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Abstract. A backpropagation learning algorithm for feedforward neural networks with an adaptive
learning rate is derived. The algorithm is based upon minimising the instantaneous output error and
does not include any simplifications encountered in the corresponding Least Mean Square (LMS)
algorithms for linear adaptive filters. The backpropagation algorithm with an adaptive learning rate,
which is derived based upon the Taylor series expansion of the instantaneous output error, is shown
to exhibit behaviour similar to that of the Normalised LMS (NLMS) algorithm. Indeed, the derived
optimal adaptive learning rate of a neural network trained by backpropagation degenerates to the
learning rate of the NLMS for a linear activation function of a neuron. By continuity, the optimal
adaptive learning rate for neural networks imposes additional stabilisation effects to the traditional
backpropagation learning algorithm.
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1. Introduction

Algorithms based upon the recursive solution of the Wiener filter, have been heav-
ily used in both linear and nonlinear real-time applications. In the area of linear
adaptive filters, the most popular algorithm is the Least Mean Square (LMS) al-
gorithm. However, its inherent limitations have forced researchers to try to improve
its performance, through, for instance, the Normalised LMS (NLMS) [1, 2], a pos-
teriori LMS [2], or through an adaptive learning rate. The idea behind the variable
learning-rate LMS is that the algorithm runs with a large learning-rate (step-size),
when the algorithm is far from the optimal solution, thus having a large conver-
gence rate, whereas the algorithm runs with a small step-size when near the optimal
solution, so as to achieve a low level of misadjustment. The criteria which have
been proposed for the step-size adaptation are: squared instantaneous error [3];
sign changes of successive samples of the gradient [4]; reducing the squared error at
each instant [5]; cross correlation of input and error [6]; square of a time-averaging
estimate of the autocorrelation of two consecutive error terms [7]. However, the
use of the above algorithms is rather application oriented, and generally limited to
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only time-invariant, stationary systems. In addition, these algorithms are sensitive
to noise [7]. Stabilisation for LMS has been achieved through the NLMS algorithm,
but its derivation is rather involved, and requires the use of the Lagrange Multipliers
method [8].

In the area of nonlinear adaptive processors, backpropagation is the most widely
used gradient based algorithm. However, the analysis of adaptive learning rate
in backpropagation has received little attention. The most popular algorithm for
backpropagation with an adaptive learning rate is the delta-bar-delta rule [9], which
also suffers from sensitivity to noise and relative instability [10, 11]. A further
attempt to improve backpropagation-based algorithms was viaa posteriorigradient
algorithms for neural networks [12].

Here, we derive the optimal time-varying learning rate for a nonlinear adaptive
neural network based upon backpropagation, which rests upon the value of instant-
aneous error, rather than on some statistical, or some empirical approach, as in the
linear adaptive case.

2. The Optimal Step Size for a Single Neuron Neural Network

The equations that define the adaptation in backpropagation neural networks with
one neuron are

e(k) = d(k)−8 (wT (k)X(k)
)

(1)

w(k + 1) = w(k)− η∇w(k)e
2(k) (2)

wheree(k) is the instantaneous error at the output neuron,d(k) is some teach-
ing (desired) signal,w(k) = [w1(k), . . . , wN(k)]T is the weight vector,X(k) =
[x1(k), . . . , xN (k)]T is the input vector, and(·)T denotes the vector transpose.
The learning rateη is supposed to be a small positive real number. The nonlinear
activation function of a neuron is denoted by8.

Equation (2) can be rewritten as

w(k + 1) = w(k)+ 2η8′
(
wT (k)X(k)

)
e(k)X(k) (3)

By expanding the error term (1) with a Taylor series, we obtain

e(k + 1) = e(k)+
N∑
i=1

∂e(k)

∂wi(k)
1wi(k)

+1

2

N∑
i=1

N∑
j=1

∂2e(k)

∂wi(k)∂wj(k)
1wi(k)1wj(k)+ · · ·

(4)

where only the first two terms will be considered.
From (1), the first partial derivatives can be obtained as

∂e(k)

∂wi(k)
= −8′ (wT (k)X(k)

)
xi(k) i = 1,2, . . . , N (5)
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and from (3), the weight correction is obtained by

1wi(k) = wi(k + 1)− wi(k)
= 2η8′

(
wT (k)X(k)

)
e(k)xi(k) i = 1,2, . . . , N

(6)

Now, combining (4), (5), and (6), we obtain

e(k + 1) = e(k)− 2η
[
8′
(
wT (k)X(k)

)]2
e(k)

N∑
i=1

x2
i (k) (7)

The instantaneous squared error is therefore given by

e2(k + 1) = e2(k)

[
1− 2η

[
8′
(
wT (k)X(k)

)]2 N∑
i=1

x2
i (k)

]2

(8)

In order to obtain the minimum of (8), we differentiate with respect toη, and
obtain the optimal value of learning rateηOPT (k) for a backpropagation trained
perceptron as

ηOPT (k) = 1

2
[
8′
(
wT (k)X(k)

)]2∑N
i=1 x

2
i (k)

(9)

Denoting the termwT (k)X(k) by net (k), and recognising that
∑N

i=1 x
2
i (k) =‖

X(k) ‖2, we obtain the following final expression forηOPT (k)

ηOPT (k) = 1

2 [8′ (net (k))]2 ‖ X(k) ‖22
(10)

Notice that this relationship is closely related to the learning rate in the NLMS
algorithm for linear adaptive filters. Indeed, for a linear activation function of a
neuron, the adaptive learning rate from (9) becomes exactly the learning rate in the
NLMS algorithm. For a nonlinear activation function of a neuron, the learning rate
becomes normalised by the tap input power of the input signal to a perceptron,
multiplied by the squared derivative of the nonlinear activation function at the
current pointnet (k). Hence, we will refer to the result from (9) and (10) as the
Normalised Backpropagation (NBP) algorithm for neural networks consisting of a
single perceptron.

3. The Adaptive Step Size Algorithm for a Multilayer Backpropagation
Network

The NBP algorithm for a general feedforward neural network trained by back-
propagation can be derived from the corresponding algorithm for a single per-
ceptron. For simplicity, we consider a general feedforward network with an ar-
bitrary number of hidden layers, and corresponding neurons, and with only one
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output neuron. The notion of local gradientδ is introduced [10] such that the local
gradientδ(M)1 (k) for the neuron in theMth (output) layerLM is

δ
(M)

1 (k) = 8′
(
net

(M)

1 (k)
)
e(k) (11)

whereas for theith neuron in the(l − 1)th hidden layerLl−1, the local gradient is

δ
(l−1)
i (k) = 8′

(
net

(l−1)
i (k)

)∑
j∈Ll

wj,i(k)δ
(l)
j (k) 1≤ l < M, i ∈ Ll−1 (12)

Here, the activation of a neurony(l−1)
i (k) given by

∑
j w

(l−1)
i,j (k)y

(l−2)
j (k) is denoted

by net(l−1)
i (k). Then, at the time instantk, the correction to the weight connecting

the ith neuron in the(l − 1)th layer and thej th neuron in the(l − 2)nd layer
1w

(l−1)
i,j (k) becomes (9)

1w
(l−1)
i,j (k) = 2ηzj (k)δ

(l−1)
i (k) (13)

where the input signal to theith neuron in the(l − 1)th layer is

zj (k) =
{
xj (k), neuroni in the first layer
yj (k), neuroni in layer l, 1< l ≤ M (14)

Notice that due to (11)–(13), all the local gradients in a general network, and
therefore all the weight corrections in the network at the time instantk, become
multiplied by the instantaneous output errore(k). Now, recognising the connection
between the terms1w(l−1)

i,j (k) and ∂e(k)

∂w
(l−1)
i,j (k)

, and undertaking the same procedure

as for the case of a single perceptron, we obtain

ηOPT (k) =
1

2

[
8′
(
net

(M)

1 (k)
)2∑

i∈LM−1
z2
i (k)+· · ·+

∑
m∈L1

δ2
m(k)

∑
n∈L0

x2
n(k)

] (15)

Although straightforward, the backpropagation algorithm with the optimal adapt-
ive learning rate for a general multilayer feedforward network depends on the size
and topology of a particular network, and its mathematical expression can be rather
clumsy. However, the learning rateη is again normalised by the sums of total tap
input power to every neuron in the network, multiplied again by the square of
appropriate local gradientsδ.

4. Conclusions

We have derived the Normalised Backpropagation algorithm (NBP) for a class
of feedforward neural networks. The algorithm runs with an adaptive learning
rate which is based upon theL2 norm of the appropriate input vector and local
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gradient at the neuron. The algorithm is derived from the instantaneous output
error of the network, based upon the Taylor series expansion of the output error.
No ad hoc rules, such as in the frequently considered Least Mean Square (LMS)
algorithm with an adaptive step size, are included. The algorithm shows behaviour
correspondent to that of the Normalised Least Mean Square (NLMS) algorithm,
and by continuity, imposes additional stability on the backpropagation algorithm.
This makes the NBP algorithm likely to be very useful in real time applications,
such as nonlinear prediction of statistically nonstationary signals.

References

1. Ljung, L. and Soderstrom, T.:Theory and Practice of Recursive Identification, MIT Press,
Cambridge, MA.,1983.

2. Treichler, J. R., Johnson, Jr., C. R. and Larimore, M. G.:Theory and Design of Adaptive Filters,
John Wiley & Sons, New York, 1987.

3. Kwong, R. H. and Johnston, E. W.: A variable step size LMS algorithm,IEEE Transactions on
Signal Processing40(7) (1992), 1633–1641.

4. Evans, J. B., Xue, P. and Liu, B.: Analysis and implementation of variable step size adaptive
algorithms,IEEE Transactions on Signal Processing41(8) (1993), 2517–2535.

5. Mathews, V. J. and Xie, Z.: A stochastic gradient adaptive filter with gradient adaptive step
size,IEEE Transactions on Signal Processing41(6) (1993), 2075–2087.

6. Shan, T. J. and Kailaith, T.: Adaptive algorithms with an automatic gain control feature,IEEE
Transactions on Acoustics, Speech and Signal Processing35(1) (1988), 122–127.

7. Aboulnasr, T. and Mayyas, K.: A robust variable step-size LMS-type algorithm: Analysis and
simulations,IEEE Transactions on Signal Processing45(3) (1997), 631–639.

8. Haykin, S.:Adaptive Filter Theory, Prentice-Hall, 3d ed., Englewood Cliffs, NJ, 1996.
9. Jacobs, R. A.: Increased rates of convergence through learning rate adaptation,Neural Networks

1 (1988), 295–307.
10. Haykin, S.:Neural Networks – A Comprehensive Foundation, Prentice Hall, Englewood Cliffs,

NJ, 1994.
11. Douglas, S. C. and Cichocki, A.: On-line step-size selection for training of adaptive systems,

IEEE Signal Processing Magazine14(6) (1997), 45–46.
12. Mandic, D. P. and Chambers, J. A.: A posteriori real time recurrent learning schemes for a

recurrent neural network based non-linear predictor.IEE Proceedings-Vision, Image and Signal
Processing145(6) (1998), 365–370.




