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Abstract

Nonlinear system identification and prediction is a complex task, and often non-parametric

models such as neural networks are used in place of intricate mathematics. To that cause,

recently an improved approach to nonlinear system identification using neural networks was

presented in Gupta and Sinha (J. Franklin Inst. 336 (1999) 721). Therein a learning algorithm

was proposed in which both the slope of the activation function at a neuron, b; and the

learning rate, Z; were made adaptive. The proposed algorithm assumes that Z and b are

independent variables. Here, we show that the slope and the learning rate are not independent

in a general dynamical neural n!etwork, and this should be taken into account when designing

a learning algorithm. Further, relationships between Z and b are developed which helps reduce

the number of degrees of freedom and computational complexity in an optimisation task of

training a fully adaptive neural network. Simulation results based on Gupta and Sinha (1999)

and the proposed approach support the analysis.

r 2003 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The backpropagation (BP) algorithm is the most widely used learning algorithm
for multilayer feedforward neural networks. It is known that the convergence rate of
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the BP algorithm is slow and the algorithm is susceptible to local minima.
Furthermore, for convergence, the learning rate parameter Z; in the gradient
descent-based algorithm must be constrained according to the eigenanalysis of the
correlation matrix of the input signal [1]. To this cause, optimization techniques have
been developed that aim to increase the convergence rate and transform the learning
algorithm so as to reduce the risk of local minima. Such adaptive algorithms include
the momentum algorithm [2], normalised nonlinear gradient adaptive algorithms [3],
adaptive slopes in the activation function [4] and various gradient adaptive learning
rates [5–7]. Apart from the weights, the two parameters most often chosen to be
adaptive are the learning rate, Z and the slope of the nonlinear activation function, b:

This paper follows the approach given in [8], and provides an insight into the
dependence relationship between the learning rate, Z; and the slope of the activation
function, b; within the framework of [9], thus reducing the number of degrees of
freedom in the model. It is shown that it suffices to adapt only one of the two
proposed parameters without any degradation in performance of the algorithm.
Experimental results that employ an adaptive b confirm the analysis.

2. The delta-bar-delta with adaptive slope algorithm

Recently, a learning algorithm that uses the delta-bar-delta rule and an adaptive
gain, b; in the activation function was proposed [9]. The adaptive learning rate, Z; is
calculated using Jacob’s heuristics [10] to give

DZðkÞ ¼

k if Sðk � 1ÞDðkÞ > 0;

�gZðk � 1Þ if Sðk � 1ÞDðkÞo0;

0 otherwise;

8><
>:

ð1Þ

where

DðkÞ ¼
@JðkÞ
@wðkÞ

; ð2Þ

and

SðkÞ ¼ ð1� xÞDðkÞ þ xSðk � 1Þ; ð3Þ

where x and g are small positive constants and JðkÞ ¼ 1=N
P

e2ðkÞ; denotes the
objective function calculated as the mean squared error. The learning rate update
term is increased by a constant, k or decreased exponentially by a term controlled by
g: This algorithm effectively belongs to the class of sign algorithms [1].

The gain in the activation function in [9] is also being adapted according to a
gradient descent-based approach as

Dbðk þ 1Þ ¼ � Zb
@JðkÞ
@bðkÞ

¼
ZbdðkÞvðkÞ

bðkÞ
; ð4Þ
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where Zb denotes the step size of the slope adaptation algorithm, dðkÞ the local
gradient and vðkÞ the input to the nonlinear activation function. Here, notice that
both Z and b are being adapted. The algorithm proposed in [9] provides important
results, as the learning rate for each synaptic weight is adapted according to a variant
of the sign algorithm, and the slope of the activation function is adapted using a
gradient descent-based approach. This does not provide consistency in the model but
helps with the sensitivity of the algorithm compared to the original delta-bar-delta
which employs a gradient adaptive-based approach [1]. The proposed algorithm
indicates that the two adaptive parameters Z and b are independent, which we
address here.

The purpose of this paper is to show that the two parameters in [9] that have been
made adaptive and assumed to be independent are connected by (for a
comprehensive proof, consult Appendix A) [8]

ZR ¼ Zb2; ð5Þ

where ZR is the learning rate in a referent network for bR ¼ 1: The fully adaptive
algorithm proposed in [9] is a rigorous algorithm, as the experimental results in the
paper clearly show. However, the system is dependent on two initial conditions, Z0
and b0: Reducing the number of degrees of freedom from the model will result in
some drift in performance due to the truncation of learning rates at each neuron. It is
obvious that the relationship between Z and b is strong for models with a single
learning rate and gain at every neuron. However in the delta-bar-delta algorithm,
each synaptic weight has its own learning rate increasing computation complexity,
and sensitivity [1].

3. Sensitivity analysis and discussion

The proposed algorithm in [2] improves on the previously derived gradient
adaptive delta-bar-delta algorithm, which is sensitive in the transient state, by
adopting a sign variant alternative for the adaptation of the learning rate Z:
However, a learning rate at each weight within the neural network still results in a
sensitive model that is computationally expensive. This paper shows that the
proposed algorithm in [9] can be reduced in complexity by adopting the adaptive
slope in the activation function as defined in Eq. (4) without a noticeable decrease in
performance. However, we have highlighted the relationship between the learning
rate, Z; and the slope of the activation function, b: It can also be shown that adopting
an adaptive learning rate results in a less sensitive neural network. To demonstrate
this, consider a simple dynamical neuron where Fð�Þ denotes the nonlinearity at the
neuron and xðkÞ ¼ ½x1ðkÞ; x2ðkÞ;y; xNðkÞ�T the input to the neuron for which the
weight update algorithm is given by

wðk þ 1Þ ¼ wðkÞ þ ZeðkÞbF0ðbxTðkÞwðkÞÞxðkÞ: ð6Þ
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Therefore, for small Z; the sensitivity of the weight update DwðkÞ to Z can be
expressed as

@DwðkÞ
@Z

¼ beðkÞF0ðbxTðkÞwðkÞÞxðkÞ; ð7Þ

whereas the sensitivity of DwðkÞ to b is given by

@DwðkÞ
@b

¼ ZeðkÞxðkÞ½F0ðbxTðkÞwðkÞÞ þ b2F00ðbxTðkÞwðkÞÞxTðkÞwðkÞ�: ð8Þ

From Eqs. (7) and (8) it is clear that changing either the learning rate or the slope of
the activation function has a direct effect on the other. Generally, for reasonable
ranges of b and Z the weight update algorithm is less sensitive if we choose to update
the learning rate.

4. Experimental results

To show the relationship between the learning rate, Z and gain b the same
experiment was performed on two different feedforward neural networks. The task
involves prediction of a speech signal, shown in Fig. 1. The first neural network was
initialised with b ¼ 1; w0; and Z ¼ 0:3 and the second neural network was initialised
with b ¼ 2; w0=b; and Z ¼ 0:075; preserving dynamical relationship in Eq. (5).
Fig. 2(a) shows the prediction error for the first neural network, and Fig. 2(b) shows
the prediction error for the second neural network. Careful examination shows that
both the prediction errors are identical at the same time instant, thus confirming the
relationship between Z and b:
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Fig. 1. Speech signal.
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The second experiment was prediction of a known input signal, uðkÞ; defined by
uðkÞ ¼ sinð2pk=250Þ; 1pkp500 with the fully adaptive delta-bar-delta (FADBD)
algorithm given in [9] and the adaptive slope part of the FADBD algorithm as
defined by Eq. (4) with Zb ¼ 0:5; x ¼ 0:7; Z0 ¼ 0:3; b0 ¼ 1 and k ¼ 0:01: It is clear
from Fig. 3 that the performance of the backpropagation with adaptive slope
(BPAS) algorithm closely matches that of the FADBD algorithm in [9]. The
performance curves show some drift that is accounted for by the truncation of
learning rates in the BPAS algorithm, however the computation complexity is greatly
reduced.
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Fig. 2. Prediction errors for (a) b ¼ 1 and (b) b ¼ 2: (a) Prediction error with b ¼ 1: (b) Prediction error

with b ¼ 2:
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Fig. 3. Comparison of adaptive algorithms.
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5. Conclusions

The relationship between the learning rate, Z and the slope of the activation
function b has been highlighted in the framework of the results from [9], which uses
an adaptive learning rate together with an adaptive slope in order to achieve better
identification of nonlinear systems. It has been shown that only either the learning
rate or the slope need be made adaptive thus reducing the number of degrees of
freedom and computational complexity. This way the sensitivity and stability of the
delta-bar-delta algorithm have been improved. Experimental results have shown the
performance of the proposed algorithm consistent with that in [9].

Appendix A

To show the relationship between Z and b; two isomorphic feedforward neural
networks are used with outputs yðkÞ and yRðkÞ:1 In the analysis it must be shown that

yðkÞ ¼ yRðkÞ3FðnetðkÞÞ ¼ FRðnetRðkÞÞ; ðA:1Þ

where xðkÞ ¼ ½x1ðkÞ;x2ðkÞ;y;xN ðkÞ�T denotes the tap input, wðkÞ ¼
½w1ðkÞ;w2ðkÞ;y;wNðkÞ�T the weight vector, Fð�Þ the nonlinearity at the activation
function and netðkÞ ¼ xTðkÞwðkÞ: Following the approach in [8] we can show
that,

FðnetðkÞÞ ¼ FRðnetRðkÞÞ

3FRðbnetðkÞÞ ¼ FRðnetRðkÞÞ

3bnetðkÞ ¼ netRðkÞ

3bðxTðkÞwðkÞÞ ¼ xTðkÞwRðkÞ

3bwðkÞ ¼ wRðkÞ; ðA:2Þ

leaving the term bwðkÞ ¼ wRðkÞ: Since wðkÞ ¼ wðk � 1Þ þ Dwðk � 1Þ it follows that,

bDwðkÞ ¼ DwRðkÞ: ðA:3Þ

Knowing that DwðkÞ ¼ ZdðkÞxðkÞ; where dðkÞ denotes the local gradient, it can be
shown that

bZdðkÞxðkÞ ¼ ZRdRðkÞxðkÞ

3bZdðkÞ ¼ ZRdRðkÞ

3bZdðkÞ ¼ b2ZdRðkÞ

3dðkÞ ¼ bdRðkÞ: ðA:4Þ

There are now two cases for dðkÞ ¼ bdRðkÞ; the first is in the output layer and the
second is in the hidden layer. Letting the subscript ð�ÞLðkÞ denote parameters in the
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output layer and ð�ÞlðkÞ denote the parameters in the hidden layer we state,

dLðkÞ ¼ F0ðnetLðkÞÞeðkÞ; ðA:5Þ

dl;iðkÞ ¼ F0ðnetl;iðkÞÞ
XNlþ1

j¼1

dlþ1; jwlþ1;i; j ; ðA:6Þ

where Nl denotes the number of neurons in layer l and wl;i; j the weight connecting
neuron i in layer ðl � 1Þ to neuron j in layer l: For a neuron in the output layer, it
stands that,

bLF
0RðnetRL ðkÞÞe

RðkÞ ¼ F0ðnetLðkÞÞeðkÞ: ðA:7Þ

From Eq. (A.1) it follows that eRðkÞ ¼ eðkÞ to give,

bLF
0RðnetRL ðkÞÞ ¼ F0ðnetLðkÞÞ

3bLF
0RðbLnetðkÞÞ ¼ F0ðnetLðkÞÞ

3FRðbLnetðkÞÞ ¼ FðnetLðkÞÞ: ðA:8Þ

For a neuron not in the output layer we obtain,

bld
R
l ðkÞ ¼ dlðkÞ

3blF
0RðnetRl ðkÞÞ

XNlþ1

i¼1

dRlþ1ðkÞw
R
lþ1ðkÞ

¼ F0ðnetlðkÞÞ
XNlþ1

i¼1

dlþ1ðkÞwlþ1ðkÞ: ðA:9Þ

We have already shown in Eq. (A.8) that bLF
0RðnetRL ðkÞÞ ¼ F0ðnetLðkÞÞ so we are left

with,

XNlþ1

i¼1

dRlþ1ðkÞw
R
lþ1ðkÞ ¼

XNlþ1

i¼1

dlþ1ðkÞwlþ1ðkÞ

3
XNlþ1

i¼1

dRlþ1ðkÞblþ1wlþ1 ¼
XNlþ1

i¼1

dlþ1ðkÞwlþ1ðkÞ; ðA:10Þ

therefore dRlþ1ðkÞblþ1 ¼ dlþ1ðkÞ: Returning to the weight update algorithm we get

wRðkÞ ¼wRðkÞ þ DwRðkÞ

¼wRðkÞ þ bDwðkÞ

¼wRðkÞ þ bZdðkÞxðkÞ

¼wRðkÞ þ bZbdRðkÞxðkÞ

¼wRðkÞ þ ZRdRðkÞxðkÞ: ðA:11Þ

From the last two lines of Eq. (A.11) it can be shown that two isomorphic
feedforward neural networks behave the same in the dynamic sense if

ZR ¼ Zb2 ðA:12Þ
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thus the relationship of learning rate and gain in a feedforward neural network has
been established.
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