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A homomorphic feedforward network (HFFN) for nonlinear adaptive
filtering is introduced. This is achieved by a two-layer feedforward
architecture with an exponential hidden layer and logarithmic prepro-
cessing step. This way, the overall input-output relationship can be seen
as a generalized Volterra model, or as a bank of homomorphic filters.
Gradient-based learning for this architecture is introduced, together with
some practical issues related to the choice of optimal learning parameters
and weight initialization. The performance and convergence speed are
verified by analysis and extensive simulations. For rigor, the simulations
are conducted on artificial and real-life data, and the performances are
compared against those obtained by a sigmoidal feedforward network
(FFN) with identical topology. The proposed HFFN proved to be a viable
alternative to FFNs, especially in the critical case of online learning on
small- and medium-scale data sets.

1 Introduction

Classical system identification, signal modeling, and prediction have been
traditionally dominated by linear autoregressive moving average (ARMA)
models (Söderström & Stoica, 1994), despite the real-world problems be-
ing typically nonlinear and nongaussian. One step toward regression
based on nonlinear modeling is to use artificial neural networks with
nonlinear activation functions (AF)—nonlinear ARMA (NARMA) mod-
els (Mandic & Chambers, 2001)—which considerably enhances modeling
capabilities.

Based on their topology, there are two main types of such networks: feed-
forward networks (FFNs) (Haykin, 1994) and recurrent neural networks
(RNNs) (Mandic & Chambers, 2001). From a mathematical viewpoint, the
former represent static nonlinear maps, while the latter are nonlinear dy-
namic feedback systems (Narendra & Parthasarathy, 1990). In practice, both
models can be used interchangeably, depending on available resources, that
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is, a problem that is successfully solved using a large-scale FFN can be
equally solved using a smaller-scale RNN (Mandic & Chambers, 2001).

For either type of network, a common choice of AF is a sigmoid or hyper-
bolic tangent function. This choice is based on the Kolmogorov universal
approximation theorem (Kolmogorov, 1957) and its improvements and sim-
plifications (Doss, 1976; Lippman, 1987; Cybenko, 1989; Funahashi, 1989;
Hornik, 1990). Restricting the choice of AFs to bounded, monotonically in-
creasing, and differentiable functions makes it possible to obtain a smooth
approximation of an arbitrary input-output mapping. Indeed, many appli-
cations based on adaptive NARMA models make use of the potential of this
approach (see equations 3.1 and 3.2 in section 3 and Mandic & Chambers,
2001, for details).

Notice, however, that from the system theory viewpoint, NARMA mod-
els, despite their widespread use, represent only a narrow class of nonlinear
models. Indeed, Volterra models (which can be seen as a Taylor series ex-
pansion with memory) are capable of general nonlinear approximation (see
equation 3.5 for a detailed example). They are well understood, but despite
their theoretical advantages, they also suffer from high sensitivity and com-
putational burden. In addition, the Volterra kernels need to be bounded and
differentiable, and the powers in the expansion are defined over N, which
limits their practical application.

It is therefore natural to ask whether it is possible to introduce a neural
model (and therefore inherit the generalization advantages of NNs) that
will also be able to model Volterra-like systems. To that end, we introduce
a class of homomorphic feedforward networks (HFFNs) that have architec-
ture similar to that of FFNs but a radically different nonlinear input-output
mapping.

By design, the proposed HFFN-based networks have the following ad-
vantages: (1) they are capable of representing general Volterra models;
(2) the modeling capabilities reach beyond the Volterra type of approxima-
tion (e.g., the powers in the expansion are defined over R); (3) the weights
within such a network have unique physical interpretation; and (4) the ar-
chitecture can be analyzed within the homomorphic filtering framework
(filtering of multiplied signals; Oppenheim, Schafer, & Stockham, 1968).

Our aim is to introduce HFFNs for temporal problems, and hence the
architecture and learning algorithms are derived for HFFN serving as a
nonlinear adaptive filter. Extensions of the proposed approach to other
classes of problems are straightforward.

This letter is organized as follows. In section 2 we present the HFFN
architecture along with associated gradient-based training. Similarities and
differences as compared to standard FFN are highlighted. The underlying
modeling capabilities, relationship to FFN, and Volterra-like systems are
addressed in section 3. In section 4 we illustrate the operation of the HFFN
from a homomorphic filtering point of view. The choices of learning pa-
rameters and initial weights, as well as performance and learning speed,
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Figure 1: Homomorphic feedforward network.

are assessed by computer simulations on artificial and real-life signals. The
results of these experiments are provided in section 5. Concluding remarks
are presented in section 6.

2 The HFFN Architecture

The two-layer HFFN architecture is shown in Figure 1, with the homomor-
phic processing layer highlighted within the gray frame.

2.1 Signal Flow Within HFFN. The input to the structure (network) at
time instant k is the output of a tapped delay line (TDL) fed by a real and
positive signal x(k).1 In vector notation, this can be represented by a delay
vector x(k) composed of N successive signal values, given by

x(k) = [x(k − 1), x(k − 2), . . . , x(k − N)]T. (2.1)

This tapped input line is next passed through a logarithmic function to
obtain

y(k) = log(x(k)) = [y1(k), y2(k), . . . , yN(k)]T, (2.2)

1Since normalization of the input signals is a common practice in neural computation,
system identification, and control, the assumption x(k) > 0 does not affect the generality
of the proposed approach. For online learning methodologies, where an ordinary shift
is not adequate, we can apply a sigmoidal function to the input and its inverse to the
network output. In such an approach, slope and range of the sigmoidal function can be
adaptive in order to ensure that the input signal is positive and bounded. On the other
hand, the particular choice of these two parameters can affect the results, and this issue
requires further investigation.
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which forms the input for the first layer of HFFN, for which the correspond-
ing weights are denoted by W(1)

i j (k). The resulting intermediate signal vi (k)
can be expressed as

vi (k) =
N∑

j=1

W(1)
i j (k)yj (k), 1 ≤ i ≤ M ⇐⇒ v(k) = W(1)(k)y(k), (2.3)

where M is the number of elements (neurons) in the layer, v(k) is the output
of the linear part of the first layer, and W(1)(k) is an M × N matrix comprising
the weights representing the first layer. The resulting linear combination
v(k) is then passed through an exponential function (nonlinear activation
function) to form the input ui (k) to the second (linear) layer,

ui (k) =
{

exp(vi (k)), 1 ≤ i ≤ M

1, i = M + 1
⇐⇒ u(k) =

[
exp(v(k))

1

]
, (2.4)

where an additional (M + 1)th element is set to unity and represents bias.
Finally, the weights w

(2)
i (k) of the second layer scale ui (k) produce an esti-

mator (predictor) x̂(k) of the original signal x(k), given by

x̂(k) =
M+1∑
i=1

w
(2)
i (k)ui (k) = uT(k)w(2)(k), (2.5)

where w(2)(k) denotes an (M + 1) × 1 vector representing the weights of the
second layer and the bias term.

2.2 Gradient-Based Learning. For online prediction tasks, in general
we seek a nonlinear mapping F , such that

x̂(k) = F (x(k − 1), x(k − 2), . . . , x(k − N)), (2.6)

by which some cost function E(k) is minimized—typically the square of the
instantaneous error e(k),

E(k) = 1
2

e2(k), where e(k) = x(k) − x̂(k). (2.7)

In gradient-based learning, the aim is to update the weights iteratively so
that E(k) is reduced at each time step k. In such a case, a general weight



1046 M. Pedzisz and D. Mandic

update �w(k) can be derived from

�w(k) = −η(k)
∂ E(k)
∂w(k)

= −η(k)e(k)
∂e(k)
∂w(k)

= η(k)e(k)
∂ x̂(k)
∂w(k)

, (2.8)

where η(k) is the learning rate, a small, positive variable.
For the structure depicted in Figure 1, the gradient-based weight adap-

tation can be expressed as

�w
(2)
i (k) =µe(k)ui (k), 1 ≤ i ≤ M + 1 (2.9)

�W(1)
i j (k) = νe(k)w(2)

i (k)ui (k)yj (k), 1 ≤ i ≤ M, 1 ≤ j ≤ N, (2.10)

where ν and µ are, respectively, the learning rates of the first and second lay-
ers (assumed constant during learning). In matrix notation, these updates
become

w(2)(k + 1) = w(2)(k) + µe(k)u(k) (2.11)

W(1)(k + 1) = W(1)(k) + νe(k)Z(k)Y(k), (2.12)

where

Y(k) = diag(y(k)), Z(k) = [z(k), z(k), . . . , z(k)︸ ︷︷ ︸
N times

]T,

z(k) = uM(k) ⊗ w(2)
M (k), (2.13)

and uM(k) and w(2)
M (k) are vectors obtained from the first M elements of

u(k) and w(2)(k), and the ⊗ denotes the Kronecker product (vector/matrix
element-wise multiplication).

It should be noted that these results can be also derived from the standard
backpropagation (BP) algorithm (Rumelhart, Hinton, & Williams, 1986).
Since the BP method was originally derived for multi-input multi-output
networks, the extension of HFFN to such a case is straightforward.

2.3 Similarities Between HFFNs and FFNs. If we consider the loga-
rithm functions along with normalization and shift (ensuring that x(k) > 0)
within HFFN as a preprocessing step, the HFFN architecture can be seen
as a two-layer FFN with an exponential hidden layer and a linear output
layer.

2.3.1 Gradient-Based Learning. It is straightforward to see that any
gradient-based learning strategy that does not rest on the saturating prop-
erty of the AF can be applied to HFFNs; this includes the momentum term
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(Rumelhart et al., 1986), adaptive learning rates (Mathews & Xie, 1993),
delta-bar-delta (Jacobs, 1988), the modified error (Van Ooyen & Nienhuis,
1992), and Quick Prop (Fahlman, 1988). The weights can be updated us-
ing online adaptation or batch training methodologies (Haykin, 1994). Any
performance measure used for FFN can be equally applied for HFFN.

2.3.2 The Interchangeability of Learning Rate, Gain, and Weights. Thimm,
Moerland, and Fiesler (1996) established a relationship among learning rate,
gain, and weights in feedforward networks. These results can be extended
to the case of an HFFN by introducing a gain β to the exponential AF as

exp(x) −→ exp(βx) ⇐⇒ exp(x) = exp(βx)|β=1. (2.14)

For such a function, the following relation holds (Thimm et al., 1996)2:

β

β ′ =
√

η′

η
= w′

w
. (2.15)

In other words, two neural networks NN and NN′ that differ only in their
learning rates η and η′, their weights w′ and w, and the gain of the activation
function β and β ′ behave in the same way. Based on this result, it is clear
that the variations in the gain can be compensated by adequate changes
in the learning rate and weight variance (Thimm & Fiesler, 1997b). This
also means that in the case of HFFN, introducing slope β into a activation
function cannot be justified from a theoretical viewpoint.

2.4 Differences Between HFFNs and FFNs. Since the two architectures
differ in data preprocessing steps as well as in the properties of the AFs, not
all the features of a standard sigmoidal FFN are shared by HFFN.

2.4.1 Modeling Capabilities. Unlike standard FFN, the proposed HFFN is
not limited to representing NARMA mappings, as discussed in section 3.

2.4.2 Multilayer Networks. Extension of HFFN to a multilayer network is
not as straightforward as in the case of an ordinary FFN. For illustration,
consider replicating the hidden layer (marked with a gray frame in Figure 1)
to form a multilayered network. Knowing that the link between two con-
secutive layers becomes a concatenation of logarithmic and exponential
functions, all hidden layers but the last one degenerate into a linear layer.
In such a case, the whole network can be replaced by a standard HFFN with

2The proof is valid for any differentiable nonlinear AF with the first derivative that
satisfies (Mandic & Chambers, 2001): β

∂�(β,x)
∂(βx) = ∂�(β,x)

∂x .
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one exponential hidden layer and a linear output layer. This also illustrates
the compactness of the mappings performed by HFFNs (see section 3 for
more detail).

2.4.3 Expansive Character of the AF. Another important difference be-
tween HFFNs and FFNs is that the HFFN cannot be trained using standard
normalized (or a posteriori) algorithms. Following Mandic and Chambers
(2000a), deriving such an algorithm from the Taylor series expansion of the
output error would lead to a condition fulfilled only by contractive AFs
(see Mandic & Chambers, 2000b; Mandic, Hanna, & Razaz, 2001; or Hanna
& Mandic, 2003, for more detail), which is not the case with the exponential
AFs.

2.4.4 Algorithm Initialization. Notice that for a layer with “squashing”
(sigmoidal or hard-limiting) AFs, choosing too big a learning rate will not
lead to divergence: the outputs will be saturated and bounded. Due to the
expansive behavior of the exponential AF within HFFN, standard settings
for learning rates and initial weights variances (Thimm & Fiesler, 1997a)
may not be applicable. For an exponential AF within an HFFN, too large a
learning rate will lead to an unbounded output, and thus instability.

2.4.5 Computational Overhead. For a standard FFN, we need to calculate
one exponential, one multiplication, one division, and one summation per
neuron (see equation 3.1). In the case of HFFN, these calculations reduce to
one exponential. This gain in calculation speed is particularly visible when
the network is large scale or batch-trained on large data sets. On the other
hand, N logarithms are required in the preprocessing step. Since those are
calculated only once for the entire sequence (not required for training), this
computational overhead can be neglected (for batch training).

3 Approximation Capabilities of HFFNs

To ascertain whether an application based on a two-layer FFN can be im-
plemented using an HFFN, it is necessary to compare their approximation
capabilities. To that end, let us perform a Taylor series expansion of the
sigmoidal AF of a single neuron (Billings, Jamaluddin, & Chen, 1992):

�(v(k)) = 1
1 + e−βv(k)

= 1
2

+ β

4
v(k) − β3

48
v3(k) + β5

480
v5(k)

− 17β7

80640
v7(k) + · · · (3.1)

This clearly illustrates the complex nonlinear modeling capabilities of those
networks. But such complex behavior is not always desirable. To show this,
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let us consider a simple AR model described by

x(k) = 1 − 1
4

x(k − 1). (3.2)

Since there is only one previous sample on which x(k) depends (memory
of order 1), we can take only one sigmoidal neuron with a single weight a
and a bias b. Fixing β = 1 and taking into account the first three terms in
the expansion 3.1, we have

x̂(k) = �(ax(k − 1) + b) ≈ 1
2

+ 1
4

(ax(k − 1) + b) − 1
48

(ax(k − 1) + b)3

=
(

1
2

+ b
4

− b3

48

)
+

(
a
4

− 3ab2

48

)
x(k − 1) − 3a2b

48
x2(k − 1)

− a3

48
x3(k − 1). (3.3)

First, observe that there are higher-order terms that do not exist in the origi-
nal expression, equation 3.2. Second, the coefficient associated with x(k − 1)
depends on both adaptable parameters. In general, by introducing more
neurons, we can only decrease the influence of higher-order terms as well
as dependence among weights (Haykin, 1994). These higher-order terms
cannot be completely eliminated since a linear AF can be approximated
by a sigmoidal one (or a linear combination of them) only in some limited
range. Additionally, adding more neurons will introduce redundancy.

Let us now illustrate the approximation capabilities of an HFFN. Rewrit-
ing equation 2.5, we have

x̂(k) = w
(2)
M+1(k) +

M∑
i=1

w
(2)
i (k) exp


 N∑

j=1

W(1)
i j (k) log (x(k − j))




= w
(2)
M+1(k) +

M∑
i=1

w
(2)
i (k) exp


 N∑

j=1

log
(
xW(1)

i j (k)(k − j)
)

= w
(2)
M+1(k) +

M∑
i=1

w
(2)
i (k)

N∏
j=1

xW(1)
i j (k)(k − j). (3.4)

Comparing this model to a standard FFN, we may state that for HFFNs:

� Adaptable parameters (weights) are independent of one another.
� There are no spurious higher-order terms in the representation,

equation 3.4.
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� All the weights have unique physical interpretation: weights W(1)
i j (k)

represent the powers of x(k − j) and w
(2)
i (k) a linear combiner at the

output layer.
� Weights W(1)

i j (k) (powers) are defined over R. This is a unique fea-
ture that is not present in other neural network approaches, where
W(1)

i j (k) ∈ N.

From equation 3.4, we can also observe the following properties of
HFFNs:

� Volterra-like modeling capabilities. Imposing constraints on
W(1)

i j (k) ∈ N
+, makes the HFFN an exact solution for a general class

of Volterra-like filtering problems (Mathews, 1991). This can be il-
lustrated as follows. Consider a simple second-order Volterra model
with embedding dimension (Takens, 1981) equal to two, given by

x̂(k) = h0(k) +
∑

i

hi (k)x(k − i) +
∑

i

∑
j

gi j (k)x(k − i)x(k − j)

= h0(k) + h1(k)x(k − 1) + h2(k)x(k − 2) + g11(k)x2(k − 1)

+ g22(k)x2(k − 2) + 2g12(k)x(k − 1)x(k − 2). (3.5)

Such a model can be exactly represented by a five-neuron HFFN with
weights

W(1)(k) =




1 0

0 1

2 0

0 2

1 1


 , w(2)(k) =




h1(k)

h2(k)

g11(k)

g22(k)

2g12(k)


 , and w

(2)
6 (k) = h0(k).

(3.6)

However, since HFFNs naturally exhibit much more complex be-
havior (W(1)

i j (k) ∈ R), it is not justifiable to impose constraints during
learning (except when an HFFN is used to identify or predict an
a priori known Volterra-like system).

� Saturation-like nonlinearities. Since there are no extra higher-order
terms that do not result from the original signal, the HFFN model
cannot match exactly the equivalent FFN structure. In particular, any
saturation-like nonlinearities that are naturally modeled by FFN with
squashing AFs cannot be correctly represented by an HFFN with
expansive, unbounded AFs.
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� Weight initialization. Knowing that W(1)(k) represent the powers in
the expansion model as shown in equations 3.4 and 3.6, we can define
an appropriate method for weight initialization,

W(1)(0) =
[

1
0

]
, (3.7)

where 1 is an N × N identity matrix and 0 is an (M − N) × N null
matrix. Such an initialization has one main advantage: the learning
process starts from the linear model, that is the unity values on the
diagonal imply that input signals are not modified by an exponential
layer and zeros outside the diagonal that there are no cross-terms
(e.g., x(k − i)x(k − j)) at the output. Such a property is not present in
other FFNs.

4 Homomorphic Filtering Based on HFFN

According to the generalized linear filtering theorem presented in
Oppenheim et al. (1968), for two signals s1(t) and s2(t) that have been com-
bined according to some rule denoted by ◦, the resulting signal s(t) can be
expressed as

s(t) = s1(t) ◦ s2(t). (4.1)

Then a generalized transformation φ for the filter needs to satisfy the fol-
lowing properties,

φ[s1(t) ◦ s2(t)] = φ[s1(t)] ◦ φ[s1(t)], and φ[c : s(t)] = c : φ[s(t)], (4.2)

where ◦ corresponds to vector addition, : to scalar multiplication, and φ to
algebraically linear transformation in a vector space. For such a system, φ

can be represented as a cascade of three systems (Oppenheim, 1965),

s(t) −→ Ao −→ L −→ A−1
o −→ g(t) (4.3)

where L is a linear system, and Ao is referred as the characteristic system
and A−1

o as its inverse. In this representation, the characteristic system Ao

has the properties

Ao[s1(t) ◦ s2(t)] = Ao[s1(t)] + Ao[s2(t)], and Ao[c : s(t)] = c Ao[s(t)]. (4.4)

On the basis of this canonical representation, a generalized linear filter
corresponds to transforming the original problem into the one in which the
components are added, and after linear filtering, the result is transformed
back to the original input space.
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A straightforward application of this theorem is the homomorphic fil-
tering of multiplied signals. Using the above notation, we have

s1(t) ◦ s2(t) = s1(t) · s2(t), and c : s(t) = sc(t), (4.5)

whereas system Ao needs to satisfy

Ao[s1(t) · s2(t)] = Ao[s1(t)] + Ao[s2(t)] (4.6)

Ao[sc(t)] = c Ao[s(t)] (4.7)

A−1
o [Ao[s(t)]] = s(t). (4.8)

If we limit ourselves to only positive real signals s(t) and scalars c, the
characteristic system Ao and its inverse A−1

o may be chosen as the ordinary
logarithm and exponential functions.

To employ this within the HFFN framework, consider the output ui (k)
of the ith neuron of the exponential layer, given by

ui (k) = exp


 N∑

j=1

W(1)
i j (k) log[x(k − j)]


 . (4.9)

Comparing this with equation 4.3, it is clear that Ao = log, A−1
o = exp, and

a linear system L corresponds to an ordinary finite impulse response (FIR)
filter with its coefficients equal to W(1)

i j (k). From this point of view, the entire
HFFN network can be expressed as

x̂(k) =
M+1∑
i=1

w
(2)
i (k)ui (k), (4.10)

which can be seen as a parallel implementation (linear combination) of a
bank of homomorphic filters.

A comprehensive introduction to homomorphic processing and cepstral
analysis with its applications can be found in Oppenheim and Schafer
(1975) and Oppenheim et al. (1968). Applications of homomorphic filtering
to speech processing (vocal tract transfer characteristics) can be found in
Oppenheim and Schafer (1968), Oppenheim (1969), Schafer and Rabiner
(1970), and Oppenheim, Kopec, and Tribolet (1976) and for seismic data
processing (isolating the impulse response of the earth’s crust) in Ulrych
(1971), and Stoffa, Buhl, and Bryan (1974a, 1974b).

The more recent advances in homomorphic signal processing can be
found in Lindquist and Mukherjee (1994; signal companding), Marenco and
Madisetti (1996; deconvolution of bandpass signals), Sabry-Rizk, Zgallai,
Hardiman, and O’Riordan (1995; analysis of abnormalities in ECG signals),
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Ryu, Lee, and Kwon (2004; change detection in high-resolution imagery),
and Kuribayashi and Tanaka (2005; image fingerprinting).

5 Experiments

For rigor, simulations were performed on a 4- and 16-neuron HFFN for
various modeling scenarios. The main objective of these experiments was
to provide insight into the settings of the optimal learning rates and weight
initialization, as well as to assess the overall performance and speed of con-
vergence. The choice of the number of neurons was arbitrary and suggested
by “smaller nets perform better” (Elsken, 1990).

Three implementation scenarios were considered:
� Batch: Batch training for 10,000 epochs; 295 samples (learning set: 150

samples, validation set: 145 samples). This scenario corresponds to
the case where the number of available samples is very limited (e.g.,
sunspot data) and the objective is to find the best (in terms of the
prediction gain) data model.

� Online 1: Online adaptation; 1000 samples (learning set: 800 sam-
ples, validation set: 200 samples). This online scenario corresponds to
situations where the number of samples is relatively large, required
processing time is small, and prediction gain should be close to the
one obtained by batch training.

� Online 2: Online adaptation; 295 samples (learning set: 150 samples,
validation set: 145 samples). This online scenario corresponds to real-
time learning based on a small-scale data set. The objective is twofold:
fast training and satisfactory performance.

As a measure of performance, we used a prediction gain rp given by
Haykin and Li (1995),

rp
�= 10 log

(
Rp

)
[dB], Rp

�= σ 2
x̂

σ 2
e
, (5.1)

where σ 2
x̂ denotes the variance of the predicted signal x̂(k) and σ 2

e the vari-
ance of the instantaneous prediction error e(k).

5.1 Data Sets. Comprehensive simulations were performed on a num-
ber of artificial and real-life signals:

� Linear AR(4) model (ar4). Linear model proposed in Mandic (2004,
first experiment, p. 116) and described by

y(k) = 1.79y(k − 1) − 1.85y(k − 2) + 1.27y(k − 3)

− 0.41y(k − 4) + x(k), (5.2)

where x(k) is white gaussian noise with variance σ 2 = 1.



1054 M. Pedzisz and D. Mandic

� Volterra nonlinear model I (volterra1). This is a Volterra quadratic
model described by

y(k) = 0.8y(k − 1) + 0.2y(k − 1)y(k − 2) − 0.3y2(k − 3) + x(k), (5.3)

where x(k) is white gaussian noise with σ 2 = 0.01.
� Volterra Nonlinear model II (volterra2). This is a Volterra quadratic

model proposed in Mathews (1991, equation 14 on p. 15). It is de-
scribed by

h = [−0.78, −1.48, −1.39, 0.04]T, linear part (5.4)

g =




0.54 3.72 1.86 −0.76

3.72 −1.62 0.76 −0.12

1.86 0.76 1.41 −1.52

−0.76 −0.12 −1.52 −0.13


 , quadratic part (5.5)

where the input signal was obtained by processing white gaussian
noise with σ 2 = 0.01 with a linear filter for which the impulse response
is given by [0.25, 1.0, 0.25].

� Nonlinear model I (non1). This is a nonlinear system proposed in
Narendra and Parthasarathy (1990, example 2 on p. 15). The system
is described by

y(k) = y(k − 1)y(k − 2)[y(k − 1) + 2.5]
1 + y2(k − 1) + y2(k − 2)

+ x(k − 1), (5.6)

where x(k) is white gaussian noise with σ 2 = 1.
� Nonlinear model II (non2). This is a nonlinear system proposed in

Narendra and Parthasarathy (1990, example 3 on p. 16). Signal model
is governed by

y(k) = y(k − 1)
1 + y2(k − 1)

+ x3(k − 1), (5.7)

where x(k) is white gaussian noise with σ 2 = 1.
� van der Pol equation (vdpol). This is an ordinary differential equa-

tion describing self-sustaining oscillations. This equation arises in the
study of circuits containing vacuum tubes and is given by Wiggins
(1990)

y′′ − µ(1 − y2)y′ + y = 0. (5.8)

For simulations, we used µ = 5.
� Lorenz attractor (lorenz). Lorenz attractor is a chaotic map that shows

how the state of a dynamical system evolves over time in a complex,
nonrepeating pattern. This system is nonlinear, three-dimensional,
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and deterministic, and is described by coupled equations (Lorenz,
1963),

dx
dt

= σ (y − x),
dy
dt

= x(ρ − z) − y,
dz
dt

= xy − βz, (5.9)

with (usually) σ = 10, β = 8/3, ρ = 28. For simulations, we have used
only the first coordinate of the Lorenz attractor.

� Hair Dryer (dryer) (Matlab, System Identification Toolbox). This se-
ries contains data collected from a laboratory scale hairdryer. The
input is the power over the heating device; the output (time series to
predict) is the outlet air temperature.

� Handel’s Hallelujah (handel) (Matlab, Filter Design Toolbox). This is
a short audio clip from Handel’s Hallelujah chorus. There are 73,113
samples, sampled at Fs = 8192 Hz.

� Loma Prieta Earthquake (loma) (Matlab, Demos:Mathematics). The
data set contains three variables comprising time traces from an ac-
celerometer in the Natural Sciences building at the University of
California, Santa Cruz. The accelerometer recorded the main shock
of the Loma Prieta earthquake in the Santa Cruz Mountains. As a sig-
nal to predict, we took the measurement of the vertical acceleration.

� Sunspots Activity (sunspots) (Matlab, Demos:Mathematics). This se-
ries contains the variations in sunspot activity from 1700 to 1994. This
series is cyclical, reaching a maximum about every 11 years. There are
only 295 data samples collected.

� Wind Speed (wind) The samples used in the experiments were ob-
tained from the Iowa Department of Transportation (publicly avail-
able from http://mesonet.agron.iastate.edu/request/awos/1min.
php) and contain data acquired every minute from AWOS (Auto-
mated Weather Observing System) sensors. We chose Storm Lake
(SLB) station, and the gathered data correspond to the wind speed
observed in 2005.

5.2 Choice of Learning Rates. Since the standard FFN settings cannot
be used directly for HFFNs (see the differences set out in section 2.4), we
started our simulations by determining the optimal learning rates. For the
three scenarios considered and both HFFN networks (4 and 16 neurons),
we used gradient-based training and estimated prediction gain (on the
validation set) as a function of the learning rates ν (first nonlinear layer)
and µ (second linear layer). Weights of the nonlinear layer were initialized
as described in section 3 (diagonal initialization), and those of a linear layer
were all set to zero.

Simulation results for the handel data set signal are visualized in Figure 2,
where darker areas of the contour plots correspond to larger prediction
gains (Rp) and checked areas to conditions where the networks diverged.
These plots are fairly consistent for all the signals considered, and we can
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Figure 2: Prediction gain as a function of learning rates for “handel” signal.

observe that there are limit values for ν and µ beyond which the HFFN
exhibits unstable behavior (in contrast to FFN with sigmoidal AFs where ν

can be chosen to any value without provoking divergence), an increase in
the number of neurons implies a reduction in the range of optimal learning
rates, and a decrease in the number of available samples or the training time
(online adaptation instead of batch training) narrows the ranges of optimal
learning rates and decreases the prediction gain.

Since there is no universal choice of learning rates, the shape of Rp(µ, ν),
location, and the value of the maximum Rp depend on the data set in hand,
number of neurons, and type of training. Based on this observation, for each
scenario considered and all signals, we found the pairs of optimal learning
rates and used them in the following experiments.
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Table 1: Minimum and Maximum of the Calculated Optimal Learning Rate for
the Three Scenarios and All Signals.

N = M = 4 N = M = 16

Batch training µmin = 2.23 · 10−8 µmax = 1.35 · 10−3 µmin = 1.82 · 10−8 µmax = 6.06 · 10−4

νmin = 7.91 · 10−3 νmax = 7.20 · 10−1 νmin = 1.15 · 10−2 νmax = 4.09 · 10−1

Online 1 µmin = 2.72 · 10−5 µmax = 3.67 · 10−2 µmin = 1.49 · 10−5 µmax = 1.65 · 10−2

adaptation νmin = 2.36 νmax = 29.8 νmin = 1.94 νmax = 24.5
Online 2 µmin = 1.65 · 10−4 µmax = 4.04 · 10−1 µmin = 2.72 · 10−5 µmax = 2.02 · 10−2

adaptation νmin = 0.18 νmax = 16.6 νmin = 1.08 νmax = 36.3

For the three scenarios, the minimal and maximal values (among all
signals) of the optimal values of µ and ν are presented in Table 1.

Based on these experiments, we may state that learning rates for online
adaptation are about 20 to 200 times bigger than those corresponding to
batch training; learning rates in the exponential layer are between 102 and
105 times bigger than those of the linear layer.

5.3 Weight Initialization. As stated in section 3, the diagonal initializa-
tion of the exponential layer in HFFN corresponds to starting the training
from a linear model. To assess possible advantages of such initialization, for
all the considered scenarios, we estimated prediction gain rr as a function of
the variance of the weights σ 2

W in the exponential layer. All the experiments
were performed for both the gaussian and uniform distributions.

The results showed that the initial weight distribution had no influence
on the prediction gain (the same results were obtained in Thimm & Fiesler,
1997a, for higher-order perceptrons). For almost all cases (excepted the
wind and loma data sets), the prediction gain decreased with an increase
in weight variance. To visualize this behavior, we used relative prediction
gain rr expressed by

rr = r R
p − r D

p [dB], (5.10)

where r R
p corresponds to prediction gain obtained for random initialization

and r D
p to prediction gain obtained in previous experiments with diagonal

initialization. Example curves are presented in Figure 3 for the volterra1
data set.

Since the shapes of these curves are similar for almost all signals, in
further experiments only two distinctive initialization schemes were con-
sidered: diagonal initialization if the relative prediction gain was smaller
than 0 and random initialization when σ 2

W was close to 0 (or even W(1) = 0)
otherwise.

To perform a quantitative comparison of these results for all the signals,
we calculated relative prediction gains related to the random and diagonal



1058 M. Pedzisz and D. Mandic

10
−3

10
−2

10
−1

10
0

−1.5

−1

−0.5

0

0.5

σ
w
2

r r

Batch, N=M=4

10
−3

10
−2

10
−1

10
0

−1.5

−1

−0.5

0

0.5

σ
w
2

r r

Batch, N=M=16

10
−3

10
−2

10
−1

10
0

−1.5

−1

−0.5

0

0.5

σ
w
2

r r

On−line 1, N=M=4

10
−3

10
−2

10
−1

10
0

−1.5

−1

−0.5

0

0.5

σ
w
2

r r

On−line 1, N=M=16

10
−3

10
−2

10
−1

10
0

−1.5

−1

−0.5

0

0.5

σ
w
2

r r

On−line 2, N=M=4

10
−3

10
−2

10
−1

10
0

−1.5

−1

−0.5

0

0.5

σ
w
2

r r

On−line 2, N=M=16

Figure 3: Relative prediction gain rr as a function of initial weight variance σ 2
W.

initialization and the corresponding mean values. The results are presented
in Table 2, where R(∗) and D(∗) indicate, respectively, the number of random
and diagonal initializations for a given scenario and E[rr ] is the correspond-
ing mean relative prediction gain.

Based on these results, we observe that:

� For small-scale networks, there is almost no difference in the perfor-
mance between the two initialization schemes (the number of diago-
nal and random initializations is comparable).
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Table 2: Mean Relative Prediction Gains for Three Scenarios and All Signals.

N = M = 4 N = M = 16

Batch training R(5): E[rr ] = 0.15 D(7): E[rr ] = −0.15 R(3): E[rr ] = 0.46 D(9): E[rr ] = −0.28
Online 1 adaptation R(6): E[rr ] = 0.15 D(5): E[rr ] = −1.32 R(2): E[rr ] = 0.15 D(9): E[rr ] = −1.04
Online 2 adaptation R(6): E[rr ] = 0.62 D(6): E[rr ] = −2.97 R(4): E[rr ] = 0.61 D(8): E[rr ] = −0.89

� For large-scale networks, diagonal initialization should be preferred
(in 9 cases out of 12, diagonal initialization performs better than the
random one).

� In general, the prediction gain for the diagonal initialization is higher
than the one obtained using random initialization (even if for a par-
ticular scenario the number of diagonal and random initializations is
comparable).

5.4 HFFN Performances. The performances of a HFFN were next eval-
uated and compared to those obtained by an FFN with an identical (number
of layers and neurons) structure. In all the simulations, the optimal learn-
ing rates and initialization parameters found in the two previous sections
were used. These optimal settings were also estimated and applied to FFN
networks.

As a measure of performance, we used relative prediction gain (on vali-
dation set) expressed as

rr = r H
p − r F

p [dB], (5.11)

where r H
p is a prediction gain obtained by an HFFN and r F

p corresponds to
that of an FFN network. The results (relative as well as absolute prediction
gains) for the three scenarios and two networks (4 and 16 neurons) are
shown in, respectively, Tables 3 and 4.3

Based on those experiments, we may state:
� Batch training. For all the synthetic signals (except lorenz and vdpol),

the HFFN performed better than FFN (relative gain up to 5.34 dB for
N = M = 4 and up to 2.35 dB for N = M = 16). For the lorenz and
vdpol signals, there was a loss in performance compared to FFN, but
since the absolute prediction gain (r H

p ) was in the range of 20 dB, this
loss is negligable. For real-life signals, in three (N = M = 4) and four
(N = M = 16) cases out of five, the FFN performed better. This is due
to the greater regression-type modeling capabilities of the FFN (based
on the universal approximation theorem) compared to the HFFN.

3Since there are only 295 samples available in the sunspots data set, there are no
corresponding results for the Online 1 scenario (1000 samples are required).
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Table 3: Prediction Gains for N = M = 4.

N = M = 4 rr r H
p

Signal Type Batch Online 1 Online 2 Batch Online 1 Online 2

ar4 0.19 1.59 1.69 7.50 5.10 4.12
volterra1 0.88 2.49 2.54 2.79 2.58 0.81
volterra2 0.90 4.15 2.42 5.58 13.3 5.08
non1 4.96 0.15 1.40 −1.60 −0.83 0.68
non2 5.34 0.78 1.36 −0.93 −0.01 −0.21
vdpol −1.53 2.44 1.91 26.4 20.1 15.5
lorenz −12.0 −8.76 −1.55 23.2 11.9 11.5
dryer −0.95 0.62 0.05 16.2 12.7 11.9
handel −0.51 0.07 −0.23 8.35 7.18 6.62
loma 6.11 1.78 0.74 −0.15 10.7 0.31
sunspots −0.26 — −3.31 7.90 — 3.44
wind 0.23 0.54 3.45 8.42 8.90 2.20

Table 4: Prediction Gains for N = M = 16.

N = M = 16 rr r H
p

Signal Type Batch Online 1 Online 2 Batch Online 1 Online 2

ar4 0.05 1.32 1.71 6.42 3.24 1.37
volterra1 0.06 1.61 1.26 1.75 0.81 −0.37
volterra2 0.37 1.05 0.58 3.67 12.54 1.91
non1 2.35 0.46 0.78 0.29 −0.19 −1.76
non2 0.88 0.62 2.00 0.09 −0.18 −0.13
vdpol −2.42 −2.28 −0.93 23.9 10.4 9.41
lorenz −12.5 −6.41 −0.19 19.6 9.25 5.43
dryer −0.78 −0.18 −1.71 16.1 10.0 2.50
handel −0.52 0.42 0.88 9.12 7.06 2.59
loma 2.40 1.64 0.82 0.04 8.65 0.22
sunspots −0.20 — −1.35 7.09 — 3.34
wind −0.93 0.37 3.88 7.26 9.46 2.29

These results confirm that for real-life signals, to obtain the best model
match, there is a need to use a much more complex model than the
one proposed in equation 3.4. In general, for signals where the HFFN
performs better, the mean relative gain was 2.65 dB (N = M = 4) and
1.02 dB (N = M = 16). For other signals (except lorenz and vdpol),
the corresponding losses were −0.57 dB (N = M = 4) and −0.60 dB
(N = M = 16).

� Online adaptation. For the Online 1 adaptation scheme, the HFFN
performed better than FFN in 10 (N = M = 4) and 8 (N = M = 16)
cases out of 11. When the Online 2 scenario was considered, there
were 9 (N = M = 4) and 8 (N = M = 16) cases out of 12 where the
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relative gain was positive. To explain this behavior in the case of real-
life signals, we may deduce that since the modeling capabilities of
an HFFN are derived from different criteria than are those for a FFN,
the positive relative gain is due to faster convergence of the HFFN
learning algorithm compared to FFN. In other words, for real-time
applications where the number of available samples and processing
time are constrained, there is a clear indication that an HFFN structure
should be preferred.

� Difficult signals. For the three data sets non1, non2, and loma, the
absolute prediction gains were smaller or close to zero, independent
of the learning scenario. In these cases, the HFFN structure exhibits
a significant advantage over a sigmoidal FFN: the relative prediction
gains were increased up to 6.11 dB for N = M = 4 and up to 2.40 dB
for N = M = 16.

6 Conclusion

We have proposed a new homomorphic feedforward network (HFFN) that,
despite its close relation to a standard FFN (structure, signal flow, gradient-
based learning), can be seen as a generalized (powers are defined over R)
Volterra-like system or as a parallel implementation of a bank of homomor-
phic filters for multiplicative models.

Gradient-based learning for such an architecture as well as an experi-
mental evaluation of the choice of initial values of the parameters have been
addressed. Next, theoretical advantages and disadvantages of the HFFN
against an isomorphic sigmoidal FFN have been highlighted. The perfor-
mances and speed of convergence have been verified through extensive
simulations on artificial and real-life signals and compared to those ob-
tained by an FFN. Simulation results have shown a gain in the performance
(in terms of a relative prediction gain) and convergence speed (particularly
for small data sets) for almost all 12 considered signals and both online
adaptation schemes. For batch training, there has been a small loss in per-
formance for real-life signals, leading to the conclusion that more complex
modeling capabilities are required.

Extensions of the HFFN include analytic derivation of optimal learning
rates, extension to the complex domain, verification of different approaches
to obtain a multilayer network, and applications for homomorphic filtering
of convolved signals.
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