], which also su!ers
from sensitivity to noise and relative instability

[9,6]. A further attempt to improve convergence of
backpropagation-based algorithms was via a pos-
teriori gradient algorithms [14] and normalised
backpropagation [18].

Hence, there is a need for an RTRL-based learn-
ing algorithm with an adaptive learning rate which
would impose similar stabilisation and conver-
gence e!ects on training of RNNs as normalisation
imposes on the LMS algorithm. Here, we derive
such an algorithm, which is optimal in the sense
that it is a solution of an optimisation task, which
minimises the instantaneous squared error at the
output neuron for every discrete time instant, while
the network is running.

2. The problem of learning rate adaptation

A single RNN is shown in Fig. 1. For the
ith neuron, its weights form a (p#N#1)]1-
dimensional weight vector wT

i
(k)"[w

i,1
(k),2,

w
i,p`N`1

(k)], where p is the number of external
inputs, N is the number of feedback connections,
and ( ) )T denotes the vector transpose operation.
One additional element of the weight vector w is the
bias input weight. The feedback consists of the
delayed output signals of the RNN. The following
equations fully describe the RNN from Fig. 1
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(k)"U(v

i
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Fig. 1. Single recurrent neural network.

where the (p#N#1)]1 dimensional vector
u comprises both the external and feedback inputs
to a neuron, as well as the unity valued constant
bias input. The nonlinear activation function of
a neuron is denoted by U and is assumed to be
continuously di!erentiable.

2.1. Weight adaptation in RNNs

The equations that de"ne the adaptation in
single-output recurrent neural networks are

e(k)"s(k)!U(v
1
(k)), (4)

W(k#1)"W(k)!g+W(k)
e2(k), (5)

where e(k) is the instantaneous error at the output
neuron, s(k) is some teaching (desired) signal,
W(k)"[w

1
(k),2,w

N
(k)] is the weight matrix which

consists of N column vectors w
1
,2,w

N
which

represent the set of weights associated with every
neuron. The learning rate g is supposed to be
a small positive real number chosen by the user.
Notice that the weight vectors consist of two sub-
vectors, namely

w
j
"C

w
a,j

w
b,j
D, j"1,2,N (6)

where w
a,j

corresponds to the weights associated
with the feedback inputs, whereas the weights with
the index b corresponds to the weights associated
with the external and bias inputs. Hence, the weight
matrix W can be split into two submatrices, W

a
and W

b
.

For a particular initial choice of g, the problem of
gradient-based training can be generalised as [5]

minimise DDW(k#1)!W(k)DD
p

(7)

subject to s(k)!U(wT
1
(k#1)u(k))"0 (8)

where DD ) DD
p

denotes the L
p

norm. Notice that the
term (8) actually represents the a posteriori error, as
shown in [14].

In order to obtain the expression for an optimal
adaptive learning rate, which would minimise the
instantaneous squared error at the output neuron,
we consider the expression for the instantaneous
error at the output neuron (4). By expanding the
error term (4) with a Taylor series, we obtain

e(k#1)"e(k)#
N
+
i/1

p`N`1
+
j/1

Le(k)

Lw
i,j

(k)
*w

i,j
(k)

#

1

2

N
+
i/1

p`N`1
+

m/1

N
+
j/1

p`N`1
+
n/1

L2e(k)

Lw
i,m

(k)Lw
j,n

(k)

]*w
i,m

(k)*w
j,n

(k)#2 (9)

where only the "rst two terms will be considered.
Due to the internal feedback in RNNs, the par-

tial derivatives Le(k)/Lw
i,j

(k) are not straightfor-
ward to calculate. However, since both W(k) in (5)
and the Taylor series expansion in (9) include the
same partial derivatives, as does the RTRL algo-
rithm for an RNN, we can obtain the necessary
partial derivatives directly from the RTRL.

3. The RTRL algorithm

The RTRL training algorithm for RNNs is based
upon minimising the instantaneous squared error
at the output of the "rst neuron of the RNN [25,9],
which can be expressed as

min(e2(k))"min([s(k)!y
1
(k)]2). (10)
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Hence, the correction for the lth weight of neuron
n at the time instant k can be derived as

*w
n,l

(k)"!g
L

Lw
n,l

(k)
e2(k)

"!2ge(k)
Le(k)

Lw
n,l

(k)
"2ge(k)
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1
(k)

Lw
n,l

(k)
. (11)

This can be further evaluated as

Ly
1
(k)

Lw
n,l

(k)
"U@(v

1
(k))

Lv
1
(k)

Lw
n,l

(k)

"U@(v
1
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+
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where

d
nl
"G

1, n"l,

0, nOl.
(13)

Under the assumption, commonly used in gradient
based optimisation algorithms, and also used in the
RTRL algorithm [25,20], that when the learning
rate g is su$ciently small, we have

Lya(k!1)

Lw
n,l

(k)
+

Lya(k!1)

Lw
n,l

(k!1)
, (14)

and the recursive equation for gradient updates
becomes

pj
n,l

(k#1)"U@(v
j
)C

N
+

m/1

w
j,m

(k)pm
n,l

(k)#d
nj

u
l
(k)D,

(15)

with the values for j, n, and l as in (17) and the initial
conditions

pj
n,l

(0)"0, (16)

where

pj
n,l

(k)"
Ly

j
(k)

Lw
n,l

(k)
,

1)j, n)N, 1)l)p#1#N. (17)

Finally, the correction to the, say, w
n,l

(k) weight can
be expressed as

*w
n,l

(k)"2ge(k)p1
n,l

(k). (18)

4. An improved learning rate for the RTRL
algorithm

From the previous analysis, the weight matrix
update can be expressed as

*W T(k)"2ge(k)
Ly

1
(k)

LW(k)
"2ge(k)P

1
(k), (19)

where P
1
(k) represents the matrix of gradients at

the output neuron with respect to W(k).
To simplify the presentation, we introduce three

new matrices, the N](N#p#1) matrix P
j
(k), the

N](N#p#1) matrix U
j
(k), and the N]N diag-

onal matrix F(k), as

P
j
(k)"

Ly(k)

Lw
j
(k)

,

y"[y
1
(k),2, y

N
(k)], j"1,2,2, N, (20)

U
j
(k)"C

0

F

u(k)

F

0 DQjth row, j"1,2,2, N, (21)

F(k)"diag(U@(wT
1
(k)u(k)),2,U@(wT

N
(k)u(k))). (22)

From (15), the gradient updating equation regard-
ing the recurrent neuron can be symbolically ex-
pressed as

P
j
(k#1)"F(k)[U

j
(k)#P

j
(k)W

a
(k)],

j"1,2,2, N. (23)

The correction to the weight vector of the jth neur-
on, at the time instant k becomes

*wT
j
(k)"2g(k)e(k)P(j)

1
(k) (24)

where P(j)
1

represents the jth row of the gradient
matrix P

1
(k). In addition, the terms Le(k)/Lw

i,j
(k)

become *w
i,j

(k)/g(k)e(k).
Furthermore, the instantaneous output error e(k)

can be expressed as

e(k)"s(k)!U(wT
1
(k)u(k))

"[s(k)!U(wT
1
(k#1)u(k))]

# [U(wT
1
(k#1)u(k))!U(wT

1
(k)u(k))] (25)
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where the "rst term in square brackets represents
the a posteriori error [14], and vanishes if the
condition (8) is satis"ed. In order to insure that the
second term in (25) is small in magnitude, it is
desirable to have a contractive nonlinear activation
function of a neuron. Function U is a contraction
on [a, b]3R, if DU(b)!U(a)D)aDb!aD, where
0(a(1 is a small, positive number [8,13]. In this,
although, rather generalised case, the instan-
taneous output error becomes proportional to
DDW(k)!W(k!1)DD

2
.

5. The optimal learning rate

Combining (9), (23), and (24), and neglecting the
higher-order terms in the Taylor series expansion
(9), we obtain

e(k#1)"e(k)!2g(k)e(k)
N
+
i/1

p`N`1
+
j/1

C
Ly

1
(k)

Lw
i,j

(k)D
2

"e(k)!2g(k)e(k)
N
+
i/1

DDP(i)
1
(k)DD2

2
. (26)

The instantaneous squared error is therefore given
by

e2(k#1)"e2(k)C1!2g(k)
N
+
i/1

DDP(i)
1
(k)DD2

2D
2
. (27)

In order to obtain the minimum of (27), we di!erenti-
ate with respect to g, and obtain the optimal value of
learning rate g

OPT
(k) for an RTRL trained RNN as

g
OPT

(k)"
1

2+N
i/1

DDP(i)
1
(k)DD2

2

. (28)

Notice that this relationship is closely related to the
learning rate in the NLMS algorithm for linear
adaptive "lters [16]. Indeed, for a linear activation
function of a neuron, and the network with only
one neuron, the adaptive learning rate from (28)
becomes exactly the learning rate obtained in the
NLMS algorithm. For a linear-NLMS "lter, the
learning rate is normalised by the tap input power
of the input signal, whereas in the nonlinear, recur-
rent case, the normalisation factor is the tap input
power to an RNN multiplied by the derivative of
the nonlinear activation function at the current
point net(k)"wT

1
(k)u(k), and augmented by the

product of gradients and feedback weights. Hence,

we will refer to the result from (28) as the nor-
malised real time recurrent learning (NRTRL)
algorithm.

Due to the relationship between the a posteriori
learning in the RNNs, and the optimal adaptive
learning rate, obtained by the NRTRL algorithm,
the performance of such a learning algorithm is
expected to be better than the performance of the
corresponding RTRL algorithm with the "xed
learning rate [14,16].

Although the derived optimal learning rate does
not include any constraint on the nonlinear activa-
tion function of a neuron, the slope of the nonlinear
activation function and the learning rate are not
independent [17]. It is therefore desirable to pre-
serve contractivity of the nonlinear activation func-
tion of a neuron.

It should be noted that depending on the chosen
sigmoid activation function (logistic, tanh, etc.), the
term in the denominator of g

OPT
(28) might need to

have a small positive constant added. This also
complies with the properties of higher order deriva-
tives of sigmoid activation functions, where the
truncated term in the Taylor series expansion is
always positive.

6. Convergence of the NRTRL algorithm

Although the optimal learning rate for the RTRL
algorithm is given by (28), the algorithm should
converge for a range of values of g. Since we are
dealing with nonlinear adaptive "lters for predic-
tion of nonstationary signals, no assumptions com-
monly used in the analysis of convergence of linear
adaptive "lters, such as, Gaussianity, wide sense
stationarity, or independence between the learning
rate and the weights in the network, are allowed.
Hence, we "rst consider the asymptotic conver-
gence of the magnitude of the instantaneous predic-
tion error.

Consider again (26), written as

e(k#1)"e(k)!2g(k)e(k)
N
+
i/1

DDP(i)
1
(k)DD2

2

"e(k)C1!2g(k)
N
+
i/1

DDP(i)
1
(k)DD2

2D. (29)
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An adaptive process converges asymptotically if
[10]

De(k)DP0 as kPR, (30)

which gives

De(k#1)D"Ke(k)C1!2g(k)
N
+
i/1

DDP(i)
1
(k)DD2

2DK
)De(k)DK1!2g(k)

N
+
i/1

DDP(i)
1
(k)DD2

2 K. (31)

This will converge uniformly to zero for kPR if
and only if [4,26]

K1!2g(k)
N
+
i/1

DDP(i)
1
(k)DD2

2 K(1. (32)

Hence, the bounds on the learning rate g(k) which
provide convergence of the NRTRL algorithm are

0(g(k)(
1

+N
i/1

DDP(i)
1
(k)DD2

2

. (33)

6.1. Mean squared error convergence and
convergence bounds

Following the approach from [3], we derive the
mean squared error convergence conditions and
the bounds on convergence of the proposed algo-
rithm. In order to introduce noise in the system,
observe the relationship between the NLMS and
NRTRL, and reduce complexity of the derivation,
we consider a single-neuron adaptive recurrent per-
ceptron. Let us "rst introduce noise into the system
by assuming

s(k)"q(k)#U(w8 Tu(k)), (34)

where w8 (k) are some optimal "lter weights. Conse-
quently,

e(k)"q(k)#U(w8 Tu(k))!U(wT(k)u(k)). (35)

The weight update equation now becomes

w(k#1)"w(k)#2g(k)q(k)P(k)

#2g(k)U(w8 T(k)u(k))P(k)

!2g(k)U(wT(k)u(k))P(k). (36)

If we introduce the misalignment vector as
m(k)"w(k)!w8 and subtract w8 from either side of
(36), we have

m(k#1)"m(k)#2g(k)q(k)P(k)

!2g(k)[U(wT(k)u(k))!U(w8 Tu(k))]P(k).

(37)

For a contractive U, the term in the square brackets
in (37) is bounded from above by aDDuT(k)m(k)DD,
0(a)1. To improve clarity, let us restrict
the analysis to an approximation P(k)+
U@(wT(k)u(k))u(k), which does not a!ect the general-
ity of the result. Now, we have

m(k#1))m(k)#2g(k)q(k)U@(net(k))u(k)

!2g(k)uT(k)m(k)aU@(net(k))u(k). (38)

Providing contractivity of U, U@(net(k)) is
bounded as 0(DU@(net(k))D)1 [15], and can be
replaced by its bound U@( ) )(c)1.

To derive the upper bound for the RTRL, we
include standard assumptions, such as the zero
mean noise assumption, and the independence
assumption between g, u, and m, and the above
derived bounds, we consider the homogeneous
part of (38)

E[m(k#1)]"E[m(k)]E[I!2cgu(k)uT(k)a], (39)

where E[ ) ] is the expectation operator. For con-
vergence,

0(E[DDI!2cg(k)u(k)uT(k)aDD](1 (40)

which for the upper limit of a and c gives

0(g(k)(EC
1

uT(k)u(k)D. (41)

This means that the IIR version of the NLMS
algorithm [22] is the upper bound for the single-
neuron RTRL algorithm. The mean-square and
steady-state mean-square convergence analysis can
be derived in the same spirit, and shown to be
bounded from above by the NRTRL.

7. Experimental result

An experiment was undertaken to support the
above analysis. For a simple single-neuron RNN,
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Fig. 2. Squared instantaneous prediction errors for the RTRL and NRTRL algorithms.

a comparison is made between the gradient learn-
ing with the "xed learning rate, and the NRTRL
algorithm. The initialisation procedure for both
experiments was the same, i.e. epochwise with 100
epochs of 100 samples, with the "xed learning rate.
After that, the squared instantaneous prediction
errors were calculated for both the standard RTRL
and the NRTRL algorithm. The signal on which
the simulation was performed was speech, because
of its nonstationary and nonlinear behaviour. The
content of the speech signal was Oak is strong and

2, whose sampled version can be found on the
author's WWW homepage [1]. Fig. 2 shows
the instantaneous squared prediction errors for the
RTRL and NRTRL. Indeed, the NRTRL algo-
rithm from Fig. 2(b), clearly achieves signi"cantly
better performance than the RTRL algorithm (Fig.
2(a)). To quantify this, for the measure of perfor-
mance in the form of the standard prediction gain,
as de"ned by the ratio of the original signal to
prediction error variances, the NRTRL achieved
7 dB better performance than the RTRL algorithm.

8. Conclusions

We have derived an optimal adaptive learning
rate real time recurrent learning (RTRL) algorithm
for continually running fully connected recurrent
neural networks (RNNs). The algorithm normalises
the learning rate of the RTRL and is hence referred
to as the normalised RTRL (NRTRL) algorithm.

The algorithm is optimal in the sense that it mini-
mises the instantaneous squared error at the output
neuron for every time interval while the network is
running. No assumptions on the input signal, such
as Gaussianity, or wide sense stationarity, or stat-
istical independence between the learning rate and
the weights in the network are required. The
NRTRL algorithm, which is derived based upon
the Taylor series expansion of the instantaneous
output error, is shown to exhibit behaviour corre-
spondent to that of the normalised LMS (NLMS)
algorithm. The NRTRL is stabilised by the
L

2
norm of the input data vector and local gradi-

ents in the network, and converges for a contractive
nonlinear activation function of a neuron. The
bound on the range of adaptive learning rates
which preserve convergence is shown to be the
reciprocal of the L

2
norm of gradients at the

output neuron. The additional computational com-
plexity involved is not signi"cant, when compared
to the entire computational complexity of the
RTRL algorithm, which makes the NRTRL suit-
able for real time applications. Simulation results
support the analysis.
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