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A Fully Adaptive Normalized Nonlinear Gradient
Descent Algorithm for Complex-Valued
Nonlinear Adaptive Filters

Andrew lan Hanna and Danilo P. MandiMember, IEEE

Abstract—A fully adaptive normalized nonlinear com- used in the processing of complex-valued sighaldowever
plex-valued gradient descent (FANNCGD) learning algorithm for g split complex activation function cannot be analytic. To this
training nonlinear (neural) adaptive finite impulse response (FIR) cause, it is illustrated in [6] that the class of transcendental

filters is derived. First, a normalized nonlinear complex-valued functi b d as full | lued activation f
gradient descent (NNCGD) algorithm is introduced. For rigour, unctions can be used as fully complex-vajued activation tunc-

the remainder of the Taylor series expansion of the instantaneous tions successfully. For practical purposes, a complex-valued
output error in the derivation of NNCGD is made adaptive at activation function proposed in [3] is frequently used.
every discrete time instant using a gradient-based approach. This  For nonlinear adaptive filtering applications, a simple exten-
results in the fully adaptive normalized nonlinear complex-valued - g of an FIR filter is a dynamical perceptron, which is in fact
gradient descent learning algorithm that is suitable for nonlinear . . . . L
complex adaptive filtering with a general holomorphic activation an FI.R filter superseded with a F:or]tlnuous nonlinear aCt'Yat'on
function and is robust to the initial conditions. Convergence function. In Control Theory, this is also known as a Wiener
analysis of the proposed algorithm is provided both analytically model [7], [9]. Here, we consider such a filter realized as a dy-
and experimenta_llly. E_xperimental results on the prediction_ of namical complex neuron, as shown in Fig. 1.
colored and nonlinear inputs show the FANNCGD outperforming A yecent result provides novel ways of how to normalize the
other algorithms of this kind. - . . . .
backpropagation algorithm [10]; however, for a highly ill-con-
Index Terms—Adaptive filtering, nonlinear complex-valued fil-  ditioned input correlation matrix, close to zero input vectors and
tering, normalized gradient descent, prediction. signals with long time correlation and large dynamical range, it
is difficult to choose the parameters of the algorithm for each
|. INTRODUCTION particular case. In this paper, we embark upon the previously
glerived normalized nonlinear gradient descent (NNGD) algo-

DAPTIVE filtering techniques are an important facet. AN :
to many scientific disciplines such as communicationé',thm [11] for real-valued adaptive filtering and extend it to be

biomedical engineering, and life sciences. As these areas de§@Mpliant with signals in the field of complex numbérsThe
oped so did the character class of processed data. The majdityCP algorithm is a member of the class of fully adaptive
of these diverse data existed in the real domain: howevgp,rmahzed nonlinear gradient descent algorithms, which in the
increasing amounts started to root in the complex domain. THiiear real-valued case have been developed in [12]-{15]. The
in turn lead to the development of complex-valued learnirf{frivation of the NNGD algorithm [7] performs a Taylor series
algorithms for nonlinear adaptive filters. For linear comple&*Pansion of the instantaneous output error, which is then trun-
adaptive filtering, the complex least mean square (CLM$ ted leaving the driving terms of the algorithm. This resultsin a
algorithm [1] was developed. As the architectures of nonline@PoPtimal algorithm due to an approximation of the expansion.
neural network models became more involved, the complexThe choice of activation function, however, has major influ-
backpropagation (CBP) algorithm was derived [2]-[5]. ThENCces on the performance of algorithms fo.r nonImegr filters.
complication with the CBP algorithm is finding a suitable acti] Neréfore, based on the real-valued normalized nonlinear gra-
vation function that is analytic and completely bounded in tHlient descent algorlthm, we first derive a normalized nonlinear
complex plane [6]. Liouville’s theorem statés bounded en- Complex-valued gradient descent (NNCGD) for a general com-
tire function in the complex domain is a constaf@]—[8], and plex-valued activation function. For rigour, we make the con-

s, to be able to employ gradient descent-based aIgorithm§,t%f't term, wh_|ch .|s mcludeq tq balance the truncated '_raylor
fully complex activation function must be analytic and boundetf/ €S expansion in the derivation of the NNCGD algorithm,
almost everywhere in the complex domainfor which there adapt!ve using a'gradlent?based approach that prodgces the fully
are many choices. Originally, a split complex activation wedaptive normallzgd nonllngar complex-valued grad|entqlescent
(FANNCGD) algorithm derived for a general holomorphic ac-
Manuscript received October 17, 2001; revised March 5, 2003. The assockuation function. Experiments on the prediction of complex-
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Fig. 1. Nonlinear FIR filter.
[I. NORMALIZED NONLINEAR COMPLEX GRADIENT B. Normalized Nonlinear Complex Gradient Descent
DESCENTALGORITHM Algorithm
A. Nonlinear Complex Gradient Descent Algorithm Input signals with unknown and possibly very large dynam-

i&’al range, an ill-conditioned tap input autocorrelation matrix,

The equations that describe the nonlinear complex-valu . . :
gradient descent (NCGD) algorithm for a complex-valued d ind the coupling between different signal modes slow down the

namical perceptron, shown in Fig. 1, employed as a nonlin sfarning process. In order to speed up learning, it is desirable to
FIR filter with a sing’le output neuron’are given by calculate an optimal learning ratethat normalizes the model
according to a minimization of the instantaneous output error

e(k) = d(k) —y(k), y(k)= ®(net(k)) (1) at every iteration. The optimal learning rate of the NNCGD
algorithm is calculated similarly to the real case [10], [11] by

wheree(k) is the instantaneous output error of the filter at timgypanding the instantaneous output error by a Taylor series
instantk, y(k) is the output from the complex-valued nonlineagypansion

activation function,d(k) is the desired outputp(net(k)) is
some holomorphic function that is bounded almost everywhere N

in the complex domain [6], and e(k+1) = e(k) + Z 386(]512)Aw"(k)
N =1 9t
net(k) = 3 wa(k)wn (k) = x" (k)w(k) @) N de(k) de(k)
—~ +;axn(k)Axn(k)+ 8d(k)Ad(k)+~-~ 9)
where x(k) 2 [zi(k),...,zn(k)]T denotes the complex

input such thatz,(k) = x(k — n + 1), » = 1,...,N The higher order terms of the polynomial can be neglected if
from Fig. 1. The complex weight vector is denoted bW\w(k) = ||w(k) — w(k — 1)|| is sufficiently small [16]; how-
w(k) 2 [wi(k),...,wn(k)]", and N is the number of tap ever, during the training period of the algorithm, this condition
inputs. For simplicity, we state that may not be held; thus, the term regarding higher order deriva-
tives must be adjusted automatically. However, as an online

learning model, we do not know the valuesiof( k) andd,, (k)

where the superscripts)” and(-)?, respectively, denote the real® prio_ri ._2 To this cause, we tr_uncate the expansiop to include
and imaginary parts of a complex quantity, ane- v/—1. We the driving terms of the algorithm, namely, the weight vector,

can then split up the error term (1) into its real and imagina®yich gives

®(net(k)) = " (net(k)) + 5@ (net(k)) = u(k) + jo(k) (3)

parts as N
e (k) =d" (k) —u(k), e'(k)=d'(k)—v(k) 4) e(k+1)=e(k)+ Z 8?1}6:2) Awp (k) + h.ot.  (10)
B(k) =gle(®)]? = 5[e(k)e" (0] = 3 [(€)? () + (1) (B)] .

(5) whereh.o.t. denotes the truncated terms of the expansion. Since

e(k) is a complex function, we can apply the Cauchy—Riemann
whereE (k) is the conventional cost function of the network [1]equations to give

and(-)* denotes the complex conjugate. The weight adaptation
in the nonlinear complex gradient descent (NCGD) algorithm is de(k) el (k) e (k)

therefore given by [3] dwn(k)  owi (k) ‘78w';;(k-) (11)
wp(k 4+ 1) =w, (k) + Aw,(k), n=1,2,...,N (6)

Awn (k) = = 1V [E(E) w=uw, (1)

=ne(k) ('[net(k)])" 27, (k) ) e(k)

wheren is the learning rate. The NCGD algorithm can be written Ouwn (k)

in the compact form as 2For instance, in unsupervised offline batch processing, the valués(éf
are still unknown.

w(k +1) = w(k) + ne(k) (®'[net(k)])" x*(k).  (8) 3For a full derivation, see Appendix A.

and therefore

= —&'(net(k))zn (k). (12)
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Fig. 2. Convergence curves for NNCGD with varyifig (a) Convergence curve using NNCGD with= 0.1. (b) Convergence curve using NNCGD with=
0.8.

For simplicity, we take only the first two terms of (10), and subin each case, the order of the filter wAs= 10, and the non-
stituting in (7) and (12) yields linearity was the complex-valued hyperbolic tangent function,
which was defined as

N Bz _ —pBx
e(k+1) me(k) = 3 2 (k)@ [net(k)na (k) oz, B) = ﬁ (16)
n=1
- (@' [net(k)))" e(k) wherez € C, andg € R. Fig. 2(a) shows the performance of
N the NNCGD algorithm withC' = 0.8 reaching—22 dB, and
=e(k) [1 =Y (k)@ [net(k)lna (k) Fig. 2(b) shows the NNCGD algorithm with’ = 0.1 con-
n=1 verging to —34 dB, which is an increase in performance of
. (@'[net(k‘)])*} 12 dB, showing that the NNCGD algorithm is sensitive to the

, 9 ) choice ofC.
=e(k)[1 = 0@ Tnet(B)] Ix(R)IF]. (13)
I1l. FuLLy ADAPTIVE NNCGD ALGORITHM

For convenience, we employ the method given in [7] to solve The convergence curves in Fig. 2 clearly show a difference in
for n. For the output error at time instant ¢ 1) to be zero, performance according to varying valuegtfwhich was added
the term in the square brackets must be zero, which gives théhalance the exclusion of the terms from (9). For this reason, it

learning rate of the NNCGD algorithm as is proposed that an online adaptive tetffk ) from (14) be intro-
duced, providing a fully adaptive normalized nonlinear complex
1 gradient descent (FANNCGD) learning algorithm. The equation
n(k) (14)  that defines the update 6f(k) is given by

1@ (net(k) P [x(R)|E + C

, C(k) =C(k—1) = pVclE(k)]lc=c(k-1) (17)
In (14), C denotes a term added to balance the exclusion of
second and higher order derivatives, which is denoted in (10)\@gere) denotes the step size of the algorithm, and therefore
h.o.t. and the truncated terms in (9) from the Taylor series ex-
pansion. In the real-valued NNGD algorithm [11], tidisterm OE(k)

has been kept constant. The value of this term can have substane F (F)le=c 1) = aC(k—1)
tial effects on the convergence of the nonlinear adaptive filter, (1.
. ; g 1 e* (k) . Oe(k)
and the effects of this term will vary for different modes of ap- =9 [e(k)i(’)C(k—l) +e*( ')780%—1)} .
plication. To illustrate this, 500 independent simulations on the (18)

prediction of colored input were averaged to produce the con-

vergence curves, The colored input was generated with COMY calculate two partial derivative equations given in (18), it is

plex-valued white noise(k) with zero mean and unit variance, . : .
which was then passed through a stable AR filter described tr)1yecessary to use the Cauchy-Riemann equations to obtain

de*(k) [ ow (k)
a(k) = 1.79a(k — 1) — 1.85a(k — 2) + 1.27a(k — 3) 9C(k—1) — LoC(k—1)
—0.41a(k —4) + (k). (15) 4For a full derivation of (19) and (20), see Appendix B.

| @ (ret(e)] x" (k) (19)
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and This yields the FANNCGD learning algorithm for nonlinear FIR
de(k) _ ow(k) _, filters realized as dynamical perceptrons, which is given by
aCHhi—1) ~ 900 = 1)<I> (net(k))x(k) (20)
. . _ _ net(k) =x" (k)w(k)
:/(\)/rgil\r;eg the weight update term excluding the learning rgte) e(k) = d(k) — ®(net(k))
\ C(k) =C(k—1) - g e(k)€" (k) {®' (net(k))}" x" (k)
U(k) = e(k) [@' (net(k))]” x* (k) (21)
we can derive + ¢ (R)E(k) @' (met(k))x(k)
) U(k) = 2 ! 2
ow (k) owr(k) . owi(k) @' (net (k)" [[x(k)]lz + C(k)

0] :
9Ch-1 " acti-1 acti-1 D wlk+1)=wk)+n(k)e(k) (@net(k)" x* (k) (27)

erep is the step size of the proposed algorithm and is chosen

where we have (23) and (24), shown at the bottom of the pa "
0 be a small positive constant.

Therefore
IV. CONVERGENCE OF THEFANNCGD ALGORITHM
82‘(2(@1) =— Wk = D+j(k=1) The FANNCGD algorithm determines the optimal learning

% descent algorithms. Although the FANNCGD algorithm con-
. /
e(h—1) [® (net(k—1)] x*(k—1) 5. verges in the mean squared error for a range of vajuasd
[|<I>/(net(k ) Ix(k=1)||2+C(k — )} C(k), we can show that for uniform convergerjeék)| — 0 as

(25) k — oo by

(
2
[|<D’(net(k—1))| Ix(k—1)||24+C(k — )} rate n(k) for the class of complex-valued nonlinear gradient
)
)

— _ le(k + )] < [1=n(k) |@ (net(R)] [x(B)3lle(k)].  (28)
For simplicity, we will denotedw(k)/0C(k — 1) = —£(k).

The gradient of the cost function with respect to the terf,; this term to converge in the mean squared error sense, it
C(k) from (14) added to compensate for the truncation in (10} st stand that

becomes
1- &' (net x(k)|3] <1 (29)
aE_(k)Zl[e(k)L(k)H*(k)M} 1= n(k)|®' (net(k))[*[[x(k)|3]
oCt—1) % o0k —1) oC(k —1) and therefore, the range fgfk) becomes
= L[ () (@ mer() " 8) )
+WERP (erk)x(R)]. - (26) e B R

owr(k) 0 [\I/T(k — 1) (19 (met(h — D) x(k = D]3 + C(h - 1>)‘1}

oC(k—1) AC(k —1)
_ U (k—1) 2 (23)
(19 (met(h = )I x(k = )12 + C(k = 1)]
and
owi(k) O [Vl = 1) (10 (net(k = )PIIx(k = VI3 + C(k = 1)) ']
aC(k—1) aC(k—1)

_ Uik —1) i (24)

(1 (met(k = D) x(k = DI + C(k = 1)]
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Fig. 3. Convergence curves of NNCGD and FANNCGD on colored input with the hyperbolic tangent function. (a) Convergence curves for NNCGD on colored
input. (b) Convergence curve for FANNCGD on colored input.
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Fig.4. Convergence curves of NNCGD and FANNCGD on nonlinear input with the hyperbolic tangent function. (a) Convergence curves for NNCGD on nonlinea
input. (b) Convergence curve for FANNCGD on nonlinear input.

Substituting in the update term fg(k), (27), we can then write ored and nonlinear input signals with various complex-valued

activation functions.
1 2

0< > < :
| (net(k))|” [[x(R)[13 + C(k) |2 (net(k))] IIX(%%
and solving forC'(k) gives

A. Hyperbolic Tangent Function

The algorithms were employed on single neuron FIR com-
plex-valued nonlinear adaptive filters for prediction of colored
and nonlinear complex-valued signals. The activation function
was the complex-valued hyperbolic tangent function (16), with
£ = 0.04 and a tap input of siz& = 10. The input to all filters
. " was complex-valued white noisék) with zero mean and unit
Wh'Ch are the convergence _condltlons for the FANNCGD algQ/'ariance, which was then passed through a stable AR filter given
rithm. Convergence analysis for the mean error, mean Squaf)?/d(15) for the linear prediction. Fig. 3 shows the performance
error, and steady state conforms to the analysis in [7]. curves for the NCGD, NNCGD, and FANNCGD algorithms on
time series prediction of colored input. The quantitative mea-
sure of performance was a logarithmic scale of the averaged cost
function E(k) = 1/2|e(k)|?. Fig. 3(a) shows the NCGD algo-
rithm performance curve reachingl5.5 dB with a learning rate
To investigate the performance of the FANNCGD algorithm = 0.1. The NNCGD algorithm performance curve reached
compared with the NCGD and NNCGD algorithms, they were 28.8 dB and—17 dB for values ofC = 0.1 andC = 2, re-
all applied to the problem of time-series prediction by avespectively. The FANNCGD algorithm [see Fig. 3(b)] converged
aging the performance curves of 500 independent simulatiots—29 dB, which is at least as good at the best choic€' af
For rigour, all algorithms were tested on complex-valued calhe NNCGD algorithm. For the second experiment of nonlinear

— |9’ (net (k)| |x(k)I[3

2 < CO(k)

V. EXPERIMENTAL RESULTS
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Fig. 5. Nonlinear complex-valued activation functi®fz) = z/(x + (1/€)|z|). (@) Magnitude ofb(z) = z/(x + (1/€)|z|). (b) Phase ofb(z) = z/(k +
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time series prediction, the input signek) was passed throughwherex ande are real positive constants. Although the activa-

a benchmark nonlinear filter described by [7] tion function does not satisfy the Cauchy—Riemann equations,
n(k — 1) it does satisfy the constraint in [3] and [6]df(z) = « + jy for
n(k) = T2l T) + a3(k) (33) some:z € C, wherez = x + jy; then, if
] o Ou dv _ v Ou
and the nonlinearity in the output neuron was the complex- oz 9y ~ 0z Oy

valued hyperbolic tangent function given in (16) with= 0.2. _ _ o _ .
For the task of nonlinear prediction (33), Fig. 4(a) shows tiemeans that(z) is not a suitable activation function. This
performance curve of the NCGD algorithm reaching3 dB, function has the property of mapping a poing C to a unique
and the performance curves of the NNCGD algorithm reachiR@int ®(z) on the open dis¢z : |z| < ¢}, and the parameter
to —30 dB and—49 dB for values of’ = 2 andC = 0.1, re- controls the slope of the activation function.

spectively. The performance curve of the FANNCGD algorithm The partial derivatives of (34) are given by [3]

[see Fig. 4(b)] converged to value 60 dB, which is at least (2 rel=])
as good as the best performanc&dh the NNCGD algorithm. w. — d ElGerEn? | if 2] #0
In Figs. 3 and 4, it is shown that the FANNCGD algorithm v
reaches the best performance of the NNCGD algorithm when %» if |z =0
an optimal constant’ is chosen. This optimal value 6f in the " — { —W, if |2] #0 (35)
NNCGD algorithm is not known before training, and thus, the 70, if 2] =0
FANNCGD algorithm is a robust generalization of the NNCGD — ey 2| £ 0
algorithm. Uy = { 0 if |2 = 0
The simulation results have shown the FANNCGD algorithm ’
outperforming the NNCGD algorithm for complex-valued e(r4relz) | 12| £ 0
linear and nonlinear input signals. It is shown that the NNCGD v =g [ElRerlzD7 (36)
algorithm can achieve optimal performance given certain input 1 if 2] =0

c

signals for a specific value af’. However, over an averaged h _ i Fig. 6 sh th f for th
number of simulations, the NNCGD algorithm will not obtai(r%’}v5 erez = v+ ;7. Fig. b Snows the performance curves for the

; CGD, NNCGD, and FANNCGD algorithms on adaptive pre-
:Isg:rli?r?ma global performance as the proposed FANNC iction of colored input, (15), witlh = 2 ande = 1. The quanti-

tative measure of performance was a logarithmic scale of the av-
B. Practical Complex-Valued Activation Function eraged cost functiol(k) = (1/2)|e(k)|*. Fig. 6(a) shows the

) o ) NCGD algorithm performance curve reachind5.9 dB with
Itis known from Liouville’s statement [6] that a function that, learning rate; = 0.1. The NNCGD algorithm performance

is analytic and nonlinear cannot be bounded on the entire COive reached-24.0 dB and—8.1 dB for values o> = 0.1
plexdomain. There are many choices of activation functions thg{ y ~ — 0.0001, respectively. The FANNCGD algorithm [see
satisfy the desirable constraints defined in [6]; however, the Pig. 6(b)] converged te-24 dB, which is at least as good at the
posed FANNCGD algorithm is derived for any complex-valuegeast choice of in the NNCGD algorithm. Fig. 7 shows the per-
nonlinear function that satisfies these conditions. To further §5,mance curves for the NCGD, NNCGD, and FANNCGD al-
lustrate this, we employ the frequently used complex-valuggithms on time series prediction of nonlinear input (33), with
function given in [3] and shown in Fig. 5 x = 5 ande = 4. Fig. 7(a) shows the performance curve of the
®(z) = z (34) NCGD algorithm reaching-22 dB and the performance curves

K+ Lz of the NNCGD algorithm reaching-34 dB and—49 dB for
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values ofC = 1 andC = 0.1, respectively. The performance
curve of the FANNCGD algorithm [see Fig. 7(b)] converged to
value of —50 dB, which is at least as good as the best perfor-
mance ofC in the NNCGD algorithm.

VI. ROBUSTNESS OF THEFANNCGD ALGORITHM

10log, (0%/o?)

With all nonlinear stochastic models, the initial conditions
can effect the performance of the systems dramatically. To this
cause, an experiment to investigate the robustness of the fully
adaptive normalized nonlinear complex gradient descent (FAN-

NCGD) algorithm according to the initial choice 6f0) was
carried out on a nonlinear adaptive filter with a single dynamical
perceptron using the complex-valued activation function given

C(0)

in (34) as the nonlinearity. The task was time series prediction of Fig. 8. Prediction gain for varying values 6f0) for FANNCGD.

complex-valued white noisg k) that was then passed through

the stable AR filter described in (15). The quantitative measudenotes the variance of the prediction error. Fig. 8 shows the ef-
of performance was prediction gai, = 10l0og10(62/52), fects on the prediction gain fér < C(0) < 1. The maximum
wheres? denotes the variance of the expected signal, @hd variance of prediction gain for this range of initial conditions is
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2.5 dB, which reinforces the robustness of the proposed FAblving
NCGD algorithm with respect to the initial conditions.

de(k)  0ei(k) | ov(k) ov(k)
VII. CONCLUSIONS Qwn (k) Ov(k) | Onetr (k) (=en(®) %etz(k)( (£)
A fully adaptive normalized nonlinear complex-valued _jae”(k‘) du(k) (—ai, (k) + Ju(k) (@7 (k)
gradient descent (FANNCGD) algorithm for training nonlinear ou(k) | onetr (k) " Oneti(k) "
adaptive filters realized as a dynamical perceptron has been de- (40)

rived. The previously derived real-valued normalized nonlinear
gradient descent (NNGD) algorithm has first been extendedlg

rom the above, we have
manage signals in the complex dom@inresulting in the nor-

malized nonlinear complex-valued gradient descent (NNCGD :
algorithm. A fundamental constant term in the derivation o e(k) :66 (k) | _Ouv(k) (=, (k))
the NNCGD algorithm was made adaptive using a gradiefto.(k)  dv(k) | dnet™ (k)
descent-based approach to yield the fully adaptive normalized ov(k) . oulk) .
nonlinear complex-valued gradient descent algorithm. It has Aneti(k) (zn (k) + m (Jﬂfn(/ﬁ))
been shown that FANNCGD is an improved algorithm to the
NNCGD algorithm that optimizes the learning rate by utilizing + a“(k) (—ja (k))
the Taylor series expansion of the instantaneous output error. Inet* (k) "
The proposed FANNCGD algorithm has been derived for any du(k) .
complex-valued activation function that satisfies the conditions =— [W (x5, (k) + jzi (k)
stated in [6]. Experimental results have shown the FANNCGD net” (k)
algorithm outperforming the NNCGD algorithm on colored ov(k) ; .
and nonlinear input signals. It has also been shown that the pro- + M (_‘Tn(k) + J»’Un(k))
posed FANNCGD algorithm is robust to the initial conditions,
which compensates for the deficiency in the derivation of the —— ou(k) p ov(k)
real valued normalized nonlinear gradient descent algorithm. - dnetr (k) J dnetr (k)
= — &' (net(k))zn (k). (41)
APPENDIX A
DERIVATION OF 9de(k) /0w, (k)
The derivation of the Cauchy—Riemann equations state that APPENDIX B
DERIVATION OF 9d¢*(k)/0C(k — 1)
de" (k) de'(k) e (k) de’ (k) To calculatede* (k) /0C (k — 1), we must split it up into its
ou(k) = u(k)’ du(k) == ou(k) real and imaginary parts to obtain
and .
ou(k)  Ov(k) du(k) _  Ou(k) de*(k)  0(e*)" (k) . L9 (e*) (k) (42)
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Therefore ¢*(k) = d* (k)= [net(k)] = d*(k)—®* [x" (k)w(k)] (43)
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owe (k) owv(k) | Onetr(k) owi (k) — Oneti(k) owi (k) . 4
, 1 e* (k)" = (d*(k))" —u(k), (e*(k))" = (d*(k))" +v(k).
[ o) ol (N = @@ —ub), @) = @@ ol
ov(k) | Onet” (k) " Oneti(k) " Thus
(38) d(e*(k))" d(e*(k))"
nd ()" A m) @)
. . ou(k) ov(k)
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owe (k) Ou(k) | Onet™ (k) owi (k)  Onet'(k) ow (k) to give (46) and (47), shown at the top of the next page. Recog-

nizing that the Cauchy—Riemann equations state

_ 9" (k)| _Ou(k) i () 2 2UE)
[%et’“(k)( ol ))Jr@neti(k)( ) du(k)  du(k) dv(k) du(k)

(39) onet” (k) Oneti(k)’  Onetr (k) - ~ Oneti(k) (48)
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