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Abstract

We provide the relationship between the learning rate and the slope of a nonlinear activation function of a neuron within the framework of
nonlinear modular cascaded systems realised through Recurrent Neural Network (RNN) architectures. This leads to reduction in the
computational complexity of learning algorithms which continuously adapt the weights of such architectures, because there is a smaller
number of independent parameters to optimise. Results are provided for the Gradient Descent (GD) learning algorithm and the Extended
Recursive Least Squares (ERLS) algorithm, using a general nonlinear activation function of a neuron. The results obtained degenerate into
the corresponding results for single RNNs, when considering only one module in such cascaded systems.q 1999 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

There has been a recent interest in nonlinear cascaded
systems realised as Recurrent Neural Networks (RNN)s
(Haddad, Chellaboina & Fausz, 1998; Narendra & Partha-
sarathy, 1990; Suykens, DeMoor & Vanderwalle, 1997). An
example of such systems is the so-called Pipelined Recur-
rent Neural Network (PRNN) (Haykin & Li, 1995). It is a
complex modular network which consists of a number of
small-scale RNNs, and has been shown to represent
nonlinear Wiener–Hammerstein cascaded systems (Mandic
& Chambers, 1999a). However, a learning algorithm for
such a complex network has to perform a nonlinear optimi-
sation task on a number of parameters (Baltersee & Cham-
bers, 1998; Mandic & Chambers, 1998). For a learning
algorithm to be optimal, it has to adjust adaptively all the
parameters of the network, such as a learning rate, slope of
the activation function, forgetting factor in a cost function,
and even the number of modules in such networks, which is
rather complex. Hence, if a relationship between some of
the parameters inherent to the PRNN can be established, the

number of the degrees of freedom in such an optimisation
task would be reduced, as well as the corresponding compu-
tational complexity. This is particularly important for real-
time applications, such as nonlinear prediction.

Thimm, Moerland and Fiesler (1996) provided the rela-
tionship between the slope of the logistic activation function
b and the learning rateh for a class of general feedforward
neural networks trained by backpropagation, which use the
logistic nonlinear activation function. Similar relationships
have also been derived for the case of single recurrent neural
networks (Mandic & Chambers, 1999b). However, although
these results help to reduce the problem of computational
complexity in learning, they are dependent on the under-
lying learning algorithm, which was a gradient descent algo-
rithm. Here, we provide the static and dynamic equivalence
between a nonlinear cascaded system realised through a
PRNN described byb , h andW(n), and a referent PRNN
described bybR � 1; hR, andWR(n), and show that there is
a deterministic relationship between them, which allows one
degree of freedom less in the nonlinear optimisation task of
learning in the PRNN framework. The relationships are
provided for both the Gradient Descent (GD) and the
Extended Recursive Least Squares (ERLS) learning algo-
rithms based upon Baltersee and Chambers (1998), Haykin,
Sayed, Zeidler, Yee and Wei (1997), Mandic, Baltersee and
Chambers (1998), and a general nonlinear activation func-
tion of a neuron. The results obtained boil down to the
results for the RNN, for single module (cascade) systems.
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In Section 2, the PRNN is briefly introduced. In Section 3,
conditions of static equivalence between an arbitrary PRNN
and the referent PRNN are derived. Further, in Section 4,
conditions of the dynamic equivalence between an arbitrary
PRNN and the referent PRNN are provided for the most
commonly used learning algorithms. Section 5 concludes
the letter.

2. The PRNN

The PRNN is a modular neural network, and consists of a
certain numberM of RNNs as its modules, with each
module consisting ofN neurons. In the PRNN configuration,
theM modules, which are RNNs, are connected as shown in
Fig. 1. The �p × 1� dimensional external signal vector
sT�n� � �s�n 2 1�;…; s�n 2 p�� is delayed bym time steps
�z2mI � before feeding the modulem. All the modules oper-
ate using the same weight matrixW. The overall output
signal of the PRNN isyout�n� � y1;1�n�; i.e. the output of
the first neuron of the first module, as shown in Fig. 1.
The equations which describe the PRNN are

yi;k�n� � F�vi;k�n��; i � 1;…;M; k � 1;…;N �1�

vi;k�n� �
Xp1 N 1 1

l�1

wk;l�n�ui;l�n�; i � 1;…;M; k � 1;…;N

�2�

uT
i �n� � �s�n 2 i�;…; s�n 2 i 2 p 1 1�;1; yi11;1�n�;
yi;2�n 2 1�;…; yi;N�n 2 1��; 1 # i # M 2 1

uT
M�n� � �s�n 2 M�;…; s�n 2 M 2 p 1 1�;1; yM;1�n 2 1�;

yM;2�n 2 1�;…; yM;N�n 2 1��; i � M �3�

whereyi;k corresponds to the output of thekth neuron of the
ith module in the PRNN. The nonlinear activation function

commonly used is the logistic function

F�x� � 1
1 1 e2bx �4�

3. Static equivalence between an arbitrary and a referent
PRNN

By static equivalence between two PRNNs, we consider
the equivalence between the outputs of the neurons in an
arbitrary PRNN, and the outputs of the corresponding
neurons in a referent PRNN, for a fixed time-instantn, i.e.

yi;k�n� � yR
i;k�n� , F�b;wi;k�n�; ui;k�n��

� F�1;wR
i;k�n�; ui;k�n�� , bwi;k�n� � wR

i;k�n� �5�
wherewi;k�n� andui;k�n� are, respectively, the set of weights
and the set of inputs which belong to the neuronk in module
i. An example for the logistic nonlinearity (Thimm et al.,
1996)

1

1 1 e2buT
i;kwi;k

� 1

1 1 e2uT
i;kwR

i;k

, bwi;k � wR
i;k �6�

where the time index (n) is neglected, supports the result for
a general nonlinear activation function, given in expression
(5).

The following Lemma, which is independent of the
underlying learning algorithm for the PRNN, comprises
the above analysis.

Lemma 1. An arbitrary PRNN with weight matrixW(n),
and a slope in the activation functionb , is equivalent in the
static sense to the isomorphic referent PRNN, characterised
by WR�n�; andbR � 1; if

bW�n� �WR�n� �7�
for every discrete time instant n while the networks are
running.
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Fig. 1. Pipelined recurrent neural network.



4. Dynamic equivalence between an arbitrary and a
referent PRNN

While by static equivalence between two PRNNs we
consider the calculation of the outputs of the networks, for
a given weight matrix and input vector, by dynamic equiva-
lence, we consider the equality between two PRNNs in the
sense of adaptation of the weights, i.e. of the underlying
learning algorithm (Mandic & Chambers, 1996b). The over-
all cost function of the PRNN is given by Baltersee and
Chambers (1998), Haykin and Li (1995)

E�n� �
XM
i�1

li21e2
i �n� �8�

where ei�n� is the error from modulei, and a forgetting
factor l, l [ �0;1�; is introduced which determines the
weighting of the individual modules (Baltersee & Cham-
bers, 1998; Haykin & Li, 1995). For a general class of
nonlinear activation functions, the weight updating includes
the first derivative of a nonlinear activation function of a
neuron (Baltersee & Chambers, 1998; Mandic et al., 1998;
Williams & Zipser, 1989), where

F 0�b;w; u� � bF 0�1;wR
;u� �9�

For the logistic function, for instance, we have

F 0�x� � be2bx

�1 1 e2bx�2 � bF 0�xR� �10�

wherexR � bx denotes the argument of the referent logistic
function (with bR � 1�; so that the network considered is
equivalent in the static sense to the referent network.

4.1. Dynamic equivalence for a GD learning algorithm

For a gradient descent learning algorithm (Baltersee &
Chambers, 1998; Haykin & Li, 1995) for a PRNN, which is
based upon the Real Time Recurrent Learning (RTRL) algo-
rithm (Haykin, 1994; Williams & Zipser, 1989), the weight
updating is given by

W�n 1 1� �W�n�1 DW�n� �11�

Dwk;l�n� � 2h
2

2wk;l�n�
XM
i�1

li21e2
i �n�

 !

� 22h
XM
i�1

li21ei�n� 2ei�n�
2wk;l�n� �12�

and the error gradient becomes (Baltersee & Chambers,
1998; Haykin & Li, 1995)

2ei�n�
2wk;l�n� � 2

2yi;1�n�
2wk;l�n� �13�

Under the assumption, also used in the RTRL algorithm
(Narendra & Parthasarathy, 1990; Williams & Zipser,
1989), that when the learning rateh is sufficiently small,

we have

2yi;a�n 2 1�
2wk;l�n� <

2yi;a�n 2 1�
2wk;l�n 2 1� �14�

and a quadruply indexed set of variablespij
k;l�n� �

2yi;j�n�=2wk;l�n� can be introduced to characterize the GD
algorithm for the PRNN, as

pij
k;l�n� �

2yi;j�n�
2wk;l�n�

1 # i # M; 1 # j; k # N; 1 # l # p 1 1 1 N

�15�

Note thatpi1
k;l�n� � �2yi;1�n�=2wk;l�n��: The variant of the

RTRL algorithm suitable for the PRNN is used to recur-
sively compute the values ofpij

k;l for every time stepn and
all appropriatei; j; k; and l as follows:

pij
k;l�n 1 1� � F 0�vi;j�

XN
m�1

wj;m�n�pim
k;l�n�1 dkjui;l�n�

" #
�16�

with the values fori; j; k; and l as in Eq. (15) and the initial
conditions

pij
k;l�0� � 0 �17�

where

dkj �
1; k � j

0; k ± j
:

(
�18�

From the equivalence in the static sense, the weight update
equation for the referent network, can be written as

WR�n� �WR�n 2 1�1 bDW�n� �19�
which gives

DWR�n� � bDW�n� � b 2h
XM
i�1

ei�n� 2yi;1�n�
2W�n�

 !

� 2hb
XM
i�1

ei�n�Pi;1�n� �20�

wherePi;1�n� is the matrix ofpi;1
k;l �n�:

The matrix P�n�; which comprises all the terms
2yi;j =2wk;l ; ;wk;l [ W; i � 1;…;M; j � 1;…;N must be
related to the appropriate matrixPR�n�; which represents
the gradients of the referent network. Thus, we have

�pi;j
k;l�n 1 1��R � F 0�vR

i;j�n��
XN
m�1

wR
j;m�n�pi;m

k;l �n�1 dkjui;l�n�
" #

� 1
b
F 0�vi;j�n��

XN
m�1

bwj;m�n� 1
b
pi;m

k;l �n�1 dkjul�n�
" #

� 1
b
pi;j

k;l�n 1 1� �21�

D.P. Mandic, J.A. Chambers / Neural Networks 12 (1999) 1341–1345 1343



which gives

PR�n 1 1� � 1
b
P�n 1 1� �22�

Following the procedure of Mandic and Chambers (1999b),
the weight adaptation process for the referent PRNN can be
now expressed as

DWR�n� � bDW�n� � 2bh
XM
i�1

ei�n�Pi;1�n�

� 2b2h
XM
i�1

ei�n�PR
i;1�n� � 2hR

XM
i�1

ei�n�PR
i;1�n� �23�

which gives the required dynamic relationship, and is
encompassed in the following Lemma.

Lemma 2. An arbitrary PRNN represented byb;h; and
W(n) is equivalent in the dynamic sense in terms of gradient
descent-based learning to a referent isomorphic PRNN
represented bybR � 1;hR andWR�n� � bW�n�; if

hR � b2h �24�

4.2. Dynamic equivalence for the ERLS learning algorithm

The extended recursive least squares algorithm, as intro-
duced in Baltersee and Chambers (1998) and Haykin et al.
(1997), is based upon representing the dynamics of the
PRNN in the state space form

w�n� � w�n 2 1�1 q�n� x�n� � h�w�n��1 v�n� �25�
where w(n) is the N�N 1 p 1 1� × 1 vector obtained by
rearranging the weight matrixW(n), x(n) is anM × 1 obser-
vation vector,q�n� , N�0;Q� is a vector of white Gaussian
noise (WGN), as well asv�n� , N�0;C�: The first equation
in Eq. (25) is the system equation, represented by a random
walk, and satisfies the properties of the static equivalence,
given in Lemma 1. The measurement equation in Eq. (25) is
linearised using a first-order Taylor expansion, i.e. (Balter-
see & Chambers, 1998; Iiguni & Sakai, 1992)

h�w�n�� < h�ŵ�nun 2 1��1 7hT�ŵ�nun 2 1��
� �w�n�2 ŵ�nun 2 1�� �26�

where the gradient ofh�·� can be expressed as

7hT � 2h�ŵ�nun 2 1��
2ŵ�nun 2 1� � H�n� �27�

Furthermore, the vectorh(n), which is the result of the
non-linear mappingh�n� � h�w�n�� is actually theM × 1
vector of the outputs of the PRNN modules (Baltersee &
Chambers, 1998)

hT�n� � �y1;1�n�; y2;1�n�;…; yM;1�n�� �28�

That means that the equivalence needed for the observation
equation boils down to the dynamic equivalence derived for
the GD learning Eqs. (21)–(23).

Lemma 3. An arbitrary PRNN represented byb;h; and
W(n) is equivalent in the dynamic sense in terms of the
extended recursive least squares learning algorithm to a
referent isomorphic PRNN represented bybR � 1;hR

;

andWR�n�; if

(i) They are equivalent in the static sense,WR�n� �
bW�n�:
(ii) The learning rates are related ashR � b2h:

Notice that the condition (i) is correspondent to the system
equation of (25), whereas the condition (ii) corresponds to
the measurement equation of (25).

4.3. Equivalence between an arbitrary and the referent
PRNN

Some other learning algorithms for training the RNN and
PRNN rest upon either general backpropagation, such as the
Backpropagation Through Time (BPTT) algorithm
(Werbos, 1990), or combine general backpropagation and
the RTRL algorithm, such as the Recurrent Backpropaga-
tion (RB) algorithm (Pineda, 1987). Naturally, from Mandic
and Chambers (1999b), Thimm et al. (1996) and the above
analysis, the relationships derived are valid for both the
BPTT and BP algorithms. From the static equivalence
given in Lemma 1, and dynamic equivalence given in
Lemmas 2 and 3, the following Theorem encompasses a
general equivalence between an arbitrary PRNN, and the
referent, isomorphic PRNN.

Theorem 1. An arbitrary PRNN represented byb;h; and
W(n) is equivalent to a referent isomorphic PRNN repre-
sented bybR � 1;hR andWR�n�; if and only if

(i) They are equivalent in the static sense, i.e.WR�n� �
bW�n�:
(ii) They are equivalent in the dynamic sense, i.e.hR �
b2h:

5. Conclusions

We have derived the relationship between the learning
rateh and the slope in the general activation functionb
for a nonlinear optimisation algorithm which adapts the
weights of nonlinear cascaded systems realised through a
Pipelined Recurrent Neural Network (PRNN). The relation-
ship is derived both in the static sense (equality of the
outputs of the neurons) and the dynamic sense (equality in
learning processes), for both the Gradient Descent (GD) and
the Extended Recursive Least Squares (ERLS) algorithms.

D.P. Mandic, J.A. Chambers / Neural Networks 12 (1999) 1341–13451344



Such a result enables one degree of freedom less when
adjusting variable parameters of the PRNN, and hence
reduces computational complexity of learning. The results
provided are shown to be easily extended for the backpro-
pagation through time, and the recurrent backpropagation
algorithms, when applied in the PRNN framework. For
nonlinear systems with only one module, the results boil
down to the results for recurrent neural networks.
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