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Abstract

This paper presents a novel approach for the simultaneous modelling and forecasting of wind

signal components. This is achieved in the complex domain by using novel neural network algorithms

and architectures. We first perform a signal nonlinearity and component-dependent analyses, which

suggest the use of modular complex-valued recurrent neural networks (RNNs). This RNN-based

modelling rests upon a combination of nonlinearity, complexity and internal memory and allows for

the multiple step ahead forecasting of the wind signal in its complex form (speed and direction). The

approach is first verified on benchmark Data Set A (NH3 laser data) of the Santa Fe Time Series

Prediction Competition together with artificial data generated by chaotic Mackey–Glass equations,

and then applied to the real-world wind measurements. Simulations support the proposed

architecture and algorithms.
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1. Introduction

There are many potential applications which require some kind of wind forecasting,
such as those in the power system operation, air pollution modelling and aviation safety
[1]. Wind power is envisaged as becoming one of the dominant sources of energy as soon as
the year 2020. Accurate estimation of the wind turbines (WT) power output is required in
order to incorporate wind-generated electric power into the grid [2,3]. Nowadays, it is
widely accepted that WT power forecasts should be based on the actual wind signal
forecasts rather than on the output power of the WT [4], which highlights the need for
precise and reliable modelling of not only the actual wind data, but also the underlying
wind dynamics.
The power generated by WTs is difficult to forecast, due to the continuous fluctuation of

both the wind speed and direction. Various field measurements have shown that the
direction of wind as compared with wind speed has less influence on WT power output
because each turbine is usually built to face into the wind when operating. Consequently,
and especially at stronger winds, there is no significant difference in the power generated
for different wind directions. However, the impact of wind direction on output power is
more prominent at milder winds since they usually come from much wider directions [4].
The importance of wind direction is of further significance in spatial correlation studies
which aim to assess the influence of WT position in a wind park [4]. Studies on multivariate
wind forecasts do not simultaneously model all of the wind parameters. They use several
relevant variables as model inputs in order to predict a single output variable. While wind
speed and direction are shown to influence turbine power simultaneously, they are separate
forecasts and introduce an error in both the wind dynamics and wind power forecasts. All
this emphazises the need to process wind signal as a vector field defined by wind speed and
direction, amongst other factors. This work therefore focuses on the development of a new
methodology and design of a neural network-based forecasting system to be used for the
estimation of WT power output. This is achieved based on a complex-valued vector-field
wind signal representation rather than on wind speed and wind direction being modelled
separately.
Recent results have shown that neural networks are powerful tools for forecasting real-

world data [5–7]. The forecasting methods based on a neural network approach have been
shown to be most promising in terms of forecasting accuracy and efficient computation,
due to their function approximation and generalization ability in a non-parametric fashion
[8–13]. In particular, recurrent neural networks (RNNs) possess rich internal nonlinear
dynamics, which make them capable of modelling a wider class of dynamical processes
(such as those with temporal dependencies within the signal) than their feedforward
counterparts [5,14,15].1 Fully connected recurrent neural networks (FCRNNs) possess
both short- and long-term memory (due to their feedback) and exhibit attractor dynamics
shown to be particularly suitable for forecasting of nonlinear and non-stationary signals
[16]. For real-time applications, the Real-Time Recurrent Learning (RTRL) algorithm [17]
has been widely used to train FCRNNs.
We set out to investigate the possibility of forecasting the wind speed and direction

simultaneously by making use of a complex-valued representation of the wind signal. A
1Nonlinear autoregressive (NAR) processes can be modelled using feedforward networks, whereas nonlinear

autoregressive moving average (NARMA) processes can be represented using RNNs
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recently proposed complex-valued real-time recurrent learning (CRTRL) algorithm for
RNNs [18] has shown the possibility of using nonlinear feedback architectures for the
forecasting of complex-valued wind field. Initial results on using single complex RNNs for
wind forecasting are given in [19].

Here, we first provide the theoretical justification for the use of complex-valued
representation of wind. This is achieved within the framework of surrogate data testing
and component correlation. The proposed RNN architecture was a modular complex-
valued pipelined recurrent neural network (CPRNN), which accounts for both temporal
and spatial correlations within a signal. Simulations on both the benchmark and real-
world complex wind measurements support the analysis.

The paper is organized in the following manner: in Sections 2 and 3, we present
theoretical background on wind power and wind signal characteristics. In Section 4, an
analysis of predictability is introduced. In Section 5, the network architecture and
prediction configuration are given. This is followed by comprehensive simulations in
Section 6. The paper concludes in Section 7.
2. Wind and wind power characteristics

The power generated by a WT is nonlinearly dependent on the wind speed. More
specifically, the power which can be extracted from the airflow is given by [1]

Pw ¼
r
2

Cpða; yÞA w3ðWÞ, (1)

where r is the air density ðkg=m3Þ, Cp is the performance or power coefficient, a is tip speed
ratio, that is, the ratio between the blade tip speed wt and the wind speed upstream the
rotor w (m/s), y is the blade pitch angle and A is the area swept by the rotor ðm2Þ. The
relation between wind speed and generated power is usually given by the manufacturer in
the power curve of the WT. A power curve, however, is derived under a set of assumptions
regarding the wind speed and air density. These so-called ‘ideal data’ are often impractical
in estimating the actual power output of each WT due to the distances and relative
positions of turbines in the wind park with respect to the meteorological tower(s). Fig. 1a
shows the wind rose plot of the direction versus magnitude (speed) of the wind at a site in
Iowa (USA) over 5000min. As a result, the estimation of actual WT power should be
based on processing the wind-vector (speed and direction) measurements (as two strongly
correlated inputs which define a wind signal (see Fig. 1b)). Since wind signal has a spatial
and temporal dimension, it can be treated as a time series. Time series prediction problems
are traditionally approached from a stochastic modelling perspective or more recently
from a nonparametric neural network perspective [6]. Either approach has advantages and
disadvantages: stochastic methods are usually fast, but limited in their applicability since
they are parametric and based on linear models [6,20,21]. Since wind signal is highly
nonlinear and non-stationary, the identification of parameters and contributing factors to
describe the power supplied by this non-controllable and intermittent source is not trivial.
Thus, classical parametric techniques such as time-series (AR, ARMA) methods used
widely in short- and long-term forecasting have limitations in dealing with the nonlinear
and nonstationary nature of wind signals and are prone to numerical instability and
inaccuracy. Neural network methods, on the other hand, are powerful enough, but the
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Fig. 1. Wind as a complex (speed,direction) quantity, v ¼ ejy ¼ vN þ jvE . (a) Wind rose representation, (b) wind

vector representation.

Table 1

Statistical properties of the wind data sets

Set 1 h 3 h 6 h

Cumulative samples 1200 1200 1200

Minimum speed (m/s) 0 0 0

Maximum speed (m/s) 13.0582 12.2865 11.4663

Mean speed (m/s) 3.2905 3.2905 3.2905

Standard deviation (m/s) 2.3387 2.2653 2.1520

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–17501736
selection of an appropriate architecture and its parameters is usually a time-consuming
trial and error procedure [21,22].

3. Analysis of wind characteristics

The data used in the simulations were obtained from the Iowa (USA) Department of
Transport.2 The data were sampled at 1-, 3- and 6-h intervals. Table 1 shows the statistical
properties of the wind data sets considered. To provide insight into the variation of the
complex-valued wind signal, three tests were performed. Firstly, the autocovariance of the
wind data with lags up to 25 was calculated. The autocorrelation coefficients for average
wind data over 1-, 3- and 6-h intervals are shown, respectively, in Figs. 2a, 3a and 4a. A
correlogram can be used to achieve a general understanding of the behaviour of the wind
time series with respect to averaging. If the autocorrelation coefficients decay slowly, this
indicates short-term correlation within the data. For a time series that contains a trend, the
2Real-life wind measurements are publicly available from ‘‘http://mesonet.agron.iastate.edu/request/awos/

1min.php’’.

http://mesonet.agron.iastate.edu/request/awos/1min.php
http://mesonet.agron.iastate.edu/request/awos/1min.php
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Fig. 2. Wind signal sampled at a 1 h interval. (a) Autocorrelation coefficients, (b) histogram of wind data points.

Fig. 3. Wind signal sampled at 3 h interval. (a) Autocorrelation coefficients, (b) histogram of wind data points.

Fig. 4. Wind signal sampled at 6 h interval. (a) Autocorrelation coefficients, (b) histogram of wind data points.

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–1750 1737
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values of the autocorrelation coefficients will not approach zero except for very large
values of the lag [23]. From Figs. 2–4, the short-term correlation in the time series
decreases as the sample average of the wind signal increases.
In the second test, the amplitude distributions of wind were plotted in the form of a

histogram. This is shown in Figs. 2b, 3b and 4b. The distribution of the histogram is
usually represented by the Weibull distribution [24]. The amplitude distribution curve
becomes slightly narrower with the increase in the sample interval.

3.1. Insight into complex-valued nature of the (speed, direction) representation of wind data

Some recent work showed that wind signal components are only locally predictable and
correlated [25], which is a strong indication that wind measurements could be treated as a
complex-valued compact signal rather than two separate univariate variables [26].
To verify this, we perform an experiment in which one step ahead predictions were

undertaken using three approaches:
(1)
3H

toge
4I

fed

com

acco
wind speed and direction are univariate3 signals and should be modelled indepen-
dently;
(2)
 wind speed and direction can be modelled by a complex number, but the representation
is split4 complex;
(3)
 ‘fully’ complex representation.
The used neural network configuration was the FCRNN architecture trained by the
CRTRL algorithm. The simulation results on the prediction performance applied to the
complex-valued real-world (speed and direction components) wind signal for the
univariate, split and ‘fully’ complex case are shown on Figs. 5–7. Observe that the ‘fully’
CRTRL algorithm was more stable and has exhibited better and more consistent
performance than the split and univariate approaches as indicated by the solid line
(predicted signal) being much more in accordance with the dotted line (actual signal).
Local predictability and associated short-tailed component correlations imply that the
complex representation of wind is likely to have advantage over the real-valued univariate
ones. This empirical result will be further theoretically justified in Section 4.

4. Predictability analysis

There are no general guidelines in the literature as how to select the parameters of a
neural network predictor architecture. This leads to time consuming trial-and-error
procedures. Some recent results from signal modality analysis [27], which is based on
predictability of a signal, provide a method to determine the embedding parameters of a
signal. This method is based on surrogate data representation and differential entropy,
which allows for a convenient graphical representation [22,28]. The Takens’ theorem [29]
ere, we mean that each component (speed and direction) is being predicted individually and then put back

ther to form a complex vector.

n a split-complex AF, the real and imaginary component of the complex-valued; input signal x are split and

through the real-valued activation function f RðxÞ ¼ f IðxÞ;x 2 R. The functional expression of the split-

plex activation function is given by f ðxÞ ¼ f RðReðxÞÞ þ jf IðImðxÞÞ. We can see that this approach does not

unt for a ‘fully’ complex signal where the signal components are not statistically independent.
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Fig. 6. Prediction of complex wind signal using CRTRL algorithm employing split activation function

(FCRNN). Solid curve: nonlinear prediction of wind signal. Dashed curve: actual wind signal.

Fig. 5. Prediction of univariate wind signal using two real-valued RTRL algorithms (FCRNN). Solid curve:

nonlinear prediction of wind signal. Dashed curve: actual wind signal.

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–1750 1739
implies that for a wide class of deterministic systems, there exists a multiple-input single-
output mapping (delay coordinate embedding) so that

xðkÞ ¼ Fðxðk � 1Þ;xðk � 2Þ; . . . ;xðk � f ÞÞ, (2)

where F is any nonlinear function and f is the number of past values taken into
consideration. The process of representing a system by one variable and its lagged versions
is called embedding [22]. According to Takens’ embedding theorem [30], the delay
coordinate map from a t-dimensional compact manifold to an m-dimensional Euclidean
space is embedding provided that

mX2tþ 1. (3)
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Fig. 7. Prediction of complex wind signal using ‘fully’ CRTRL algorithm (FCRNN). Solid curve: nonlinear

prediction of wind signal. Dashed curve: actual wind signal.

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–17501740
Moreover, Sauer et al. [30] showed an extension of the theorem with the following
condition

m42 boxdimðAÞ, (4)

where boxdimðAÞ is the box-counting dimension5 of A, and A is a compact subset of the n-
dimensional Euclidean space. This underpins the theory of low dimensional chaos, which
has found many applications in engineering [31].
The choice of parameters of neural network and the phase-space characteristics of a time

series are strongly related. For instance, calculating the embedding parameters of a series
using the method by Gautama et al. [27] gives us the estimated number of degrees of
freedom in the system. These results, shown in Fig. 8, are inconclusive, but suggest the use
of a robust feedback architecture for forecasting. The resulting embedding parameters
obtained are shown in Table 2.
To support the complex-valued representation, following the approach from [26], we

perform a component dependence test for the complex-valued wind representation. The
test is based on the complex-valued surrogate data analysis (see Fig. 9). From the figure,
there is a significant component dependence within the complex-valued wind signal
presentation as indicated by the rejection ratio of the null hypothesis of fully complex wind
signal nature being significantly greater than zero.6 Overall, there are stronger indications
of a complex-valued nature when the wind is averaged at a 1 h interval than when it is
averaged at a 6 h interval as represented by the respective percentage values of the rejection
ratio. Complex-valued wind signal averaged at a longer interval will become more
univariate and linear, and as indicated by the test, any linear complex-valued system has a
5Given that Nð�Þ is the number of boxes of side length � required to cover the fractal dimension of a set S in a

Euclidean space Rn, then the box-counting dimension is defined as dimboxðSÞ ¼ lim�!0 logNð�Þ= logð1=�Þ.
6We adopt the statistical testing methodology proposed by Gautama et al. [28,32], where the null hypothesis is

the original signal is complex-valued and signals are characterised by delay vector variance (DVV) method. Then

we applied the proposed test on three wind signals with different intervals, each for 100 times and compute the

number of times when null hypothesis is rejected out of 100.



ARTICLE IN PRESS

Table 2

Optimal embedding parameters using entropy ratio method

Wind component m t

Wind speed 2 7

Wind direction 2 1

Complex-valued wind 4 1

Fig. 8. Plots of the entropy ratio for: (a) wind speed, (b) wind direction and (c) complex-valued wind. The minima

of the entropy ratio plots are indicated by open circles.

Fig. 9. The complex-valued surrogate data test for the complex nature of wind signal (speed and direction).

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–1750 1741
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bivariate equivalent, though not vice versa. This provides an additional theoretical
justification for the use of complex-valued nonlinear neural networks with feedback,
CRNNs [7].
5. Network architecture and prediction configuration

5.1. Forecasting configuration

Forecasting of more than one step ahead can be achieved either in a direct or a recursive
manner. The approach used in this paper is the recursive method [33]. In the recursive
approach, once the network is trained, it predicts all the intermediate values up to T steps
ahead by using the previously predicted values as inputs when predicting the next value
[20,6].
5.2. The complex RNN

Fig. 10 shows an FCRNN, which consists of N neurons with p external inputs and N

feedback connections. The network has two distinct layers, namely the external
Fig. 10. A fully connected recurrent neural network for prediction.
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input-feedback layer and a layer of processing elements. Let ylðkÞ denote the complex-
valued output of a neuron, l ¼ 1; . . . ;N at time index k and sðkÞ the ð1� pÞ external
complex-valued input vector. The overall input to the network PðkÞ then represents a
concatenation of vectors yðkÞ, sðkÞ and the bias input ð1þ jÞ, and is given by

PðkÞ ¼ ½sðk � 1Þ; . . . ; sðk � pÞ; 1þ j; y1ðk � 1Þ; . . . ; yNðk � 1Þ�T,

PnðkÞ 2 PðkÞ ¼ Pr
nðkÞ þ jPi

nðkÞ; n ¼ 1; . . . ; pþN þ 1, ð5Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

, ð�ÞT denotes the vector transpose operator, and superscripts ð�Þr and ð�Þi

denote, respectively, the real and imaginary parts of a complex number, or complex vector.
For the lth neuron, its weights form a ðpþN þ 1Þ � 1-dimensional weight vector

wT
l ¼ ½wl;1; . . . ;wl;pþNþ1�, l ¼ 1; . . . ;N, which are encompassed in the complex-valued

weight matrix of the network W ¼ ½w1; . . . ;wN �.
The output of every neuron can be expressed as

ylðkÞ ¼ FðnetlðkÞÞ; l ¼ 1; . . . ;N, (6)

where F is a complex nonlinear activation function of a neuron and

netlðkÞ ¼
XpþNþ1

n¼1

wl;nðkÞPnðkÞ (7)

is the net input to lth node at time index k.
5.3. The complex-valued pipelined recurrent neural network (CPRNN)

The nonlinear adaptive filtering architecture as proposed by Haykin and Li [16] consists
of two sections, namely the nonlinear and linear ones. The nonlinear section, called the
pipelined recurrent neural network (PRNN), is essentially a modular RNN, and performs
nonlinear filtering, while the linear section represented by an FIR filter performs linear
filtering of the signal. This cascaded combination of the PRNN and an FIR filter has been
shown to be suitable for nonlinear prediction of real-valued non-stationary signals. The
CPRNN architecture contains M modules of FCRNNs connected in a nested manner as
shown in Fig. 11. The ðp� 1Þ-dimensional external complex-valued signal vector sTðkÞ ¼
½sðk � 1Þ; . . . ; sðk � pÞ� is delayed by m time steps ðz�mIÞ before feeding the module m,
where z�m, m ¼ 1; . . . ;M denotes the m-step time delay operator, and I is the ðp� pÞ-
dimensional identity matrix. The complex-valued weight vectors wl are embodied in an
ðpþN þ 1Þ �N-dimensional weight matrix W ¼ ½w1; . . . ;wN �. All the modules operate
using the same weight matrix W (a full mathematical description of the PRNN is given
[16,34]). The following equations provide a mathematical description of the CPRNN:

yt;lðkÞ ¼ Fðnett;lðkÞÞ; t ¼ 1; 2; . . . ;M, (8)

nett;lðkÞ ¼
XpþNþ1

n¼1

wl;nðkÞPt;nðkÞ;
l ¼ 1; . . . ;N ;

n ¼ 1; . . . ; pþN þ 1;
(9)
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Fig. 12. An FIR filter.

Fig. 11. Pipelined recurrent neural network (PRNN).

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–17501744
PT
t ðkÞ ¼ ½sðk � tÞ; . . . ; sðk � t� pþ 1Þ; 1þ j,

ytþ1;1ðk � 1Þ; yt;2ðk � 1Þ; . . . ; yt;Nðk � 1Þ�

for 1ptpM � 1, ð10Þ

PT
MðkÞ ¼ ½sðk �MÞ; . . . ; sðk �M � pþ 1Þ; 1þ j,

yM ;1ðk � 1Þ; yM;2ðk � 1Þ; . . . ; yM ;Nðk � 1Þ�

for t ¼M. ð11Þ

5.4. Linear subsection

The linear subsection of the CPRNN consists of an FIR filter, shown in Fig. 12. The
complex-valued least mean squares (CLMS) algorithm is used to update the tap weights of
this filter, for which the output is given by

ŝðkÞ ¼ wT
FIRðkÞyoutðkÞ, (12)

where youtðkÞ9½yout;1ðkÞ; . . . ; yout;qðkÞ�
T is the output from the first CPRNN module

(y1;1ðkÞ), wFIRðkÞ9½wFIR;1ðkÞ; . . . ;wFIR;qðkÞ�
T the complex weight vector and q the number

of tap inputs.
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Table 3

Parameter selection details

Time series M N p q Z m

NH3 8 2 35 8 0.01 0.1

Mackey–Glass 8 2 50 25 0.01 0.1

W-1 (1 h ave.) 5 3 6 5 0.01 0.1

W-3 (3 h ave.) 5 3 6 5 0.01 0.1

W-6 (6 h ave.) 5 3 6 5 0.01 0.1

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–1750 1745
6. Simulation results

The presented methodology was firstly applied to two different time series which were
made artificially complex-valued by using the real part as the imaginary part: on choatic
laser series NH3

7 and nonlinear deterministic Mackey–Glass (MG) series.8 Next, average
wind data for 1-, 3- and 6-h intervals denoted, respectively, by W-1, W-3 and W-6 were
used as inputs to the network.

Selection of network dimension and parameters: For training purposes, all the data were
scaled to zero mean and unit variance. Initial weight values of the network were chosen
randomly. The network predictor was trained with 1200 data points from the complex
wind measurements. For the experiments, the nonlinearity at the neuron was chosen to be
the complex tanh function

FðxÞ ¼
ebx � e�bx

ebx þ e�bx
, (13)

where x 2 C. The value of the slope of FðxÞ was b ¼ 1. The value of the learning rate for
the CPRNN architecture was Z ¼ 0:01, while the learning rate for the FIR filter was
m ¼ 0:1. The forgetting factor for the CPRNN architecture was l ¼ 0:995. Table 3 shows
the parameters selected for each time series.

Performance measure: The measurement used to assess the performance was the
prediction gain Rp given by [16]

RpðkÞ910 log10
s2x
ŝ2e

 !
ðdBÞ, (14)

where s2x denotes the variance of the input signal xðkÞ, whereas ŝ2e denotes the estimated
variance of the forward prediction error eðkÞ. One more performance index was used to
measure the forecasting performance of the neural network, and the error mean and the
coefficient of multiple determination were used and given as [6]

B ¼
1

T

XT

a¼1

jxa � x̂aj, (15)
7Data Set A (NH3 laser data) of the Santa Fe Time Series Prediction. The data consists of the fluctuation points

of a far-infrared laser, approximately described by three coupled nonlinear ordinary differential equations.
8The Mackey–Glass benchmarks are generated by a nonlinear deterministic differential equation and are well

known for the evaluation of forecasting methods.
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Table 4

Analysis of configuration of architecture

Architecture Rp (dB)

FIR 6.221

FCRNN ðM ¼ 1Þ 8.774

CPRNN+FIR 13.578

Table 5

Performance measures for one step ahead prediction

Measurements NH3 MG W-1 W-3 W-6

B 0.0173 0.0233 0.0889 0.0813 0.0917

r2 0.9136 0.9081 0.8217 0.8364 0.8667

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–17501746
r2 ¼ 1�

PT
a¼1jxa � x̂aj

2PT
a¼1jxa � x̄j2

, (16)

where T is the number of samples forecasted, xa is the actual value, x̂a is the forecasted
value, and x̄ is the mean of the actual data. The error mean B is used to measure whether
the predictor is biased or not. A predictor with the error mean close to zero is called
unbiased. The coefficient of multiple determination can have several possible value ranges

r2 ¼

1 if 8a x̂a ¼ xa;

04r241 if x̂a is a better forecast than x̄;

0 if generally x̂a ¼ x̄;

r2o0 if x̂a is a worse forecast than x̄:

8>>><
>>>:

A coefficient of multiple determination close to one is preferable.
To verify the advantage of using the architecture proposed (CPRNN+FIR) over the

FIR and single FCRNN architectures, we compared the performances of these
architectures on complex wind data sampled at a 1-h interval. Table 4 shows the
comparison of average prediction gains between the FIR, a single FCRNN and
CPRNN+FIR configurations. There was a significant improvement in the prediction
gain when the CPRNN+FIR architecture was employed over the performance of an FIR
filter and a single module FCRNN.
Table 5 shows the results on error mean B and the coefficient of multiple determination

r2 for one step ahead forecast on various signals. The results obtained for the error mean B

were close to zero for all cases, meaning the network is unbiased. The values of r2 obtained
for all the time series in Table 5 were relatively close to one, meaning that these forecasts
were indeed better forecasts than the persistent one. Figs. 13 and 14 show the best
prediction results for one step ahead prediction on NH3, Mackey–Glass and wind (a 1 h
average) time series. Time series prediction over longer horizons is highly desirable. To
access how far in the future prediction is feasible, experiments are performed for 10, 20 and
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Fig. 13. One step ahead prediction of time series: (a) NH3 laser and (b) Mackey–Glass. Solid curve: nonlinear

prediction. Dashed curve: actual wind signal.

S.L. Goh et al. / Renewable Energy 31 (2006) 1733–1750 1747
30 steps ahead. Table 6 shows the results obtained on r2 for NH3, Mackey–Glass and W-1
input signals. For both NH3 and Mackey–Glass time series, longer prediction horizons
were achievable. However, for the case of wind signal, the forecasts for more than 10 steps
ahead were unreliable.

Table 7 shows the results of six steps ahead prediction for wind data average at 1-, 3- and
6-h intervals. The performance measures (r2) shown in Table 7 indicate small improve-
ment in the performance when the average interval of wind measurements increases.
These results corresponded to the analysis done in Section 4. Wind averaged at
longer intervals exhibits shorter correlation in the time series, which increases the
predictability.
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Fig. 14. One step ahead prediction of wind time series sampled at a 1 h interval. Solid curve: nonlinear prediction.

Dashed curve: actual wind signal.

Table 7

Performance measures for 1-, 3- and 6-h average of wind data for six steps ahead prediction

Wind Measurements (r2)

W-1 (1 h ave.) 0.7003

W-3 (3 h ave.) 0.7578

W-6 (6 h ave.) 0.7671

Table 6

Performance measures (r2) for 10, 20 and 30 steps ahead prediction

Measurements (r2) NH3 Mackey–Glass W-1 (1 h ave.)

10 steps 0.9112 0.8846 0.6523

20 steps 0.8752 0.8124 0.2144

30 steps 0.8014 0.8093 0.1258
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7. Conclusions

This paper has introduced a novel approach for estimation of the wind signal in the
complex domain, taking into account the strong correlation between the two wind
components, speed and direction. A cascaded complex-valued pipelined recurrent neural
network (CPRNN) architecture for prediction of nonlinear and non-stationary signals has
been used as a forecasting model. The complex-valued real time recurrent learning
(CRTRL) algorithm has been used for nonlinear adaptive filtering performed by fully
connected recurrent neural networks (FCRNNs) in the complex domains. Unlike the
previous algorithms of this kind, the proposed CRTRL algorithm is generic and applicable
for a variety of complex signals including those with strong component correlations. It has
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been demonstrated that the complex-valued representation of the wind signal provides a
better model than a univariate real-valued one. The performance of the architecture has
been evaluated on forecasting real-life wind signals and has been shown to give a
reasonable prediction up to six steps ahead.
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