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A class of data-reusing learning algorithms for real-time recurrent neural
networks (RNNs) is analyzed. The analysis is undertaken for a general
sigmoid nonlinear activation function of a neuron for the real time recur-
rent learning training algorithm. Error bounds and convergence condi-
tions for such data-reusing algorithms are provided for both contractive
and expansive activation functions. The analysis is undertaken for var-
ious con�gurations that are generalizations of a linear structure in�nite
impulse response adaptive �lter.

1 Introduction

Recurrent neural networks (RNN)s represent an emerging technique in non-
linear adaptive signal processing. They are also suitable for implementing
nonlinear autoregressive moving average (NARMA) models (Connor, Mar-
tin, & Atlas, 1994; Nerrand, Roussel-Ragot, Peresonnaz, & Dreyfus, 1993;
Nerrand, Roussel-Ragot, Urbani, Personnaz, & Dreyfus, 1994). However,
RNNs for real-time adaptive �ltering applications, such as prediction, en-
counter problems due to the slow convergence of their gradient adaptive
algorithms (Bengio, Simard, & Frasconi, 1994). The so-called data-reusing
algorithms, which have been considered for linear adaptive �lters, offer an
increased convergence rate as compared to standard algorithms (Treich-
ler, Johnson, & Larimore, 1987; Roy & Shynk, 1989; Schnaufer & Jenkins,
1993).

For a recurrent perceptron, which is a nonlinear version of an in�nite
impulse response (IIR) linear �lter, whose nonlinear activation function is
W, the output of a neural adaptive �lter y is given by

y(k) D W (uT (k)w (k)), (1.1)

where u (k), w (k), and (¢)T denote, respectively, the input vector, weight
vector, and vector transposeoperator. Since the updated weight vector w (kC
1) is available before the next input vector u (k C 1), a new estimate Ny, which
is also known as an a posteriori estimate, can be calculated as (Mandic &
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Chambers, 1998)

Ny(k) D W (uT (k)w (k C 1)). (1.2)

The corresponding instantaneous output errors for the two cases above are
given respectively as e(k) D d(k) ¡ y(k), and Ne(k) D d(k) ¡ Ny(k), where d(k) is
some teaching signal.

This technique can be repeated and is called a data-reusing technique
(Roy & Shynk, 1989). A data-reusing algorithm for the recurrent nonlinear
case can hence be expressed as

wiC1 (k) D wi (k) ¡ grwi (k)E(ei (k))

ei (k) D d(k) ¡ W (uT (k)wi (k)), i D 1, . . . , L, (1.3)

where the cost function E(ei (k)) is typically Ei (k) D 1
2e2

i (k), and index i de-
notes the ith iteration of the algorithm 1.3 andg is the learning rate. Nerrand
et al. (1993) provide an extensive study of learning algorithms for neural
networks for nonlinear adaptive �ltering. A case with only one iteration of
equation 1.3 is addressed in Mandic and Chambers (2000b).

We wish to preserve the useful feature of a data-reusing algorithm that
the magnitude of an output error uniformly converges along the iteration
1.3, that is,

|eiC1 (k) | · c |ei (k)| , 0 < c < 1, i D 1, . . . , L, (1.4)

which represents a constraint on equation 1.3. It follows that for L D 1,
algorithm 1.3 reduces to the standard gradient-descent algorithm: w1 (k) D
w (k). The (L C 1)th iteration of equation 1.3 provides the values of quantities
that relate to the time instant (k C 1), that is, wLC1 (k) D w (k C 1). Unlike for
the case of linear adaptive �lters (Roy & Shynk, 1989; Schnaufer & Jenkins,
1993), the data-reusing approach for RNNs working as nonlinear adaptive
�lters depends also on the characteristics of the nonlinear activation function
of a neuron, that is, whether it is a contraction.

Here, an extension to the approach of Mandic and Chambers (2000b)
is provided and considers bounds on the ith data-reusing prediction error
ei (k), i D 1, 2, . . . , L for recurrent neural networks, starting from a recurrent
perceptron, to a fully connected recurrent neural network. Both the contrac-
tive and expansive nonlinear activation function of a neuron are addressed.
In this context, the range of values for the learning rate that provide con-
vergence and the change undergone by the weights of a network in the
data-reusing case are analyzed.
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2 Bounds on the Data-Reusing Error Adaptation for Recurrent Neural
Networks

From equation 1.3, a gradient-descent algorithm for a single-neuron recur-
rent network (recurrent perceptron) is given by Haykin (1999),

wiC1 (k) D wi (k) C g (k)ei (k) ¦ i (k)

ei (k) D d(k) ¡ W (uT (k)wi (k)), i D 1, . . . , L, (2.1)

where wi (k) is the weight vector at the ith iteration of equation 2.1, g is the
learning rate, u (k) is the input vector consisting of external data, feedback,
and bias, d(k) is some desired signal, ¦ i (k) is a gradient (sensitivities) vector,
and ei (k) is the prediction error after the ith iteration of the data-reusing al-
gorithm, 2.1, at the time instant k. A brief overview of the real time recurrent
learning (RTRL) algorithm is given in the appendix.

An insight into the RTRL algorithm and algorithm 2.1 shows that the
standard gradient algorithm that runs in discrete time k represents an outer
loop, whereas the data-reusing part, equation 2.1, which runs iteratively on
the input data from the discrete time instant k, represents an inner loop of
the whole algorithm. This way, the data-reusing algorithm described here
is a combination of a recursive and iterative algorithm. In Nerrand et al.
(1993, 1994) and Nerrand, Roussel-Ragot, Personnaz, and Dreyfus (1991),
a unifying concept of algorithms for training neural networks is provided.
In their taxonomy, the data-reusing algorithms presented here are referred
to as unidirected–directed algorithms. Starting from the last iteration in
equation 2.5, for i D L, we obtain the �nal data-reusing weight update as

w (k C 1) D wLC1 (k) D wL (k) C g (k)eL (k) ¦ L (k)

D wL¡1 (k) C g (k)eL¡1 (k) ¦ L¡1 (k)

C g(k)eL (k) ¦ L (k)

D w (k) C
LX

iD1

g (k)ei (k) ¦ i (k). (2.2)

The consecutive output errors in the data-reusing iteration are expressed as

e1 (k) D d(k) ¡ W (uT (k)w (k))

e2 (k) D d(k) ¡ W (uT (k)w2 (k))

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

eL (k) D d(k) ¡ W (uT (k)wL (k)). (2.3)
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The instantaneous error at the output neuron can be further expressed as

ei (k) D d(k) ¡ W (uT (k)wi (k))

D [d(k) ¡ W (uT (k)wi¡1 (k))]

¡ [W (uT (k)wi (k)) ¡ W (uT (k)wi¡1 (k))], (2.4)

clearly indicating the dependence of the ith data-reusing error on the fea-
tures of a nonlinear activation function1 of the neuron, W. Premultiplying the
�rst equation in equation 2.1 by uT (k) and applying the nonlinear activation
function W on either side, we obtain

W (uT (k)wiC1 (k)) D W (uT (k)wi (k) C g (k)ei (k)uT (k) ¦ i (k)). (2.5)

Further analysis depends on whether W is a contraction or an expansion.
Brief insight into the contraction mapping theorem (CMT) and its conse-
quences on stability in a recurrent perceptron is given in the appendix.

2.1 The Case of a Contractive Activation Function. For a broad class
of contractive sigmoid activation function we have (Mandic & Chambers,
2000b)

W (a C b) · W (a) C W (b). (2.6)

Notice that both e(k) and ei (k), i D 2, . . . , L have the same sign (Roy & Shynk,
1989; Douglas & Rupp, 1997), as seen in Figure 1.

From equation 1.3, the direction of the vectors Dwi (k) can be assumed
the same as the direction of the input vector u (k). As a gradient-descent
algorithm gives only an approximate solution to the optimization problem,
thequadratic surface de�ned by e2 (k) has a solutionset that isa linear variety

1 Clearly, equation 2.4 can be expressed as

ei (k) D [d(k) ¡ W (uT (k)w i¡1 (k) )] ¡ [W (uT (k)w i (k) ) ¡ W (uT (k)w i¡1 (k) )]

D ei¡1 (k) ¡ [W (uT (k)wi (k)) ¡ W (uT (k)wi¡1 (k) )].

By the CMT (Gill, Murray, & Wright, 1981; (see the Appendix)

9j 2 (uT (k)w i¡1 (k), uT (k)wi (k)),

such that

|W (uT (k)w i (k) ) ¡ W (uT (k)w i¡1 (k) ) | · W0 (j ) |uT (k)Dwi (k) |,

which connects the output errors at the ith and (i ¡1)th iteration, the �rst derivative of the
nonlinear activation function of neuron and the norm of the input data. This relationship is
elaborated later in the article. A logistic sigmoid function is assumed, although the results
are general.
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Figure 1: Geometric interpretation of data-reusing techniques.

instead of a single minimum. Hence, the solution space is a hypersurface
(Schnaufer & Jenkins, 1993), whose dimension is one less that the space on
which it rests, and vector u (k) is perpendicular to the solution hypersurface
S(k). Figure 1 gives a geometric interpretation of the relation between the
standard gradient, normalized gradient (Mandic & Chambers, 2000a), and
data-reusing gradient algorithm for on-line training of neural nonlinear
adaptive �lters.

From Figure 1, it is evident that repeating an a posteriori technique for a
suf�cient number of iterations approaches the normalized gradient-based
algorithm (Mandic & Chambers, 2000a).

Theorem 1. The lower bound for the data-reusing estimation error obtained by
algorithm 2.1 with L iterations and a contractive nonlinear activation function W is

eLC1 (k) > [1 ¡g (k)uT (k) ¦ (k)]Le(k), (2.7)

where ¦ (k) is such that maxiD1, ...,L (uT (k) ¦ i (k)) is obtained.
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Proof. Let a D uT (k)wi (k) and b D g (k)e(k)uT (k) ¦ i (k). Applying equa-
tion 2.6 to 2.5, and subtracting d(k) from both sides of the resulting equation,
and recognizing that for W a contraction, |W (j ) | < |j | , 8j 2 R, we obtain

eiC1 (k) > [1 ¡g (k)uT (k) ¦ i (k)]ei (k). (2.8)

Notice that thewhole process is a �xed-point iteration around the�xed point
de�ned by the information vector u (k), and hence the sequence uT (k) ¦ i (k),
i D 1, . . . , L has its maximum uT (k) ¦ (k) along the iteration. This yields

ei (k) > [1 ¡g (k)uT (k) ¦ (k)]ei¡1 (k)

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

ei (k) > [1 ¡g (k)uT (k) ¦ (k)]i¡1e(k) (2.9)

and equation 2.8 �nally becomes

eLC1 (k) > [1 ¡g (k)uT (k) ¦ (k)]Le(k), (2.10)

which is the lower bound for the data-reusing algorithm with a contractive
activation function of a neuron.

For the algorithm given in equation 2.1 with the constraint |ei (k)| <
|ei¡1 (k) | to be feasible, the term [1 ¡ g (k)uT (k) ¦ (k)] in equation 2.9 must
have a norm of less than unity, that is, it must be a contraction operator
(Bharucha-Reid, 1976). Notice that for L ! 1, the error from equation 2.10
becomes e1 (k) D 0, that is, after an in�nite number of iterations, this al-
gorithm becomes a normalized RTRL (NRTRL) algorithm, as derived in
Mandic and Chambers (2000a). In that case, the whole procedure is a �xed-
point iteration, and the necessary condition that guarantees convergence is
|1 ¡ g (k)uT (k) ¦ (k) | < 1 (Mandic & Chambers, 1998). The following corol-
lary gives the range of the learning rateg (k) so that the contraction mapping
properties are satis�ed.

Corollary 1. The range allowed for the learning rate g (k) in a data-reusing
algorithm, 2.1, to ensure convergence for the conditions given in theorem 1 is

0 < g (k) <
2

|uT (k) ¦ (k) |
. (2.11)

It is assumed that the value of the learning rate g (k) is held �xed during the �xed-
point iteration.
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2.2 The Case of an Expansive Activation Function. If function W is an
expansion, then (Mandic & Chambers, 2000b)

W (a C b) ¸ W (a) C W (b). (2.12)

This is not desirable, since the second term in equation 2.4 can grow without
bound. However, an analog statement to that of theorem 1 can be expressed,
replacing the sign > in equation 2.7 by < . Although this provides an upper
bound, it is not of practical signi�cance, since the errors grow with the
number of iterations due to the expansion of W in equation 2.12. An account
of the relationship between the norm of a weight matrix, learning rate and
a slope of the activation function is given in Mandic and Chambers (1999b).

2.3 The Case of a Linear Activation Function. In this case, the problem
degenerates into the problem of data-reusing linear adaptive �lters, which
are extensively studied in Roy and Shynk (1989), Schnaufer and Jenkins
(1993), and Sheu et al. (1992).

3 A General RNN

In the case of a general RNN, we have a weight matrix W comprising the
weight vectors w of individual neurons. For the case of a single-output
network, as is common in nonlinear prediction, the gradient matrix of the
�rst neuron ¦ 1 is of special interest. Due to the similarity of expressions
for a recurrent perceptron and a general RNN, the equation of interest now
becomes (see the appendix)

DW (k) D g(k)e(k)
@y1 (k)
@W (k)

D g (k)e (k) ¦ 1 (k), (3.1)

where ¦ 1 (k) represents the matrix of gradients at the output neuron with
respect to W (k). The correction to the weight vector of the jth neuron, at the
time instant k, becomes

Dw j (k) D g (k)e (k) ¦ 1(j) (k), (3.2)

where ¦ 1(j) represents the jth row of the gradient matrix ¦ 1 (k). Hence, from
the analysis for a recurrent perceptron and de�ning the gradients ¦ 1(1) (k)
in a way similar to that in theorem 1, we have theorem 2.

Theorem 2. For a data-reusing algorithm based on equation 2.1 and a con-
tractive nonlinear activation function W, the lower bound for the error obtained by
equation 2.1 and the range of the allowed step size for which the algorithm converges
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are, respectively,

eLC1 (k) > [1 ¡g (k)uT (k) ¦ 1(1) (k)]Le (k) (3.3)

0 < g (k) <
2

|uT (k) ¦ 1(1) (k) |
. (3.4)

4 On the Weight Change in the Data-Reusing Algorithm

For simplicity, we consider the case of a recurrent perceptron. After applying
the data-reusing algorithm L times, from equation 2.9, we have

LX

iD1

ei (k) >
LX

iD1

[1 ¡ g (k)uT (k) ¦ (k)]i¡1e(k)

D
1 ¡ [1 ¡g (k)uT (k) ¦ (k)]L

g (k)uT (k) ¦ (k)
e(k). (4.1)

This sum converges for a contractive activation function W and |1¡g (k)uT (k)
¦ (k)| < 1. Now, from equations 2.2 and 4.1, we obtain the amount for which
the weights change after L iterations of equation 2.1 (element by element):

Dw (k) <
1 ¡ [1 ¡ g (k)uT (k) ¦ (k)]L

uT (k) ¦ (k)
e (k) ¦ (k). (4.2)

A similar relationship can be obtained for the case of a general Williams-
Zipser type RNN.

5 Convergence of the Data-Reusing Approach

In the area of linear adaptive �lters, the analysis of convergence consists
of the analysis of the convergence in the mean, convergence in the mean
square, and convergence in the steady state. However, in the nonlinear
case, a Wiener solution does not generally exist, and hence, the conver-
gence is mainly considered by Lyapunov stability (DeRusso, Roy, Close, &
Desrochers, 1998; Zurada & Shen, 1990), or through contraction mapping.
Here, due to the assumption that the standard and the data-reusing errors
have thesamesign throughout the iteration, convergenceof the data-reusing
prediction error is de�ned by convergence of the underlying learning algo-
rithm for the standard error, given a contractive activation function of a
neuron. Additional stability and robustness of the data-reusing algorithms
is ensured due to the denominators of the corresponding relationships be-
tween the two errors, which are greater than unity (Mandic & Chambers,
1999a).
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From equation 4.2 we have

w (k C 1) < w (k) C
1 ¡ [1 ¡ g (k)uT (k) ¦ (k)]L

uT (k) ¦ (k)
e (k) ¦ (k). (5.1)

Introducing the weight error vector v as v (k) D w (k) ¡w¤ (k), where w¤ (k) is
some optimal value, and using the contractivity condition of the activation
function, we have

e(k) ¼ e¤ (k) ¡ W (uT (k)v (k)). (5.2)

Hence, we obtain

v (k C 1) < v (k) C
1 ¡ [1 ¡ g (k)uT (k) ¦ (k)]L

uT (k) ¦ (k)
e¤ (k) ¦ (k)

¡ 1 ¡ [1 ¡ g (k)uT (k) ¦ (k)]L

uT (k) ¦ (k)
W (uT (k)v (k)) ¦ (k). (5.3)

With the assumption of contractivity of W (|W (j ) | < |j | , 8j ), the homoge-
neous part of equation 5.3 becomes

v (k C 1) D
µ

I ¡ 1 ¡ [1 ¡g (k)uT (k) ¦ (k)]L

uT (k) ¦ (k)
¦ (k)uT (k)

¶
v (k). (5.4)

In order for equation 5.4 to converge, the term in square parentheses has to
be a contraction mapping operator, which has already been shown. On the
other hand, the data-reusing algorithms presented here have been shown
to have a uniformly smaller prediction error than the standard ones, and
hence they converge by continuity. Further details on convergence of stan-
dard algorithms can be found in Kuan and Hornik (1991), Bershad, Shynk,
and Feintuch (1993a, 1993b), and Yuille and Kosowsky (1993), whereas con-
vergence of normalized gradient-descent nonlinear algorithms is addressed
in Mandic and Chambers (2000a).

6 Discussion

It has been shown that repeating the data-reusing algorithm leads to a nor-
malized gradient algorithm; however, the NRTRL algorithm for recurrent
neural networks derived in Mandic and Chambers (2000a) is sensitive to
the characteristics of the input signals and the choice of the constant in the
algorithm. One way to achieve a performance similar to that of the normal-
ized algorithm is to use a contractive activation function of a neuron on
the class of data-reusing algorithms (see Figure 1). Mandic and Chambers
(1999b), illustrate the data-reusing approach for only one iteration (a poste-
riori). Other algorithms, such as the extended Kalman �lter (EKF) training
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for recurrent neural networks, have been analyzed and compared with stan-
dard RTRL (Mandic, Baltersee, & Chambers, 1998). A comparison between
NRTRL and the EKF algorithm shows that the NRTRL exhibits as good a
performance as the EKF for nonlinear signals. Hence, the bene�t of data-
reusing techniques is that they achieve a near NRTRL performance in few
iterations, albeit with an additional computational burden, as compared to
the NRTRL training. Unlike the NRTRL, however, this class of algorithms
does not suffer from stability problems for contractive nonlinear activa-
tion functions. Therefore, the computational complexity of the data-reusing
RTRL increases with the number of iterations but is still of the order O (N4)
for a relatively small number of iterations. The computational complexity
considerations and numerical examples for a simple data-reusing technique
for RNNs are given in Mandic and Chambers (1998).

In Figure 2, the RTRL and data-reusing RTRL were compared for predic-
tion of a benchmark nonlinear input given by Narendra and Parthasarathy
(1990),

z(k) D
z(k ¡ 1)

1 C z2 (k ¡ 1)
C r3 (k), (6.1)

where r(k) was a normally distributed N (0, 1) white noise n(k) passed
through a stable AR �lter given by

r(k) D 1.79r(k¡1) ¡1.85r (k¡2) C 1.27r(k¡3) ¡0.41r(k¡4) C n(k). (6.2)

The logarithm of theaveraged squared predictionerror, obtainedby a Monte
Carlo simulation with 100 trials of the experiment for both contractive and
expansive activation function, is shown in Figure 2.

The top part of Figure 2 shows the performance of a data-reusing al-
gorithm for a recurrent perceptron with a contractive activation function
for L D 1, L D 2, L D 5, and L D 10. The data-reusing algorithm outper-
formed the standard algorithm (L D 1). The performance of this algorithm
improves with increasing order of the data-reusing iteration and saturates
for large L, con�rming the analysis and the diagram shown in Figure 1. The
bottom part of Figure 2 shows the performance of a data-reusing algorithm
for a recurrent perceptron with an expansive activation function for L D 1,
L D 3, and L D 10. The performance deteriorates with the order of iteration,
con�rming the above analysis.

7 Conclusion

Relationships among the prediction error, learning rate, and slope of the
nonlinear activation function of a neuron havebeen provided for a nonlinear
adaptive �lter realized by a recurrent neural network, trained with a data-
reusing gradient algorithm. Such relationships establish a lower bound on
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Figure 2: (Top) Performance of RTRL and data-reusing RTRL with L D 2, L D
5, and L D 10 for prediction of a nonlinear input for a contractive nonlinear
activation function. (Bottom) Performance of RTRL and data-reusing RTRL with
L D 3 and L D 10 for prediction of a nonlinear input for an expansive nonlinear
activation function.

the error in recurrent neural predictors, whose instantaneous output error
is uniformly smaller in magnitude along the data-reusing iteration. This has
been achieved for the RTRL learning algorithm for a recurrent perceptron
and a general RNN. The analysis is general, although it has been performed
for a logistic sigmoid. It has been shown that convergence in this case is pre-
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served for a nonlinear activation function exhibiting contractive behavior.
Dynamical behavior of such data-reusing gradient-based algorithms lies
between the standard and normalized gradient algorithm.

Appendix

A.1 The RTRL Algorithm. For nonlinear adaptive prediction of non-
stationary signals through recurrent neural networks, the RTRL algorithm
is best suited for real-time applications (Williams & Zipser, 1989; Haykin,
1994). The weight matrix update of a general RNN can be expressed as
(Haykin, 1994)

DW (k) D ge(k)
@y1 (k)
@W (k)

D ge(k) ¦ 1 (k), (A.1)

where g is a learning rate, and ¦ 1 (k) represents the matrix of gradients at
the output neuron y1 with respect to W (k).

To simplify the presentation, we introduce three new matrices—the N £
(N C p C 1) matrix ¦

(j) (k), where p is the number of external input signals,
the N £ (N C p C 1) matrix Uj (k), and the N £ N diagonal matrix F (k)—as

¦ (j) (k) D
@y(k)

@wj (k)
, y D [y1 (k), . . . , yN (k)], j D 1, 2, . . . , N (A.2)

Uj (k) D

2

666666664

0

...

u (k)
...

0

3

777777775

Ã jth row, j D 1, 2, . . . , N (A.3)

F (k) D diag(W0 (uT (k)w (1) (k)), . . . , W 0 (uT (k)w (N) (k))). (A.4)

Hence, the gradient updating equation regarding the recurrent neuron can
be symbolically expressed as (Williams & Zipser, 1989; Haykin, 1994)

¦
(j) (k C 1) D F (k)[Uj (k) C ¦

(j) (k)Wa (k)], j D 1, 2, . . . , N, (A.5)

where Wa denotes the set of those entries in W that correspond to the feed-
back connections. The correction to the weight vector of the jth neuron, at
the time instant k becomes

Dw (j) (k) D g(k)e(k) ¦ 1(j) (k) (A.6)

where ¦ 1(j) represents the jth row of the gradient matrix ¦ 1 (k).
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a bK(a) K(b)

Figure 3: The contraction mapping.

A.2 Contraction Mapping and Nonlinear Activation Functions. By the
CMT, function K is a contraction on [a, b] 2 R if (Gill et al., 1981):

i) x 2 [a, b] ) K (x) 2 [a, b]

ii) 9c < 1 2 RC s.t. |K (x) ¡ K (y)| · c |x ¡ y|, 8x, y 2 [a, b],

as shown in Figure 3. Using the mean value theorem, for 8x, y 2 [a, b], 9j 2
(a, b) such that

|K (x) ¡ K (y) | D |K0 (j )(x ¡ y) | D |K0 (j )| |x ¡ y|. (A.7)

Now, the clause c < 1 in ii) becomes c ¸ |K0 (j ) |, j 2 (a, b). For the
example of the logistic nonlinear activation function of a neuron W (v) D

1
1Ce¡bv , with slope b , c < 1 , b < 4 is the condition for function W to
be a contraction.
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