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Stochastic Gradient-Adaptive Complex-Valued
Nonlinear Neural Adaptive Filters With a
Gradient-Adaptive Step Size

Su Lee Goh and Danilo P. Mandic

Abstract—A class of variable step-size learning algorithms for complex-
valued nonlinear adaptive finite impulse response (FIR) filters is proposed.
To achieve this, first a general complex-valued nonlinear gradient-descent
(CNGD) algorithm with a fully complex nonlinear activation function is
derived. To improve the convergence and robustness of CNGD, we further
introduce a gradient-adaptive step size to give a class of variable step-size
CNGD (VSCNGD) algorithms. The analysis and simulations show the pro-
posed class of algorithms exhibiting fast convergence and being able to
track nonlinear and nonstationary complex-valued signals. To support the
derivation, an analysis of stability and computational complexity of the
proposed algorithms is provided. Simulations on colored, nonlinear, and
real-world complex-valued signals support the analysis.

Index Terms—Complex nonlinear adaptive filters, complex-valued non-
linear gradient descent (CNGD), finite impulse response (FIR), variable
step size (VS).

I. INTRODUCTION

Real-valued finite impulse response (FIR) adaptive filters are a
de-facto standard in online signal processing and have found their
applications in a variety of disciplines, including acoustics, communi-
cations, and seismology [1]. The least mean square (LMS) algorithm
is the most frequently used algorithm for training of such filters [2].
Despite its robustness, this algorithm is relatively slow at converging,
and a number of its variants has been proposed [3], [4]. It also has
been recognized that a fixed step size, which governs the speed of
convergence and steady-state error of stochastic gradient algorithms,
is not an optimal choice for nonstationary environments, and to that
end, various variable step-size least mean square (VSLMS) algorithms
have been developed [3], [5], [6]. Ideally, the use of a variable step
size (VS) should also help to circumvent the tradeoff between fast
convergence and steady-state misadjustment, commonly experienced
with the fixed step-size LMS.

Variable step-sizes (VSs) can either be made to adapt in some
heuristic manner [7] or they can be gradient-adaptive. Benveniste et al.
[5] proposed a rigorously derived general adaptive step-size algorithm
based on the gradient of the instantaneous squared error with respect
to the step size. Benveniste’s algorithm, in fact, performs time-varying
low-pass filtering of the noisy instantaneous gradients in the update
of such an adaptive step size. This algorithm was derived without
making the usual independence assumptions [5], which results in much
improved performance, but also significantly increases computational
complexity as compared to standard LMS. Attempts to reduce the
computational complexity of this algorithm include the modifications
by Mathews and Xie [3] and Ang and Farhang-Boroujeny [6].
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For linear complex-valued adaptive filtering, the complex least mean
square (CLMS) algorithm was developed [1], and subsequently, non-
linear complex-valued adaptive filters have been introduced, mostly re-
alized as neural networks [2], [8], [9]. Despite emerging applications
of complex-valued nonlinear adaptive filtering, there are relatively few
results on advanced algorithms for these filters.

Our aim here is to extend the class of real-valued gradient-adap-
tive step-size algorithms to the case of complex-valued nonlinear adap-
tive filters. This is not trivial due to several open problems in the de-
sign of complex-valued nonlinear adaptive filters, such as of the choice
of complex nonlinearities and their singular points [10], existence of
Cauchy—Riemann conditions, and calculation of complex gradients.
Complex-valued elementary transcendental functions (such as tanh)
proposed by Kim and Adali [11] are identified as those that can provide
adequate nonlinear activation functions for this class of nonlinear fil-
ters. For generality, we focus on filters with a “fully”” complex nonlinear
activation function (AF)! of a neuron. This way, the Cauchy—Riemann?
equations are satisfied (except for a set of isolated points) which makes
it possible to use gradient descent in the update of the variable step
size. A general class of gradient-adaptive step-size algorithms is then
derived rigorously (termed VSCNGD1). This is followed by two other
algorithms, based on VSCNGD1, but with relaxed computational com-
plexity. The tradeoff between computational complexity and perfor-
mance is analyzed, which is followed by stability analysis. The anal-
ysis is supported by simulations on complex-valued linear, nonlinear,
and real-world signals.

II. CLASS OF VSCNGD ALGORITHMS

Following the standard stochastic gradient approach, the weight up-
date of the standard CNGD algorithm for a nonlinear FIR adaptive filter
(shown in Fig. 1) can be expressed as [12]

w(k+ 1) =w(k) + ne(k)[® (net(k))]*x* (k) (1)
net(k) =x" (k)yw(k) 2

where e(k) = d(k) — ®(net(k)) denotes the instantaneous error at
the output of the filter at the time instant k, d(k) is the desired signal,
x(k) = [e(k —1),...,2(k — M + 1)]" is the input signal vector, M
is the length of the filter, (-)” is the vector transpose operator, (-)* de-
notes the complex conjugate operator, w (k) = [wi (k), ..., war(k)]"
is the filter coefficient vector, whereas symbol ® denotes a general fully
complex nonlinear activation function.3 For simplicity, we state that

B(net(k)) = " (net(k)) + &' (net(k)) = u(k) + ju(k). (3)

The parameter 7 in (1) is the step size and is critical to the convergence
of the learning algorithms.

ITn a frequently used split-complex AF, the real and imaginary components
of the input signal x are separated and fed through the real-valued AF fr(x) =
fr(z),z € R. Asplit-complex AF is, therefore, given as f(z) = fr(Re(z))+
J fr(Im(x)), hence these functions are not analytic. The nonlinearity within the
complex AF must be analytic and bounded almost everywhere in the complex
domain, C [11].

2Cauchy-Riemann equations state that the partial derivatives of a function
f(z) = u(z,y) + jv(x, y) along the real and imaginary axes should be equal
as follows: f/(z) = (Qu/dx) 4+ j(Ov/0x) = (Ov/dy) — j(Ou/dy). This
way (Qu/0x) = (0v/dy) and (Jv/dx) = —(Ou/dy).

3For a comprehensive account of complex-valued activation function please
refer to [10].

1045-9227/$25.00 © 2007 IEEE
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Fig. 1. Complex-valued nonlinear adaptive FIR filter (dynamical perceptron).

A. VSCNGDI Algorithm

To make the adaptive filter from Fig. 1 capable of processing non-
linear and nonstationary signals, we propose to make the step size 71 in
(1) gradient-adaptive, as [13]

n(k) =n(k—-1)— PV'IE(k)\nﬂ?(k*l) )

where E(k) = (1/2)e(k)e* (k) = (1/2) |e(k)|* is the cost function
and p is some small positive constant. The real and imaginary compo-
nent of the complex error e(k) can be calculated from

(k) =d (k) —u(k) e'(k)=d(k)—v(k) )

which gives

o (k) _
Ou(k) -

de' (k) _
(k) —

~1. (6)

The gradient V, E(k) from (4) can now be evaluated as

VaE(R) =3 M =1

N Oe(k)

2" (K , .
te ')37}(]6 -1) )
To derive the proposed algorithms, the main issue is the cal-
culation of the partial derivatives (9e*(k))/(On(k— 1)) and
(Oe(k))/(dn(k — 1)) from (7). To calculate (9e*(k))/(dn(k — 1)),
notice that

de* (k) de’ (k) de' (k)

k—1)  onk—1) ‘onk—1) ®

Using the Cauchy—Riemann conditions, and the previous partial deriva-
tives from (6), we obtain the partial gradient terms from (8) as

Ik —1)  du(k) | Onet” (k) \ Owr(k) on(k —1)

onet™ (k) ow' (k)
owi (k) on(k—1)

du(k) ([ dnet'(k) dw"(k)
Inet* (k) \ owr(k) dn(k —1)

onet' (k) ow'(k)
owi(k) on(k — 1))

de’ (k) _Oer(k)|: du(k) <Ollet7"(k) ow’ (k)

_ Ou(k) oy OW' (k) i Ow'(k)
= Bnet (k) <_x M gni—1 TX P50 1))
du(k) () ow" (k) X ow' (k)
net' (k) Con(k —1) on(k —1)
&)

and
de'(k)y _ de'(k)| Ov(k) [ Omet"(k) Ow"(k)
ok —1) = Ou(k) | Onet” (k) \ dw (k) dn(k—1)

dnet” (k) ow'(k)
owi(k) on(k—1)

ov(k) Omnet (k) ow’ (k)
Onet'(k) \ owr(k) On(k—1)

dnet' (k) ow'(k)
owi(k) On(k —1)

_ Ouk) [, 0w (k) i Ow'(k)
"~ Onet” (k) ( x (k) an(k—1) tx (k)an(k‘ - 1))

dv(k) Lo owT (k) ow' (k)
) <‘X (k) - an(k — 1))'

Hnet’ (k An(k—1) x' (k)
(10)

Finally, to calculate the gradient of the cost function E (k) with respect
to the step size 77, combine (9) and (10) to yield

ow” (k)
An(k—1)

o (k) ou(k) o

Ak —1) ~ Ouet” (k) [ (_X (k) +jx (k))
aw'(k) /. ., _ i

ani—1) (JX (k) +x (k))}

ow' (k) . i
Y onti—1) (=" (k) + i (1»))}

_ | Ou(k) ow'(k) . ow' (k)
N Onet” (k) (877(k -1) J@r}(:k - 1)>

du(k) (. ow"(k) N aw' (k)
amet” () \"an(k—1) T an(k — 1)
ow* (k)

x x" (k)
Mk —-1)

du(k)
Onet (k)

—x" (k) {@’(net(k‘))}* (11)

Similarly to the calculation of (de*(k))/(dn(k — 1)), the second gra-
dient term in (7) becomes

De(k) ——xT(k)¢'(not(Ae))%.

an(k—1) 12)
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GRADIENTS OF THE PROPOSED VSCN GDjszlgGIE)EIITHMs AND THE ASSOCIATED COMPLEXITY
Algorithms Variable step-size update No. of multiplications
VSCNGDI1 | (k) = 9k — 1) [1 —n(k—1)]® (k- 1)]2x*(k — 1)xT(k — 1) 16

t(k — De(k — 1) {@” (k — 1)} x*(k — 1)xH (k — 1)]
+e(k —1){®'(k— 1)} "x*(k—1)
VSCNGD2 Pk) = ap(k —1) +e(k — 1) {®' (k — 1)} x*(k — 1) 9
VSCNGD3 k) =e(k — 1) {®' (k- 1)} z*(k — 1) 8

For simplicity, let us denote $(x” (k)w(k)) = ®(k) and the weight
gradient from (12) as (k) = dw(k)/9n,_, ;- Thus, from (1)
and (12), we have )

w0 =wlk = 1)+ I
xe(k—1){®(k—1)} x"(k-1)
nik — m " — *x* L
+ n(k l)a,,(k—l){q)“’ DY x" (k-1
+7;(k:—1)e(k—l)%x*(k—l)

+ (k= De(k - 1) {& k—l}*oax(k L

13)
Notice that the last term in (13) is zero since (ax*(k - 1))/
(On(k — 1)) = 0. We can now express the vector of weight gradients
¥(k) in a more compact form, given by

o(k) =k — 1)'[1 — (k= 1) |@' (k= D" x"(k — Dx" (k- 1)

+n(k—1)e(k—-1)

x {®" (k- 1)} x*(k - Dx" (k- 1)

+e(k—1){® (-1} x"(k - 1). (14)

Notice from (14) that within the gradient update of (14), we,
in fact, perform low-pass filtering of local weight gradients
e(k — 1){®'(k—1)}"x"(k — 1), and the term within the square
brackets in (14) determines the property of this time-varying low-pass
filter. Finally, we arrive at the VSCNGDI1 algorithm, for which the
gradient is given by

V,,E(k)

e(k) {'(k)} x" (k)3 (k) + " ()" (k)x" (k) (k) |-

(15)

This concludes the derivation of a general VSCNGD1 algorithm. This
approach provides a general and rigorous way to obtain a gradient-
adaptive step size for nonlinear complex-valued adaptive filters and
corresponds to the Benveniste’s algorithm for real-valued linear FIR
filters. In terms of computational complexity, it requires 16 complex
multiplications in the weight update. Next, we will derive modifica-
tions of this algorithm which are less computationally complex, but
still maintain improved performance, compared to CNGD.

B. VSCNGD?2 Algorithm

Notice that the 9 term from (14) represents a time-varying filtered
version of the instantaneous gradiente(k—1) {®'(k — 1)}" x* (k—1).

To simplify the step-size update, extending the approach from [6], we
replace the time-varying “filtering” term in square brackets in (14) by a
constant ) < « < 1. This leads to the VSCNGD?2 algorithm given by

Y(k)=ap(k—1) +e(k—1) {2 (k-1}"x

For o < 1, (16) represents a low-pass filter which combines the present
and past filtered observations of the instantaneous gradients e(k —
1){®'(k — 1)}" x*(k — 1). This way, we have relaxed computational
complexity as compared to VSCNGD1, as shown in Table L.

*(k=1). (16)

C. VSCNGD3 Algorithm

From the weight sensitivity update (16), for o = 0, the VSCNGD3
algorithm, which is the simplest of the three proposed algorithms, is
obtained. The step-size update is based only on the instantaneous esti-
mates [3] of gradients from (4), which can exhibit noisy behavior [3].
Therefore, the VSCNGD3 algorithm does not require the knowledge of
the past values of the gradient, and is computationally less demanding
than VSCNGD1 and VSCNGD?2. Table I summarizes the three pro-
posed algorithms and associated computational complexity.

III. STABILITY ANALYSIS

Following the approach from [14], our stability analysis is based on
the contraction mapping principle and addresses the mean-square con-
vergence of the proposed algorithms and sets bounds on the values of
the step size which preserve stability. By the contraction mapping the-
orem (CMT), function F : Z — Z is a contraction if [15]

|F(z) = Fy)| <Ale—yl  VeyeZ (17
where () < v < 1. Recall that, contractive functions have at most one
() — F"+](;r)| — 0 ast
n — oo. To make use of CMT, let w,, be an optimal solution for the
weight vector w, and v(k) = w(k) — Wopt. Subtract wepy from both
sides of (1), to give

v(k+1) =v(k) + n(k)e(k) [®' (k)] x"
=v(k) —n(k) [®'(k)]" x"(k)
x [(P(XT(k)w(k)) — B(x" (k) Wopt )]

+ n(k)eope [P'(R)]" %7 (k)

where eqpt = d(k) — ®(x(k)Wopt ). For simplicity, let us consider a
complex hyperbolic tangent, with the slope 3 = 1, that is $(Sx) =

(k)

(18)

tanh(z) = (e® —e *)/(e” 4+ e~ ) for which it is guaranteed that
[14]
|tanh(z) — tanh(y)| < | tanh’(¢)||z — y| (19)
4Fn(x) = F(F ... F(x)) for n times.
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TABLE II
PREDICTION GAIN R?,, FOR CNGD AND PROPOSED ALGORITHMS ON VARIOUS SIGNALS
R, [dB] Parameters AR(4) (23) | Nonlinear (24) | Wind (Im) | Wind (17m) | Radar
CNGD 7(0)=0.05 5.010 1.910 7.8891 9.5481 10.154
VSCNGD1 1(0)=0.05, p=0.0002 6.606 5.0911 17.5468 14.4142 15.510
VSCNGD2 | a=0.95, 1(0)=0.05, p=0.0002 6.271 5.0868 17.2631 14.0022 14.314
VSCNGD3 1(0)=0.05, p=0.0002 4.099 1.877 8.096 9.7754 13.145
14.5
14
m 135
o
Q.
o
13
12.5

0 o0

Fig. 2. Relationship between prediction gain R, and initial values of 7(0) and p(0) within VSCNGDI1 for nonlinear prediction of the wind signal.

forVz,y € [a,b] and 3¢ € (a,b). Combining (19) and (18), we have
v(k+1) < [I — (k) [@' (k)] @’(g)x*(k)xT(k)] v(k)  (20)

where, in the convergence analysis, the nonhomogeneous part of (18)
can be ignored. By applying the statistical expectation operator to the
squared Euclidean norm of (20), we obtain

E|lv(k+ 1|3 < A[E[B*]|E|lv(k)||3 1)

where A[E[B?]] is the maximum eigenvalue of E[B*] =

E[I—n(k)[®" (k)] @'(g)x*(k)xly(k)]z. Combining the condition

from (21) with the CMT principle (17), we obtain A[E[B?]] < 7* < 1.

Thus, for convergence, the step size n(k) is bounded from before by
2

O <) < X R [ 0T 5]

(22)
where A is the maximum eigenvalue of the input autocorrelation matrix
Ry

A. Choice of Nonlinear Activation Function

Empirical evidence shows that when using the elementary transcen-
dental function recommended by Kim and Adali [11], the associated

singular points and discontinuities at nonzero points do not pose a
problem in training when the domain of interest is bounded within a
circle of radius 7 /2. If the domain is larger, the training process tends
to become more sensitive to the choice of the learning rate and which
may become prohibitive when using a fixed learning rate. Also, the
initial random weights need to be bounded within a circle with small
radius.

IV. SIMULATIONS

In all the experiments, the order of the nonlinear adaptive filter was
chosen to be M = 4, with 3 = 1. Simulations were undertaken by av-
eraging 200 iterations of independent trials on prediction of both com-
plex-valued benchmark colored and nonlinear signals as well as single
trial real-life signals. The colored signal was a stable complex AR(4)
process given by

r(k) =L179(k —1) — 1.85r(k — 2)
+1.27r(k = 3) 4+ 0.41r(k — 4) + n(k) (23)
with complex white Gaussian noise (CWGN) € A (0, C) where C is

the complex-valued covariance matrix. The CWGN can be expressed
asn(k) = n" (k) + jn* (k) where n"(k),n" (k) ~ A'(0,1). The real
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Fig. 3. Performance of CNGD, VSCNGDI1, VSCNGD2, and VSCNGD3 algorithms on prediction of colored (23), nonlinear (24), and wind signals (17 m).

(a) Colored input. (b) Nonlinear input. (c) Wind signal.
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Fig. 4. Time variation of n(k) for VSCNGD1, VSCNGD2, and VSCNGD3 algorithms on prediction of colored (23), nonlinear (24), and wind signals (17 m).

and imaginary components of CWGN were mutually statistically in-
dependent sequences having equal variances so that 02 = o2 + ‘Tm .
The nonlinear benchmark input signal [16] used in simulations is given
by

z2(k—1)

:3 o
TG T W

z(k) = 24
The real-world signals used were the complex-valued radar> and two
sets of wind® data. The measurement used to assess the performance
was the prediction gain R, = 10log,, (¢3/67) [dB][17], where o7
denotes the variance of the input signal z(%), and 62 denotes the esti-
mated variance of the forward prediction error e(k).

Table II compares prediction gains of the CNGD and the proposed
variable step-size algorithms for the signals considered and also shows
the selection of initial parameters used in the simulations. In all the
cases, VSCNGD1 gave best performance, followed by VSCNGD2,
VSCNGD3, and standard CNGD. The improvement in the perfor-
mance when using the proposed class of algorithms was especially
visible for real-world data (columns 5-7 in Table II). To illustrate the
sensitivity of the proposed variable step-size algorithms to the choice
of their parameters, Fig. 2 shows the variation in R, for a range of
initial values of 7(0) and p(0). As shown in Fig. 2, one virtue of the
proposed algorithms is that the choice of initial values of 7(0) and
p(0) does not have significant effect on the performance.

In the next experiment, we compared the learning curves for the pro-
posed algorithms. Fig. 3 shows the performance of CNGD, VSCNGD1,

SPublicly available from http:/soma.ece.mcmaster.ca/ipix/.

%The wind measurements used in simulations come from an AM ultrasonic
anemometer and were sampled at 50 Hz for 1-h-long interval. The measure-
ments were recorded at 1 and 17 m high from the ground level. The difference in
height during measurements gave different wind dynamics. The wind vector can
be expressed in the complex domain C as v(t)e??(") = vy (t) + jon(t). Here,
the two wind components, the speed v and direction #, which are of different
natures, are modeled as a single quantity in a complex representation space.

VSCNGD?2, and VSCNGD3 algorithms on the colored (23), nonlinear
(24), and wind signal (high). Observe that for all the signals considered,
VSCNGDI1 exhibited fastest convergence. Depending on the signal in
hand, VSCNGD?3 typically exhibited similar or slightly worse perfor-
mance than CNGD, whereas the performance of VSCNGD2 was in be-
tween the two. To further illustrate the convergence of the VSSCNGD
algorithms, Fig. 4 illustrates the time variation of the step size (k) for
the experiment from Fig. 3. Notice that for all the proposed algorithms,
step size 77 exhibited fast convergence, and its behavior reflected the
nonlinearity and nonstationarity within the signal in hand.

V. CONCLUSION

To speed up convergence of complex-valued nonlinear adaptive fil-
ters and to improve their operation in statistically nonstationary envi-
ronments, the step size in the CNGD algorithm has been made adap-
tive. This has been achieved based on stochastic gradient, to give a class
of VSCNGD algorithms. For generality, the derivation has been con-
ducted for a general complex nonlinear activation function of a neuron.
The derivation has been rigorous and has provided a general and com-
putationally complex VSCNDGI algorithm and two of its less compu-
tationally demanding approximations. A comprehensive set of simula-
tions on both (linear and nonlinear) benchmark and real-life complex
signals illustrates the validity of the proposed approach.
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Blind Source Extraction Using Generalized
Autocorrelations

Zhenwei Shi and Changshui Zhang

Abstract—This letter addresses blind (semiblind) source extraction
(BSE) problem when a desired source signal has temporal structures, such
as linear or nonlinear autocorrelations. Using the temporal characteris-
tics of sources, we develop objective functions based on the generalized
autocorrelations of primary sources. Maximizing the objective functions,
we propose simple fixed-point source extraction algorithms. We give the
stability analysis and prove convergence properties of the algorithms as
the generalized autocorrelation function is linear or nonlinear. Especially,
as the generalized autocorrelation function is linear, the algorithm has
interesting character of ‘“‘one-iteration” convergence under some condi-
tions. Computer simulations and real-data application experiments show
that the algorithms are appealing BSE methods for temporal signals
of interest by capturing the linear or nonlinear autocorrelations of the
desired sources.

Index Terms—Blind source extraction (BSE), blind source separation
(BSS), fetal electrocardiogram (FECG), independent component analysis
(ICA).

[. INTRODUCTION

HE problem of blind (semiblind) source extraction (BSE) has
Treceived wide attention in various fields such as biomedical
signal processing and analysis, data mining, speech and image
processing, and so on [2], [3], [6]. The BSE learning algorithms
can extract a single source signal from linear mixture of source
signals and may have several advantages over simultaneous blind
source separation (BSS) [2]. For example, only “interesting” source
signals need to be extracted; signals can be extracted in a specific
order according to some features of source signals; lots of computing
time and resources can be saved.

Many source extraction algorithms [2] can extract a specific signal
as the first output, by using some a priori information, such as
non-Gaussianity [5], smoothness or linear predictability [1], [2],
sparseness [8], etc. However, the work reported in this letter has
been motivated by generalized autocorrelations (linear or nonlinear
autocorrelations) of the desired source signals. By capturing the
generalized autocorrelation characteristics of the signals of interest,
we obtain new BSE algorithms.

The structure of this letter is as follows. The objective functions
based on the generalized autocorrelation functions of the sources
and the fixed-point algorithms for optimizing the objective functions
are proposed in Section II. Furthermore, we prove the theoretical
properties of the fixed-point algorithms. In Section III, experiments
on artificial data and real-world electrocardiogram (ECG) data are
presented. Some discussion and conclusions are drawn in Section IV.

Manuscript received April 18, 2006; revised September 7, 2006 and
November 17, 2006; accepted January 5, 2007. This work was supported by
the National Science Foundation of China under Grants 60605002, 60475001,
and 10571018 and by the Chinese Postdoctoral Science Foundation under the
Grant 2005038075.

Z. Shi was with the State Key Laboratory of Intelligent Technology and Sys-
tems, Department of Automation, Tsinghua University, Beijing 100084, P.R.
China. He is now with the Image Processing Center, School of Astronautics,
Beijing University of Aeronautics and Astronautics, Beijing 100083, P.R. China
(e-mail: shizhenwei@mail.tsinghua.edu.cn).

C. Zhang is with the State Key Laboratory of Intelligent Technology and Sys-
tems, Department of Automation, Tsinghua University, Beijing 100084, P.R.
China.

Digital Object Identifier 10.1109/TNN.2007.895823

1045-9227/$25.00 © 2007 IEEE



