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An augmented CRTRL for complex-valued recurrent neural networks
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Abstract

Real world processes with an “intensity” and “direction” component can be made complex by convenience of representation (vector fields,
radar, sonar), and their processing directly in the field of complex numbers C is not only natural but is also becoming commonplace in modern
applications. Yet, adaptive signal processing and machine learning algorithms suitable for the processing of such signals directly in C are only
emerging. To this cause we introduce a second order statistical learning framework for a general class of nonlinear adaptive filters with feedback
realized as recurrent neural networks (RNNs). For rigour, both the so-called proper- and improper-second order statistics of complex processes
is taken into account, and the proposed augmented complex real-time recurrent learning (ACRTRL) algorithm for RNNs has been shown to be
suitable for processing a wide range of both benchmark and real-world complex processes.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Temporal recurrent neural networks (RNNs) are a class
of nonlinear adaptive filters with feedback which have found
their applications when processing nonlinear and nonstationary
signals, and signals coming from systems with long impulse
responses. This is mainly due to their ability to represent highly
nonlinear dynamic systems (Elman, 1990), the associated
attractor dynamics and inherent memory within the feedback
(Medsker & Jain, 2000; Principe, Euliano, & Lefebvre, 2000);
this makes them suitable for nonlinear autoregressive moving
average modelling (NARMA), unlike feedforward networks
which by design cannot model feedback systems. Real world
signals are typically nonstationary, nonlinear and nonGaussian,
and temporal RNNs are perfectly suited for processing such
signals; nonstationarity is accounted for by their sequential
mode of operation, their feedback caters for long impulse
responses, and the inherent nonlinearity helps to model
nonlinear and non-Gaussian signals and the associated higher
order statistics.
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Due to a number of emerging applications in the complex
domain C, it is therefore natural to extend RNNs to this
domain. One unique feature of signal processing in the
complex domain is that properties of processes in C vary
not only in terms of their linear/nonlinear behaviour but also
in terms of their bivariate or complex-valued nature (dual
univariate, split complex, fully complex) (Gautama, Mandic, &
Hulle, 2003). To that end, research towards a general, ‘fully
complex’ RNN has recently focused on the issue of analytical
nonlinear activation functions (AF)s within neurons. A
comprehensive account of elementary complex transcendental
activation functions (ETFs) used as AFs is given in Kim
and Adali (2003), whereby ETFs were employed to derive
a fully complex backpropagation (CBP) algorithm. This was
achieved by making use of the Cauchy–Riemann2 conditions;
this also helped to relax the requirements on the desired
properties of nonlinerities within fully complex neurons.3 A
recently proposed complex-valued real-time recurrent learning
(CRTRL) algorithm (Goh & Mandic, 2004) has illustrated
the possibility of using this strategy for the forecasting of
2 Cauchy–Riemann equations state that the partial derivatives of a function
f (z) = u(x, y) + jv(x, y) along the real and imaginary axes should be equal:
f ′(z) =

∂u
∂x + j ∂v

∂x =
∂v
∂y − j ∂u

∂y . This way ∂u
∂x =

∂v
∂y , ∂v

∂x = −
∂u
∂y .

3 A fully complex activation function is analytical and bounded almost
everywhere in C.
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4 A complex RV x is called proper if its pseudo-covariance Pξ
xx vanishes

(Neeser & Massey, 1992; Schreier & Scharf, 2003). For convenience, in many
applications, complex-valued random vectors (RVs) are treated as proper.

However, Pξ
xx may not be necessarily zero, in this case is called improper

complex-valued RVs.
complex-valued vector fields. The CRTRL algorithm has been
derived for a general meromorphic complex activation function
of a neuron and has a generic form of the real-valued RTRL
(Williams & Zipser, 1989).

To design an algorithm suitable for nonlinear adaptive
filtering in the complex domain C, we need a precise
mathematical model that describes the evolution of system
parameters. Hence, extensions of learning algorithms from
R to C are not trivial and often involve some constraints,
for instance, simplified models of both complex statistics
and complex nonlinearities within neurons. This might prove
suboptimal for classes of signals with significant correlation
between the real and imaginary parts, and we ought to seek
alternative ways to include the full second order statistical
information available.

To that end, we have recently introduced the so-called
augmented complex statistics into the derivation of state
space based algorithms (Goh & Mandic, 2007). This way,
we can circumvent the usual assumptions of circularity
(rotation invariant distribution), and orthogonality between the
real and imaginary channel, and design algorithms suitable
for general classes of complex-valued processes. Both the
Augmented Complex Kalman Filter (ACKF) and Augmented
Complex Extended Kalman Filter (ACEKF) algorithm were
derived, whereby the corresponding variants of complex RTRL
algorithm (Goh & Mandic, 2004) were used to compute the
Jacobian matrix within the ACEKF.

Notice that gradient-based learning complements state
space methods; however, a general framework for gradient-
based learning using augmented complex statistic is still
lacking. This letter therefore aims at providing a gradient-
based learning strategy for the training of complex RNNs
for temporal problems. This way, the properties of complex
nonlinearities and so called augmented second order complex
statistics, are combined in order to make full use of the
available information. The proposed approach is general and
rigorous; the corresponding algorithms for feedforward neural
networks and linear filters can be obtained straighforwardly
by respectively cancelling feedback and using liner neurons.
The analysis is comprehensive and is supported by simulation
examples for both the standard and augmented CRTRL,
performed on benchmark complex-valued coloured and
nonlinear signals, together with simulations on complex-valued
real-world radar and wind measurements.

1.1. Complex-valued augmented covariance matrix

To provide brief insight into so called augmented complex
statistics, observe that within the definition of complex
Gaussian variable, the only nonzero second-order moment is
E[xx∗

]. This effectively means that both x and x∗ need to
be taken into account when designing learning algorithms in
C. In other words, the full information is obtained not only
from individual statistics of the two constitutive variables, but
also from their cross-statistics (Schreier & Scharf, 2003). In
practical terms, this means that we can “augment” the input
vector x with its conjugate x∗ to produce the 2n × 1 vector
Fig. 1. A fully connected recurrent neural network (FCRNN).

Λ = [xT , xH
]
T . Such a transformation preserves linearity in Λ,

and is referred to as “widely linear” in x, due to the dependence
on both x and x∗.

Our aim is therefore to provide a rigorous derivation of
gradient-based learning of complex valued RNNs, which,
for generality, is based on the augmented complex statistics,
making this framework suitable for the processing of general
complex valued signals. Consequently, for so-called improper4

random variables, it is the augmented (2n × 2n) complex
covariance matrix Pxaxa = E[xa(xa)T

] (rather than just the
n×n matrix Pxx = E[xxH

]) that contains the complete second-
order statistical information. Such an augmented covariance
matrix can be evaluated as Neeser and Massey (1992), Schreier
and Scharf (2003)

Pxaxa = E

[
x
x∗

] [
xT xH

]
=

[
Pxx Pξ

xx

Pξ∗
xx P∗

xx

]
. (1)

2. The augmented complex-valued RTRL (ACRTRL)
algorithm

Fig. 1 shows an FCRNN, which consists of N neurons
with p external inputs. The network has two distinct layers
consisting of the external input-feedback layer and a layer
of processing elements. Let yl(k) denote the complex-valued
output of each neuron, l = 1, . . . , N at time index k, and
s(k) the (1 × p) external complex-valued input vector. The
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overall input to the network I(k) represents the concatenation
of vectors y(k), s(k) and the bias input (1 + j), and is given by

I(k) = [s(k − 1), . . . , s(k − p), 1 + j,

y1(k − 1), . . . , yN (k − 1)]T

= I r
n (k) + jI i

n(k), n = 1, . . . , p + N + 1. (2)

In general, a complex-valued weight matrix of the network
is denoted by W, where for the lth neuron, its weights
form a (p + F + 1) × 1 dimensional weight vector wl =[
wl,1, . . . , wl,p+F+1

]T where F is the number of feedback
connections. Since in our case, the feedback connections
represent the delayed output signals of the FCRNN, from Fig. 1,
we have F = N .

The output of each neuron can be expressed as

yl(k) = Φ(netl(k)), l = 1, . . . , N (3)

where

netl(k) =

p+N+1∑
n=1

wl,n(k)In(k) (4)

is the net input to lth node at time index k. The symbol Φ is
a complex nonlinear activation function. The weight update is
given as

∆ws,t (k) = η

N∑
l=1

el(k)
(
π l

s,t

)∗

(k)

1 ≤ l, s ≤ N , 1 ≤ t ≤ p + N + 1 (5)

where the update for the sensitivities (π l
s,t )

∗(k) is given by5

Goh and Mandic (2004)(
π l

s,t

)∗

(k) = {Φ′(k)}∗
[
wH

l (k)π∗(k − 1) + δsl I ∗
t (k)

]
(6)

where

δsl =

{
1, l = s
0, l 6= s

(7)

is the Kronecker delta.

2.1. Derivation of the augmented complex-valued RTRL
(ACRTRL) algorithm

Based on the analysis of augmented complex statistics
given in Section 2, we shall derive the corresponding CRTRL
algorithm using the augmented complex-valued input and
augmented weight matrix. From (5), the overall ‘augmented’
input to the network Ia(k) becomes

Ia(k) = [I(k), I∗(k)]T
= (I a

n )r (k) + j (I a
n )i (k),

n = 1, . . . , 2(p + N + 1). (8)
5 Recall that for the gradient calculation, we need to calculate the conjugate
of the sensitivities {(π l

s,t )
∗(k)}. For a straightforward explanation, please look

at the complex LMS (Widrow, McCool, & Ball, 1975).
A complex-valued augmented weight matrix of the network
is denoted by Wa , where for the lth neuron, its weights
form a 2(p + N + 1) × 1 dimensional weight vector
wa

l = [wl,1, . . . , wl,p+N+1, w
∗

l,1, . . . , w
∗

l,p+N+1]
T . The output

of each neuron can be expressed as

yl(k) = Φ(netal (k)), l = 1, . . . , N (9)

where

netal (k) =

2(p+N+1)∑
n=1

wa
l,n(k)I a

n (k) (10)

is the net input to lth node at time index k.
For simplicity we state that

yl(k) = Φr (netal (k)) + jΦi (netal (k)) = ul(k) + jvl(k)

netal (k) = σ a
l (k) + jτ a

l (k). (11)

For real-time applications, the cost function of the recurrent
network is given by Widrow et al. (1975)

E(k) =
1
2

N∑
l=1

|el(k)|2 =
1
2

N∑
l=1

el(k)e∗

l (k)

=
1
2

N∑
l=1

[
(er

l )
2
+ (ei

l )
2
]
. (12)

Notice that E(k) is a real-valued function and we are required to
derive the gradient E(k) with respect to both the real and imag-
inary part of the augmented complex-valued weights, that is

∇wa
s,t

E(k) =
∂ E(k)

∂(wa
s,t )

r + j
∂ E(k)

∂(wa
s,t )

i ,

1 ≤ l, s ≤ N , 1 ≤ t ≤ 2(p + N + 1). (13)

The ACRTRL algorithm minimizes cost function E(k) by re-
cursively altering such weight coefficients based on gradient
descent, which yields

wa
s,t (k + 1) = wa

s,t (k) + ∆wa
s,t (k)

= wa
s,t (k) − η∇wa

s,t
E(k)|wa

s,t =wa
s,t (k) (14)

where η is the learning rate, a small positive constant.
Calculating the gradient of the cost function with respect to

the real part of the complex weight gives

∂ E(k)

∂(wa
s,t )

r =
∂ E

∂ul

(
∂ul

∂(wa
s,t )

r

)
+

∂ E

∂vl

(
∂vl

∂(wa
s,t )

r

)
=

∂ E

∂ul

(
Λl,(rr)

s,t (k)
)

+
∂ E

∂vl

(
Λl,(ir)

s,t (k)
)

1 ≤ l, s ≤ N 1 ≤ t ≤ 2(p + N + 1). (15)

Similarly, the partial derivative of the cost function with respect
to the imaginary part of the complex weight yields

∂ E(k)

∂(wa
s,t )

i =
∂ E

∂ul

(
∂ul

∂(wa
s,t )

i

)
+

∂ E

∂vl

(
∂vl

∂(wa
s,t )

i

)
=

∂ E

∂ul

(
Λl,(ri)

s,t (k)
)

+
∂ E

∂vl

(
Λl,(i i)

s,t (k)
)

1 ≤ l, s ≤ N 1 ≤ t ≤ 2(p + N + 1). (16)
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Table 1
Statistical properties of the input data sets

Datasets AR(4) (20) Nonlinear (21) Radar (low) Radar (high) Wind

Cumulative samples 3000 3000 3000 3000 3000
Minimum value −0.0615 − j0.0564 0.0203 + j0.1828 0.0129 − j0.0069 0.0142 + j0.0023 0
Maximum value 7.4477 − j7.1359 79.5360 + j33.7422 3.3640 + j0.7781 −2.3618 + j2.1945 11.5835 − j6.6877
Mean value 0.1459 + j0.1660 2.9655 + j0.3822 −0.0035 − j0.0019 −0.0030 − j0.0057 −1.4798 − j1.8394
Standard deviation 3.6685 9.3578 1.1314 1.2429 4.3301
6 The wind profile data used in simulations are publicly available from
“http://mesonet.agron.iastate.edu/”. The complex representation of the wind
vector v(t) is based on the joint modelling of the wind speed v(t) and direction
θ(t), given by v(t) = v(t)ejθ(t) or alternatively by using its projection onto the
North (N) – East (E) coordinate system, given by v(t) = vE (t) + jvN (t).

7 Radar (high) is referred to as “high sea state data” and radar
(low) is referred to as “low sea state data”. Publicly available from
“http://soma.ece.mcmaster.ca/ipix/”.
The partial derivatives ∂yl (k)

∂(wa
s,t )

r (k)
= Λl,(rr)

s,t (k) + jΛl,(ir)
s,t (k) and

∂yl (k)

∂(wa
s,t )

i (k)
= Λl,(ri)

s,t (k) + jΛl,(i i)
s,t (k) are measures of sensitivity

of the output at time k to a small variation in the value of the
augmented weight wa

s,t (k).
To compute these sensitivities, we start with differentiating

(11) which yields

∂σ a
l (k)

∂(wa
s,t )

r (k)
=

[
N∑

q=1

(
∂uq(k − 1)

∂(wa
s,t )

r (k)
(wa

l,p+1+q)r (k)

−
∂vq(k − 1)

∂(wa
s,t )

r (k)
(wa

l,p+1+q)i (k)

) ]
+ δsl(I a

n )r (k)

∂τ a
l (k)

∂(wa
s,t )

r (k)
=

[
N∑

q=1

(
∂vq(k − 1)

∂(wa
s,t )

r (k)
(wa

l,p+1+q)r (k)

+
∂uq(k − 1)

∂(wa
s,t )

r (k)
(wa

l,p+1+q)i (k)

) ]
+ δsl(I a

n )i (k)

∂σ a
l (k)

∂(wa
s,t )

i (k)
=

[
N∑

q=1

(
∂uq(k − 1)

∂(wa
s,t )

i (k)
(wa

l,p+1+q)r (k)

−
∂vq(k − 1)

∂(wa
s,t )

i (k)
(wa

l,p+1+q)i (k)

) ]
− δsl(I a

n )i (k)

∂τ a
l (k)

∂(wa
s,t )

i (k)
=

[
N∑

q=1

(
∂vq(k − 1)

∂(wa
s,t )

i (k)
(wa

l,p+1+q)r (k)

+
∂uq(k − 1)

∂(wa
s,t )

i (k)
(wa

l,p+1+q)i (k)

) ]
+ δsl(I a

n )r (k).

By using the Cauchy–Riemann equations Λl,(rr)
s,t (k) =

Λl,(i i)
s,t (k) and Λl,(ir)

s,t (k) = −Λl,(ri)
s,t (k), a more compact

representation of gradient ∇wa
s,t

E(k) is given by

∇wa
s,t

E(k) =

N∑
l=1

el(k)
(
Λl

s,t

)∗

(k). (17)

Extending the approach from Goh and Mandic (2004) by taking
into account the augmented complex statistics, the update for
the N × 2(p + N + 1) matrix of sensitivities (Λl

s,t )
∗(k) can be

derived as(
Λl

s,t

)∗

(k) = {Φ′(netal (k))}∗

×

[
(wa

l (k))HΛ∗(k − 1) + δsl(I a
t (k))∗

]
. (18)
Finally, the update of the augmented weights within the RNN
can be expressed as

wa
l (k) = wa

l (k − 1) + η

N∑
l=1

el(k)
(
Λl

s,t

)∗

(k) (19)

which completes the derivation of the augmented real time
recurrent learning (ACRTRL) algorithm.

3. Simulations

For the experiments, the nonlinearities within neurons were
chosen to be the complex tanh function Φ(x) =

eβx
−e−βx

eβx +e−βx

where x ∈ C. The value of the slope of Φ(x) was β =

1. The architecture of the FCRNN (Fig. 1) consisted of
N = 3 neurons with the tap input length of p = 5.
Two sets of simulations were conducted, based on complex-
valued nonlinear one step ahead prediction. In the first set
of experiments, comprehensive statistical tests comparing
ACRTRL and CRTRL were performed on benchmark complex
coloured and nonlinear signals (learning curves produced by
averaging of 100 iterations of independent trials). In the second
set of simulations, single-trial experiments were performed on
real-world complex-valued wind6and radar7 data.

The benchmark linear input (coloured noise) used in
simulations was an autoregressive AR(4) complex process,
given by

r(k) = 1.79r(k − 1) − 1.85r(k − 2) + 1.27r(k − 3)

− 0.41r(k − 4) + n(k) (20)

whose coefficients were chosen so that the process was stable.
The driving input to (20) was complex white Gaussian noise
(CWGN) denoted by n(k), with zero mean and unit variance.

The nonlinear input considered was generated using a
benchmark feedback process given by Mandic and Chambers
(2001)

z(k) =
z2(k − 1)(z(k − 1) + 2.5)

1 + z(k − 1) + z2(k − 2)
+ n(k − 1). (21)

Table 1 shows the statistical properties of the datasets
considered. The measurement used to assess the performance

http://mesonet.agron.iastate.edu/
http://soma.ece.mcmaster.ca/ipix/
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Table 2
Comparison of prediction gains Rp for the various classes of signals

Rp (dB) CRTRL ACRTRL

AR(4) (20) 3.22 4.10
Nonlinear (21) 4.52 5.81
Radar (low) 11.40 13.57
Radar (high) 4.56 5.41
Wind 12.78 13.82

Fig. 2. Prediction performance for radar signal using the proposed ACRTRL.
Solid curve: actual signal. Dashed curve: predicted signal.

was the prediction gain Rp(k) , 10 log10

(
σ 2

x
σ̂ 2

e

)
[dB] where

σ 2
x denotes the variance of the input signal x(k), whereas

σ̂ 2
e denotes the estimated variance of the forward prediction

error e(k).
Table 2 shows a comparison of the prediction gains Rp (dB)

between the proposed ACRTRL and standard CRTRL (without
the augmented states) for the classes of signals considered.
In all the cases, there was a significant improvement in the
prediction gain when the ACTRL approach was employed over
the performance of the standard CRTRL algorithm.

To further illustrate the advantage of using the ACRTRL
over CRTRL, we compared the performances of FCRNNs
trained with these algorithms in experiments on complex-
valued single trial real world radar and wind data. Figs. 2 and 4
show subsegments of the predictions generated by the ACRTRL
for radar (low) and wind signals, which illustrate the desired
property of the proposed approach to adapt to the large changes
in the dynamics of the processed signal. Compared with the
performance of standard CRTRL in Figs. 3 and 5, the proposed
ACRTRL algorithm was more stable, and has exhibited higher
accuracy and more consistent performance.

4. Conclusions

The augmented complex-valued real-time recurrent learn-
ing (ACRTRL) algorithm has been introduced for nonlinear
adaptive filtering in the complex domain. The ACRTRL has
been derived using some recent advances in so-called aug-
mented complex statistics, whereby a complete second-order
Fig. 3. Prediction performance for radar signal using the standard CRTRL.
Solid curve: actual signal. Dashed curve: predicted signal.

Fig. 4. Prediction performance for wind signal using the proposed ACRTRL.
Solid curve: actual signal. Dashed curve: predicted signal.

Fig. 5. Prediction performance for wind signal using the standard CRTRL.
Solid curve: actual signal. Dashed curve: predicted signal.
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information from complex-valued random processes is taken
into account. The performance of the ACRTRL has been eval-
uated on benchmark complex-valued nonlinear input signals,
and also on real-life complex-valued wind signals. Simulation
results have justified the potential of ACRTRL in nonlinear
complex-valued neural adaptive filtering applications.
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