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Abstract. A complex-valued data-reusing nonlinear gradient descent (CDRNGD) learning
algorithm for a class of complex-valued nonlinear neural adaptive filters is introduced and
the affinity between the family of data-reusing algorithms and the class of normalised gradient

descent algorithms is examined. Error bounds on the class of complex data-reusing algorithms
are established and indicate the stability of such algorithms. Experiments on nonlinear inputs
show the class of complex data-reusing algorithms outperforming the standard complex non-
linear gradient descent algorithms and converging to the normalised complex non-linear gra-

dient descent algorithm without experiencing the stability problems commonly encountered
with normalised gradient descent algorithms.

Key words. complex-valued nonlinear adaptive filter, data-reusing, normalised complex non-

linear gradient descent

1. Introduction

There has been a recent interest in complex-valued nonlinear neural adaptive filters,

which are the extensions of the real-valued nonlinear adaptive filters to the complex

plane, C. This class of filters has expanded the application fields in image processing,

computer vision, optoelectronic imaging, and communications. The potentially wide

applicability yields new aspects of theories required for novel or more effective func-

tions and mechanisms. The complex least mean square (CLMS) algorithm, [1], gave

rise to the growing applications of complex-valued linear filters. This led to the devel-

opment of the complex nonlinear gradient descent (CNGD) algorithm and the com-

plex backpropagation (CBP) algorithm [2–4] for nonlinear filters and neural

networks. As with their real-valued counterparts [5, 6], this family of complex-valued

algorithms suffer from the same problems of slow convergence and subjection to

local minima. A resolution to these problems in the field of real-valued nonlinear

adaptive filtering is using the family of data-reusing algorithms to help speed up

convergence [7, 8]. The aim of this paper is to develop a complex data-reusing
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nonlinear gradient descent (CDRNGD) algorithm for use in complex-valued neural

adaptive filters.

In this Letter we consider a dynamical feedforward perceptron which is in fact a

nonlinear adaptive finite impulse response (FIR) filter with a single neuron, shown in

Figure 1. This architecture is valid for both real valued and complex-valued neural

adaptive filters and is a generalisation of the widely used linear FIR adaptive filters.

For the class of filters discussed in this paper we derive the direct gradient

algorithms.

2. The Complex Nonlinear Gradient Descent Algorithm

The equations that describe the complex nonlinear gradient descent (CNGD) algo-

rithm for a complex-valued dynamical perceptron employed as a nonlinear FIR filter

with a single output neuron, shown in Figure 1, are given by

eðkÞ ¼ dðkÞ � yðkÞ; yðkÞ ¼ FðxTðkÞwðkÞÞ ð1Þ

where eðkÞ denotes the instantaneous output error, dðkÞ the desired output, Fð�Þ a

complex nonlinear analytic activation function that is bounded almost everywhere

in the complex domain, C, xðkÞ¼
D
½x1ðkÞ; x2ðkÞ; . . . ; xNðkÞ�

T the complex tap input,

wðkÞ ¼
D
½w1ðkÞ;w2ðkÞ; . . . ;wNðkÞ�

T the complex weight vector and N denotes the num-

ber of tap inputs. For simplicity we state that

FðxTðkÞwðkÞÞ ¼ FrðxTðkÞwðkÞÞ þ jFiðxTðkÞwðkÞÞ ¼ uðkÞ þ jrðkÞ ð2Þ

where the superscripts ð�Þr and ð�Þ
i denote the real and imaginary parts of the complex

output, and j ¼
ffiffiffiffiffiffiffi

�1
p

. The objective function of the filter is given by

J ðkÞ ¼
1

2
jeðkÞj2 ¼

1

2
½eðkÞe�ðkÞ� ð3Þ

where ð�Þ
� denotes the complex conjugate operator and j � j the modulus operator.

The weight adaptation in the NCGD algorithm is given by [7]

wðkþ 1Þ ¼ wðkÞ þ DwðkÞ ð4Þ

DwðkÞ ¼ Z½F0ðxTðkÞwðkÞÞ��x�ðkÞeðkÞ ð5Þ

where Z denotes the step size of the algorithm. Notice that for a linear real-valued

filter, (4) and (5) degenerate into the least mean square (LMS) algorithm.

Figure 1. A nonlinear neural FIR filter.
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3. The Complex-Valued Data-Reusing Nonlinear Gradient

Descent Algorithm

The complex-valued data-reusing nonlinear gradient descent (CDRNGD) algorithm

is a general form of the standard data-reusing nonlinear gradient descent algorithms

[7, 8]. It is shown in [9] that for real-valued algorithms, a posteriori approach is

the first reuse of a general data-reusing algorithm, and as the number iterations in

the data-reusing algorithm increase, this leads to the normalised algorithm. The

purpose of the family of data-reusing algorithms is to provide an increased conver-

gence rate compared to standard algorithms with minimal increase in computational

complexity. The technique of data-reusing is reliant on the wðkþ 1Þ updated weight

vector being available before the next input vector xðkþ 1Þ. To this cause a new a

posteriori output error, �eðkÞ, and a posteriori output estimate, �yðkÞ, are calculated

as [10]

�eðkÞ ¼ dðkÞ � �yðkÞ; �yðkÞ ¼ FðxTðkÞwðkþ 1ÞÞ: ð6Þ

The reusing of the input data can then be repeated and is known as the data-

reusing technique, which is expressed for the complex data-reusing nonlinear gradi-

ent descent (CDRNGD) algorithm as

elðkÞ ¼ dðkÞ � FðxTðkÞwlðkÞÞ; 14 l4L ð7Þ

wlþ1ðkÞ ¼ wlðkÞ þ ZelðkÞ½F0ðxTðkÞwlðkÞÞ�
�x�ðkÞ; 14 l4L ð8Þ

where L denotes the number of iterations in the data-reusing (DR) algorithm. It can

be clearly seen that

w1ðkÞ ¼ wðkÞ; wLþ1ðkÞ þ wðkþ 1Þ ð9Þ

and if L¼ 1 the CDRNGD algorithm reduces to the standard complex nonlinear

gradient descent (CNGD) algorithm, (4) and (5). Using (9) and (5) we can then state

wðkþ 1Þ ¼ wLþ1ðkÞ

¼ wLðkÞ þ Z½F0ðxTðkÞwLðkÞÞ�
�x�ðkÞeLðkÞ

¼ wL�1ðkÞ þ Z½F0ðxTðkÞwL�1ðkÞÞ�
�x�ðkÞeL�1ðkÞ þ

þ Z½F0ðxTðkÞwLðkÞÞ�
�x�ðkÞeLðkÞ

¼ w1ðkÞ þ
XL
i¼1

DwiðkÞ ¼ wðkÞ þ
XL
i¼1

DwiðkÞ ð10Þ

which is the total weight update along the data-reusing iterations. Our aim is to

make the consecutive errors elðkÞ ¼ 1; 2; . . . ;L decrease in magnitude along

the iterations, i.e. jelðkÞj < jel�1ðkÞj. The instantaneous output error for the second

iteration of the DR loop then becomes
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e2ðkÞ ¼ dðkÞ � FðxTðkÞw2ðkÞÞ

¼ dðkÞ � FðxTðkÞ½w1ðkÞ þ Z½F0ðxTðkÞw1ðkÞÞ�
�x�ðkÞe1ðkÞ�Þ

¼ dðkÞ � FðxTðkÞw1ðkÞÞ � FðxTðkÞ½w1ðkÞþ

þ Z½F0ðxTðkÞw1ðkÞÞ�
�x�ðkÞe1ðkÞ�Þ þ FðxTðkÞw1ðkÞÞ

¼ e1ðkÞ � FðxTðkÞ½w1ðkÞ þ Z½F0ðxTðkÞw1ðkÞÞ�
�x�ðkÞe1ðkÞ�Þþ

þ FðxTðkÞw1ðkÞÞ ð11Þ

giving a general algorithm for any iteration of the DR loop of

eLðkÞ ¼ eL�1ðkÞ � F
�
xTðkÞ

�
w1ðkÞ þ

XL
l¼1

DwlðkÞ
��

þ FðxTðkÞwL�1ðkÞÞ: ð12Þ

On the other hand the normalised complex nonlinear gradient descent (NCNGD)

algorithm calculates an adaptive learning rate according to eðkþ 1Þ ¼ 0 using the

dynamics of the input signal. The equations that define the NCNGD algorithm

can be derived from [11]

eNðkÞ ¼ dðkÞ � FðxTðkÞwNðkÞÞ; ð13Þ

wNðkþ 1Þ ¼ wNðkÞ þ ZðkÞ½F0ðxTðkÞwðkÞÞ��x�ðkÞeðkÞ ð14Þ

where the subscript N denotes the variables used in the NCNGD algorithm and ZðkÞ
denotes the adaptive learning rate1 in the NCNGD algorithm.

3.1. CONVERGENCE OF DATA-REUSING ALGORITHMS

For the data reusing algorithm to converge to the normalised algorithm the condi-

tion limL!1 eLðkÞ ¼ eNðkÞ must hold. For simplicity, the limit is ignored to give

eL�1ðkÞ � F
�
xTðkÞ

�
w1ðkÞ þ

XL
l¼1

DwlðkÞ
��

þ FðxTðkÞwL�1ðkÞÞ

¼ dðkÞ � FðxTðkÞwNðkÞÞ ð15Þ

It has already been stated in (7), that elðkÞ þ FðxTðkÞwlðkÞÞ ¼ dðkÞ, thus the equality

(15) reduces to

F
�
xTðkÞ

�
w1ðkÞ þ

XL
i¼1

DwlðkÞ
��

¼ FðxTðkÞwNðkÞÞ: ð16Þ

In order to preserve (16), it stands that

1 The adaptive learning rate in the NCNGD algorithm is calculated via a Taylor series expansion on the

instantaneous output error, yielding ZðkÞ ¼ 1=ðjF0ðxTðkÞwðkÞÞj2jjxðkÞjj2 þ CÞ, where C is added to

compensate the exclusion of second and higher order derivatives [5].
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lim
L!1

w1ðkÞ þ
XL
l¼1

DwlðkÞ

( )
¼ wNðkÞ; ð17Þ

which has already been proved for linear filters [8].

To illustrate the approach, Figure 2 shows simplified weight update for the com-

plex nonlinear gradient descent (CNGD), normalised complex nonlinear gradient

descent (NCNGD), and complex data-reusing nonlinear gradient descent

(CDRNGD) algorithms. The hypersurface SðkÞ ¼ 0 is the solution for which the

output error is zero. From (5), it is clear that the weight update term is directed

by the conjugate input vector and the data-reusing error term for the CDRNGD

algorithm and as the number of iterations in the data-reusing loop tends to infinity,

the weight vector approaches SðkÞ. Figure 2 shows that the NCNGD algorithm mini-

mizes the a posteriori instantaneous output error eðkþ 1Þ ¼ 0 based upon the

dynamics of the current input signal [11], and hence the data-reusing algorithm

approaches the NCNGD algorithm for large L.

4. Experimental Results

To investigate the performance of the CDRNGD and NCNGD algorithms, they

were applied to the problem of time-series prediction, by averaging the perfor-

mance curves of 300 independent iterations on a benchmark nonlinear input given

by [12],

Figure 2. A simplified geometric interpretation of the weight update of the CNGD, NCNGD and

CDRNGD algorithms (using the real-valued standard for the complex case [8]).
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zðkÞ ¼
zðk� 1Þ

ð1 þ z2ðk� 1ÞÞ
þ r2ðkÞ; ð18Þ

where rðkÞ was a normally distributed N ð0; 1Þ white noise, nðkÞ, passed through a

stable AR filter given by

rðkÞ ¼ 1:79rðk� 1Þ � 1:85rðk� 2Þ þ 1:27rðk� 3Þ � 0:41rðk� 4Þ þ nðkÞ: ð19Þ

In all the experiments the order of the filter was N ¼ 10, and the nonlinearity was

the logistic sigmoid function defined as

Fðz; bÞ ¼
1

1 þ e�bz ð20Þ

where z 2 C and b ¼ 1 controls the slope of the nonlinearity. To be able to clearly

visualize the merit of the algorithm, we utilise a small learning rate, for instance

Z ¼ 0:001: Figure 3 shows the performance curves for the complex data-reusing non-

linear gradient descent (CDRNGD) algorithm using a contractive activation

function on L ¼ 1; L ¼ 2; L ¼ 3; L ¼ 5 and L ¼ 10 as the parameter for the data-

reusing loop. The CDRNGD algorithm outperformed the complex nonlinear

gradient descent (CNGD) algorithm ðL ¼ 1Þ. As the number of iterations in the

data-reusing loop increased, the speed of convergence improved illustrating connec-

tion with the normalised complex nonlinear gradient descent (NCNGD) algorithm

in the limit, as shown analytically above.

5. Conclusions

Affinity between the class of complex data-reusing nonlinear gradient descent

(CDRNGD) algorithms and the normalised complex nonlinear gradient descent

Figure 3. Comparison of performance curves for CDRNGD and NCNGD algorithms.
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(NCNGD) algorithm has been established. The error bounds of such data-reusing

algorithms have been established, confirming the stability of such algorithms. Simu-

lations show the CDRNGD algorithm outperforming the standard complex nonlin-

ear gradient descent (CNGD) algorithm and converging to the NCNGD algorithm

in the limit.
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