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ABSTRACT
A novel stable and robust algorithm for training of nite im-
pulse response adaptive lters is proposed. This is achieved
based on a convex combination of the Least Mean Square
(LMS) and a recently proposed Generalised Normalised Gra-
dient Descent (GNGD) algorithm. In this way, the desirable
fast convergence and stability of GNGD is combined with
the robustness and small steady state misadjustment of LMS.
Simulations on linear and nonlinear signals in the prediction
setting support the analysis.

Index Terms— Distributed, adaptive, collaborative SP

1. INTRODUCTION
The Least Mean Square (LMS) algorithm is a de facto stan-
dard for training of adaptive nite impulse response (FIR) l-
ters, and can be described by [1]

e(k) = d(k)− xT (k)w(k)
w(k + 1) = w(k) + μe(k)x(k) (1)

where e(k) is the instantaneous error at the output of the l-
ter for the time instant k, d(k) is the desired signal, x(k) =
[x(k− 1), . . . , x(k−N)]T is the input signal vector,N is the
length of the lter, (·)T denotes the vector transpose opera-
tor, andw(k) = [w1(k), . . . , wN (k)]T is the lter coef cient
(weight) vector. The parameter μ (the step–size) is critical to
the convergence and dynamical behaviour of LMS.
Despite the small steady–state misadjustment and robustness
exhibited by the LMS, its low convergence speed has initiated
research on faster algorithms within the same class. Ideally,
we desire an algorithm which exhibits fast convergence and
small steady state misadjustment when operating in a statis-
tically stationary environment, whereas when operating in a
statistically nonstationary environment the algorithm should
adapt according to the dynamics of the input signal.
One such algorithm is the normalised LMS (NLMS) [1, 2]
which is faster and more responsive than LMS, but is also
prone to poor steady-state performance and divergence for
certain classes of inputs. The NLMS weight update can be
expressed as

w(k + 1) = w(k) +
μ

‖ x(k) ‖22
e(k)x(k)

= w(k) + η(k)e(k)x(k) (2)

where ‖ · ‖2 denotes the Euclidean norm. By such normali-
sation, the error surface de ned by the cost function E(k) =
1
2e2(k) is “regularised”, and the step size η(k) is varied ac-
cording to the changing power levels of the input signal.
Modi cations of LMS which cater for the critical cases of
i) inputs with large dynamical ranges, ii) ill-conditioned in-
put autocorrelation matrices and iii) coupling between differ-
ent signal modes, include classes of algorithms based on a
gradient–adaptive step size μ [3], mixed norm algorithms [4],
the ε–NLMS class [5] algorithms, and combinations of adap-
tive lters [6].
Gradient adaptive step size algorithms [7, 3, 8] are based upon
estimators of ∂E(k)/∂μ, which increases their sensitivity not
only to the correlation between input signal samples, but also
the value of the parameter that governs the adaptation of η(k).
The idea behind mixed–norm algorithms [4] is to combine
the minimum mean square error (MMSE) training de ned by
E(k) = 1

2e2(k), with other cost functions, such as E(k) =
|e(k)|, in order to balance between the different error mea-
sures. Convex combinations of lters typically employ two
LMS–trained lters with different step–sizes, recent results
show that such a “hybrid“ lter achieves faster convergence
and more controlled performance than a single lter [6].
The recently introducedGeneralisedNormalisedGradient De-
scent (GNGD) algorithm [5] belongs to the class of ε–NLMS
algorithms, for which the NLMS step–size is modi ed to

μ

‖ x ‖22
→ μ

‖ x(k) ‖22 +ε
(3)

where ε is a small positive “regularisation” constant. The
GNGD makes the regularisation term ε within the denomi-
nator of the learning rate of NLMS gradient adaptive. This
introduces excellent stability, robustess to parameter pertur-
bations, and very fast convergence. However, it was realised
that for certain inputs the update of ε from (3) may not settle
when in the steady state.
To that cause, we propose to equip the GNGD algorithm with
more desirable steady state characteristics. This is achieved
by employing a convex combination of lters trained byGNGD
and LMS, as shown in Figure 1. Simulation results show that
the proposed approach attains the excellent stability and fast
convergence of GNGD, together with the desired steady state
characteristics of LMS.
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Fig. 1. Convex combination of adaptive lters.

2. GENERALISED NORMALISED GRADIENT
DESCENT (GNGD)

The performance of NLMS is governed by the value of its
step size μ, for which the stability bounds are 0 < μ < 2.
In practical applications, small values of ‖x(k)‖2

2 cause ef-
fectively an increase in the value of η(k) = μ

‖x(k)‖22 , which
may bring to poor performance and ultimately divergence of
NLMS, when the resulting η(k) grows outside the stability
bounds, as illustrated in Figure 2.

The GNGD [5] solves this problem by performing a gra-
dient update of the regularisation parameter ε from (3), in the
generic form of

ε(k + 1) = ε(k)− ρ∇ε(k)E(k) (4)

where ρ is some small constant. The following expressions
describe the operation of GNGD

y(k) = xT (k)w(k) e(k) = d(k)− y(k)

η(k) =
μ

‖ x(k) ‖22 +ε(k)
w(k + 1) = w(k) + η(k)e(k)x(k)

ε(k + 1) = ε(k)−ρμ
e(k)e(k − 1)xT (k)x(k − 1)

(‖ x(k − 1) ‖22 +ε(k − 1))2
(5)

The GNGD has been shown to converge extremely fast, even
in environments where NLMS diverges. It is also robust to
perturbations of the regularisation term ε and the initialisation
of the step size adaptation parameter ρ. The GNGD has the
desirable property that it is almost guaranteed not to diverge,
no matter what the statistical properties of the environment
are. This is illustrated in Figure 2 where, in order to simulate
the close to zero input to the lter, we employed μ = 2.1, for
which NLMS diverged and GNGD converged.
Despite its excellent stability and very fast convergence,GNGD
does not guarantee that in the steady state, for some very small
output error of the lter, the update of the ε term in (5) will
settle to some xed value. This is due to the fact, that the lter
remains “alert” at all time instants, in order to react quickly
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Fig. 2. Performance of NLMS and GNGD for μ = 2.1.

to the changes in the environment, this can be seen from the
update of ε(k) in (5). This can, in turn, cause an unwanted
effect of an increase in the steady state error when the algo-
rithm should effectively be at the steady-state.
One way to improve the steady state performence of GNGD is
to employ a “search then converge” (STC) scheme [9]. There,
the learning rate η(k) is modi ed according to

η(k) =
μ

‖ x(k) ‖22 +ε(k) + STC(k)
(6)

where the term STC(k) refers to a cooling schedule [10].
This however proves impractical whenwe do not possess prior
knowledge about the statistics of the input signals, and limits
the application of this approach.

3. THE PROPOSED APPROACH

We desire to make the GNGD algorithm achieve better steady
state performance, while keeping its fast initial convergence
and excellent tracking capabilities. Following the approach
from [6], we propose to achieve this by a combination of
two adaptive lters trained respectively by GNGD and LMS,
whose outputs are then combined in a convex manner to form
y(k), as shown in Figure 1.
From Figure 1, the overall output y(k) of such a scheme can
be expressed as

y(k) = λ(k)yGNGD(k) + (1− λ(k))yLMS(k) (7)

where yGNGD(k) and yLMS(k) are respectively the outputs
of the GNGD– and LMS-trained sub lters. Our aim is to
make the value of mixing parameter λ within this structure
adapt according to the dynamics of the input signal, so as to
bene t from the fast convergence and stability of GNGD and
steady state performance of LMS.
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The idea is that in the beginning of the adaptation, and
for sudden statistical changes in the enviroment, the values
of λ are such that the overall output y(k) is dominated by
yGNGD(k), whereas in the steady state, it should become
closer to yLMS(k).
The weight vectorswGNGD andwLMS are updated indepen-
dently based on their corresponding output errors eGNGD(k)
and eLMS(k) (Figure 1) whereas the time–varying parameter
λ(k) is updated based on the overall output error e(k). This
gives good balance to the algorithm and the unwanted error
feedback effects are avoided.
Parameter λ(k) is updated using a stochastic gradient adapta-
tion, given by

λ(k + 1) = λ(k)− μa∇λE(k)|λ=λ(k) (8)

where μa is a small adaptation step size. From (7) and (8) the
λ update can be evaluated as

λ(k + 1) = λ(k)− μa
2

∂e2(k)
∂λ(k)

= λ(k) + μae(k)
(
yGNGD(k)− yLMS(k)

)
(9)

The overall weight vector of the convex combination of GNGD
and LMS can be expressed as

w(k) = λ(k)wGNGD(k) + (1− λ(k))wLMS(k) (10)

Notice some functional similarity with the mixed norm ap-
proach [4].
To preserve the convexity1 of this combination of adaptive
lters, we need to ensure that the values of parameter λ(k)
remain within the range 0 < λ(k) < 1. To that cause, in [6]
a squashing sigmoid function was used as a post–nonlinearity
to bound updates of λ. In our case, for a reasonably small μ a

this was not necessary and the values of λ stayed within the
required bounds 0 < λ < 1.
The operation ot the hybrid lter is based on the collabora-

tion of the constitutive adaptive lters, and its computational
complexity is a combination of the computaional complexity
of the individual lters and the complexity of the update of
the mixing paremeter. More speci cally, this is found to be
O(N) or 7N+9 multiplications and 7N+1 addtions per itera-
tion.

4. SIMULATIONS

The performance of the proposed approach was evaluated in
the prediction setting, and was compared to that of LMS and
GNGD. The length of all the adaptive lters considered was
set to N = 10. Convergence curves were averaged over a set
of 1000 independent simulation runs.

For generality, the inputs used in simulations were:-
1Let points x and y lie on a line. Then a convex combination λx + (1−

λ)y will lie in between x and y on the same line for λ ∈ (0, 1).

1. A stable linear AR(4) process given by

x(k) = 1.79 x(k − 1)− 1.85 x(k − 2) + 1.27 x(k − 3)
− 0.41 x(k − 4) + n(k)

(11)

2. A benchmark nonlinear signal given by [11]

x(k + 1) =
x(k)

1 + x2(k − 1)
+ n3(k) (12)

where n(k) is a zero mean and unit variance white Gaussian
process.
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Fig. 3. Averaged performance of the GNGD, LMS and Hy-
brid Filter in a prediction setting for linear signal (11).

In the case of linear signal (11), the values of parameters
used within GNGD were μGNGD = 1.95 and ρ = 0.15. The
initial value for the regularisation parameter was ε(0) = 0.1.
To achieve good steady state performance, the step–size of
LMS was relatively small, and was chosen to be μLMS =
0.01. Within the convex combination of lters trained by
GNGD and LMS, μα = 0.05 was employed as a value of the
step–size for the adaptation of λ(k). From the convergence
curves shown in Fig. 3, the proposed convex combination of
lters outperformed both the single LMS and GNGD. The
proposed approach achieved as fast convergence as GNGD in
the beginning of adaptation and eventually attained as good
steady state performance as that of the LMS algorithm (after
10000 samples – not shown in Figure 3).
The results of the same experiment conducted on a nonlin-

ear signal (12) are shown in Figure 4. The parameters of the
GNGD algorithm were set to μGNGD = 0.6, ρ = 0.15 and
ε(0) = 0.1. The step size of the LMS was μLMS = 0.001
and μα = 0.05 was chosen for the step size within the update
of λ(k). Clearly, the proposed convex approach was able to
combine successfully the small settling time of GNGD with
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Fig. 4. Averaged performance of GNGD, LMS and Hybrid
Filter for non-linear signal (12).
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Fig. 5. Time evolution of the adaptive convex parameter λ(k)
for the linear and the nonlinear case.

the low steady state MSE of LMS and hence outperformed its
component lters. The benchmark nonlinear signal (12) used
in the simulations is extremely complex and dif cult to pre-
dict, which illustrates the validity of the proposed approach.
As desired, the convergence curve of the hybrid lter followed
closely that of GNGD in the beginning of adaptation and then
continued to follow the convergence curve of LMS.
Since the proposed algorithm relies on GNGD for rapid

initial convergence, and then on LMS to preserve small steady
state misalignment, it is clear that the former must have a rel-
atively large adaptation parameter ρ whereas the latter should
use a very small step size. The value of parameter λ(k) was
therefore initially set to unity (output y(k) dominated by yGNGD)
and it is expected that after convergence λ(k) ≈ 0. This is il-
lustrated in Figure 5 for both the linear and nonlinear case.
In addition, our experiments show that:-

• if one of the constitutive lters fails to converge then
the values of λ(k) are such that the hybrid lter follows
the stable sub lter;

• if both the constitutive lters achieve considerable val-
ues of steady state error,λ(k) converges to a valueλ∞ ∈
(0, 1) which is signi cantly far from zero.

5. CONCLUSIONS

To improve the steady–state performance of the Generalized
Normalized Gradient Descent (GNGD) algorithm, we have
employed a convex combination of two adaptive lters in which
one lter is trained by GNGD and the other by the Least Mean
Square (LMS). This hybrid lter has been shown to have as
good a steady-state performance as LMS, whilst keeping the
fast convergence and good tracking capabilities of GNGD.
This convex combination of GNGD and LMS allows the hy-
brid lter to remain fast responding in a nonstationary envi-
ronment and to settle in a stationary environment.
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