
NOTE Communicated by Ronald Williams

Relating the Slope of the Activation Function and the
Learning Rate Within a Recurrent Neural Network

Danilo P. Mandic
Jonathon A. Chambers
Signal Processing Section, Department of Electrical and Electronic Engineering,
Imperial College of Science, Technology and Medicine, London, U.K.

A relationship between the learning rate η in the learning algorithm, and
the slope β in the nonlinear activation function, for a class of recurrent
neural networks (RNNs) trained by the real-time recurrent learning algo-
rithm is provided. It is shown that an arbitrary RNN can be obtained via
the referent RNN, with some deterministic rules imposed on its weights
and the learning rate. Such relationships reduce the number of degrees
of freedom when solving the nonlinear optimization task of finding the
optimal RNN parameters.

1 Introduction

Selection of the optimal parameters for a recurrent neural network (RNN)
is a rather demanding nonlinear optimization problem. However, if a re-
lationship between some of the parameters inherent to the RNN can be
established, the number of the degrees of freedom in such a task would be
smaller, and therefore the corresponding computation complexity would
be reduced. This is particularly important for real–time applications, such
as nonlinear prediction.

In 1996, Thimm, Moerland, and Fiesler (1996) provided the relationship
between the slope of the logistic activation function,

8(x) = 1
1+ e−βx , (1.1)

and the learning rate for a class of general feedforward neural networks
trained by backpropagation. The general weight–adaptation algorithm in
adaptive systems is given by

W(n) =W(n− 1)− η∇WE(n), (1.2)

where E(n) is a cost function, W(n) is the weight vector at the time instant
n, and η is a learning rate.

The gradient ∇WE(n) in equation 1.2 comprises the first derivative of
the nonlinear activation function, equation 1.1, which is a function of β

Neural Computation 11, 1069–1077 (1999) c© 1999 Massachusetts Institute of Technology



1070 Danilo P. Mandic and Jonathon A. Chambers

(Narendra & Parthasarathy, 1990). As β increases, so too will the step on
the error performance surface (Zurada, 1992). It therefore seems advisable
to keep β constant, say at unity, and to control the features of the learning
process by adjusting the learning rate η, thereby having one degree of free-
dom less, when all of the parameters in the network are adjustable. Such
reduction may be very significant for the nonlinear optimization algorithms,
running on a particular RNN.

2 Static and Dynamic Equivalence of Two Topologically
Identical RNNs

Because the aim is to eliminate either the slope β or the learning rate η from
the paradigm of optimization of the RNN parameters, it is necessary to de-
rive the relationship between a network with arbitrarily chosen parameters
β and η, and the referent network, so as to compare results. An obvious
choice for the referent network is the network with β = 1. Let us there-
fore denote all the entries in the referent network, which are different from
those of an arbitrary network, with the superscript R joined to a particular
variable, such as βR = 1. By static equivalence, we consider the calculation
of the output of the network, for a given weight matrix W(n), and input
vector u(n), whereas by dynamic equivalence, we consider the equality in
the sense of adaptation of the weights.

2.1 Static Equivalence of Two Isomorphic RNNs. In order to establish
the static equivalence between an arbitrary and referent RNN, the outputs
of their neurons must be the same,

yk(n) = yR
k (n) ⇔ 8(wk(n)uk) = 8

(
wR

k (n)uk

)
, (2.1)

where wk(n), and uk(n) are, respectively, the set of weights and the set
of inputs that belong to the neuron k. For a general nonlinear activation
function, we have

8(β,wk,u) = 8
(

1,wR
k ,u

)
⇔ βwk = wR

k . (2.2)

For the case of the logistic nonlinearity, for instance, we have

1
1+ e−βwku =

1

1+ e−wR
k u
⇔ βwk = wR

k , (2.3)

where the time index (n) is neglected, since all the vectors above are constant
during the calculation of the output values. As the equality (see equation 2.2)
can be provided for any neuron in the RNN, it is therefore valid for the
complete weight matrix W of the RNN.



Relating Slope of the Activation Function and Learning Rate 1071

The essence of the above analysis is given in the following lemma, which
is independent of the underlying learning algorithm for the RNN, which
makes it valid for two isomorphic RNNs of any topology and architecture.

Lemma. For an RNN with weight matrix W, whose slope in the activation func-
tion is β, to be equivalent in the static sense to the referent network, characterized
by WR, and βR = 1, with the same topology and architecture (isomorphic), as the
former RNN, the following condition,

βW =WR, (2.4)

must hold for every discrete time instant n while the networks are running.

2.2 Dynamic Equivalence of Two Isomorphic RNNs . The equivalence
of two RNNs, includes both the static equivalence and dynamic equivalence.
As in the learning process in equation 1.2, the learning factor η is multiplied
by the gradient of the cost function; we shall investigate the role of β in the
gradient of the cost function for the RNN. We are interested in a general
class of nonlinear activation functions where

∂8(β, x)
∂x

= ∂8(βx)
∂(βx)

∂(βx)
∂x

= 8′(βx)β = β ∂8(βx)
∂(βx)

= β ∂8(1, βx)
∂x

. (2.5)

In our case, it becomes

8′ (β,w,u) = β8′
(

1,wR,u
)
. (2.6)

Indeed, for a simple logistic function (see equation 1.1), we have 8′(x) =
βe−βx

(1+e−βx)2
= β8′(xR), where xR = βx denotes the argument of the referent

logistic function (with βR = 1), so that the network considered is equivalent
in the static sense to the referent network. The results, equations 2.5 and
2.6, mean that wherever 8′ occurs in the dynamical equation of the real-
time recurrent learning (RTRL)–based learning process, the first derivative
(or gradient when applied to all the elements of the weight matrix W) of
the referent function equivalent in the static sense to the one considered
becomes multiplied by the slope β.

The following theorem provides both the static and dynamic interchange-
ability of the slope in the activation function β and the learning rate η for
the RNNs trained by the RTRL algorithm.

Theorem. For an RNN with weight matrix W, whose slope in the activation
function is β and learning rate in the RTRL algorithm is η, to be equivalent in the



1072 Danilo P. Mandic and Jonathon A. Chambers

dynamic sense to the referent network, characterized by WR, βR = 1, and ηR, with
the same topology and architecture (isomorphic), as the former RNN, the following
conditions must hold:

1. The networks must be equivalent in the static sense, that is,

WR(n) = βW(n). (2.7)

2. The learning factor η of the network considered and the learning factor ηR of
the equivalent referent network must be related by

ηR = β2η. (2.8)

3 Extensions of the Result

It is now straightforward to show that the conditions for static and dynamic
equivalence of isomorphic RNNs derived so far are valid for a general RTRL-
trained RNN. The only difference in the representation of a general RTRL-
trained RNN is that the cost function comprises more squared error terms,
that is,

E(n) =
∑
j∈C

e2
j (n), (3.1)

where C denotes those neurons whose outputs are included in the cost
function.

Moreover, because two commonly used learning algorithms for training
RNNs, the backpropagation through time (BPTT) (Werbos, 1990) and the
recurrent backpropagation algorithms (Pineda, 1987), are derived based on
backpropagation and the RTRL algorithm, the above result follows imme-
diately for them.

4 Conclusions

The relationship between the slope β in a general activation function, and
the learning rate η in the RTRL-based learning of a general RNN has been
derived. Both static and dynamic equivalence of an arbitrary RNN and the
referent network with respect to β and η are provided. In that manner,
a general RNN can be replaced with the referent isomorphic RNN, with
slope βR = 1 and modified learning rate ηR = β2η, hence providing one
degree of freedom less in a nonlinear optimization paradigm of training the
RNNs. The results provided are straightforwardly valid for the BPTT and
recurrent backpropagation algorithms.



Relating Slope of the Activation Function and Learning Rate 1073

..

z-1

z-1

z-1

z-1

.. Outputs

Processing layer of
hidden and output

neurons

and

connections

I/O layer

..
..

..
..

..
..

(n-p)s

y

Feedforward

Feedback

Feedback
inputs

Inputs
External

(n-1)s

Figure 1: Single recurrent neural network.

Appendix

A.1 RNN and the RTRL Algorithm. The structure of a single RNN is
shown in Figure 1. For the kth neuron, its weights form a (p + F + 1) × 1–
dimensional weight vector wT

k = [wk,1, . . . ,wk,p+F+1], where p is the number
of external inputs and F is the number of feedback connections, one remain-
ing element of the weight vector w being the bias input weight. The feedback
connections represent the delayed output signals of the RNN. In the case
of the network shown in Figure 1, we have N = F. Such a network is called
a fully connected recurrent neural network (FCRNN) (Williams & Zipser,
1989). The following equations fully describe the FCRNN:

yk(n) = 8(vk(n)), k = 1, 2, . . . ,N (A.1)

vk(n) =
p+N+1∑

l=1

wk,l(n)ul(n) (A.2)

uT
i (n) =

[
s(n− 1), . . . , s(n− p), 1,

y1(n− 1), y2(n− 1), . . . , yN(n− 1)
]
, (A.3)



1074 Danilo P. Mandic and Jonathon A. Chambers

where the (p + N + 1)× 1–dimensional vector u comprises both the exter-
nal and feedback inputs to a neuron, with vector u having “unity” for the
constant bias input.

For the nonlinear time-series prediction paradigm, there is only one out-
put neuron of the RNN. RTRL-based training of the RNN is based on min-
imizing the instantaneous squared error at the output of the first neuron of
the RNN (Williams & Zipser, 1989; Haykin, 1994), which can be expressed as

min(e2(n)) = min([s(n)− y1(n)]2), (A.4)

where e(n) denotes the error at the output of the RNN, and s(n) is the
teaching signal. Hence, the correction for the lth weight of neuron k at the
time instant n can be derived as follows:

1wk,l(n) = −η ∂

∂wk,l(n)
e2(n)

= −2ηe(n)
∂e(n)
∂wk,l(n)

. (A.5)

Since the external signal vector s does not depend on the elements of W, the
error gradient becomes

∂e(n)
∂wk,l(n)

= − ∂y1(n)
∂wk,l(n)

. (A.6)

Using the chain rule, this can be rewritten as,

∂y1(n)
∂wk,l(n)

= 8′(v1(n))
∂v1(n)
∂wk,l(n)

= 8′(v1(n))

(
N∑
α=1

∂yα(n− 1)
∂wk,l(n)

w1,α+p+1(n)+ δklul(n)

)
, (A.7)

where

δkl =
{

1, k = l

0, k 6= l
. (A.8)

Under the assumption, also used in the RTRL algorithm (Robinson & Fall-
side, 1987; Williams & Zipser, 1989; Narendra & Parthasarathy, 1990), that
when the learning rate η is sufficiently small, we have

∂yα(n− 1)
∂wk,l(n)

≈ ∂yα(n− 1)
∂wk,l(n− 1)

. (A.9)



Relating Slope of the Activation Function and Learning Rate 1075

A triply indexed set of variables {π j
k,l(n)} can be introduced to characterize

the RTRL algorithm for the RNN, as

π
j
k,l =

∂yj(n)
∂wk,l

1 ≤ j, k ≤ N, 1 ≤ l ≤ p+ 1+N, (A.10)

which is used to compute recursively the values of π j
k,l for every time step

n and all appropriate j, k, and l as follows,

π
j
k,l(n+ 1) = 8′(vj)

[
N∑

m=1

wj,m(n)πm
k,l(n)+ δkjul(n)

]
, (A.11)

with the values for j, k, and l as in equation A.11 and the initial conditions

π
j
k,l(0) = 0. (A.12)

A.2 Proof of the Theorem. From the equivalence in the static sense, the
weight update equation for the referent network, can be written as

WR(n) =WR(n− 1)+ β1W(n), (A.13)

which gives

1WR(n) = β1W(n) = β
(

2ηe(n)
∂y1(n)
∂W(n)

)
= 2ηβe(n)51(n), (A.14)

where 51(n) is the matrix of π1
k,l(n).

In order to derive the conditions of dynamical equivalence between an
arbitrary and the referent RNN, the relationship between the appropriate
matrices 51(n) and 5R

1 (n) must be established. That implies that for all
the neurons in the RNN, the matrix 5(n), which comprises all the terms
∂yj

∂wk,l
, ∀wk,l ∈ W, j = 1, 2, . . . ,N must be interrelated to the appropriate

matrix 5R(n), which represents the referent network.
We shall prove this relationship by induction. For convenience, let us

denote net = w(n)u(n), and netR = wR(n)u(n).

Given: WR(n) = βW(n) (static equivalence)

8′(netR) = 1
β
8′(net) (activation function derivative)

yR
j (n) = 8(netR) = 8(net) = yj(n), j = 1, . . . ,N (activation).



1076 Danilo P. Mandic and Jonathon A. Chambers

Induction base: The recursion (see equation A.11) starts as

(π
j
k,l(n=1))R=8′(netR)

[
N∑

m=1

wR
j,m(n=0)πm

k,l(n=0)+δkjul(n=0)

]

= 1
β
8′(net)δkjul(n=0)= 1

β
π

j
k,l(n=1),

which gives 5R(n = 1) = 1
β
5(n = 1).

Induction step: (π j
k,l(n))

R = 1
β
π

j
k,l(n), and 5R(n) = 1

β
5(n) (assump-

tion)
Now, for the (n+ 1)st step we have:

(π
j
k,l(n+ 1))R = 8′(netR)

[
N∑

m=1

wR
j,m(n)π

m
k,l(n)+ δkjul(n)

]

= 1
β
8′(net)

[
N∑

m=1

βwj,m(n)
1
β
πm

k,l(n)+ δkjul(n)

]

= 1
β
π

j
k,l(n+ 1),

which means that,

5R(n+ 1) = 1
β
5(n+ 1).

Based on the established relationship and equation A.14, the learning
process for the referent RNN can be expressed as

1WR(n) = β1W(n) = 2βηe(n)51(n)

= 2β2ηe(n)5R
1 (n) = 2ηRe(n)5R

1 (n). (A.15)

Hence, the referent network with the learning rate ηR = β2η and slope βR =
1 is equivalent in the dynamic sense, with respect to the RTRL algorithm,
to an arbitrary RNN with slope β, and learning rate η.

Acknowledgments

We acknowledge the contributions of the anonymous reviewers in improv-
ing the clarity of the presentation of this work.

References

Haykin, S. (1994). Neural networks—A comprehensive foundation. Englewood
Cliffs, NJ: Prentice Hall.



Relating Slope of the Activation Function and Learning Rate 1077

Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynam-
ical systems using neural networks. IEEE Transaction on Neural Networks, 1(1),
4–27.

Pineda, F. (1987). Generalization of backpropagation to recurrent neural net-
works. Physical Review Letters, 59, 2229–2232.

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propaga-
tion network (Tech. Rep. CUED/F–INFENG/TR.1). Cambridge: Cambridge
University Engineering Department.

Thimm, G., Moerland, P., & Fiesler, E. (1996). The interchangeability of learning
rate and gain in backpropagation neural networks. Neural Computation, 8,
451–460.

Werbos, P. (1990). Backpropagation through time: What it does and how to do
it. Proceedings of the IEEE, 78(10), 1550–1560.

Williams, R., & Zipser, D. (1989). A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1, 270–280.

Zurada, J. (1992). Introduction to artificial neural systems. St. Paul, MN: West Pub-
lishing Company.

Received March 11, 1998; accepted October 29, 1998.


