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ABSTRACT

A newmethod to extend the Empirical Mode Decomposition (EMD)
into the complex domain is proposed. Unlike the existing method for
EMD in the complex domain, this is achieved in a generic way so
that the mathematical development of this method mirrors the algo-
rithm defined for EMD in the real domain. The so derived Intrinsic
Mode Functions (IMFs) are complex by design and are shown to
provide a consistent framework for handling both real and complex
data. The simulations on real world complex-valued signals illus-
trate the applications of the technique.

Index Terms—Signal Modality Characterization, Estimation,
Signal resolution, Empirical Mode Decomposition

1. INTRODUCTION

Traditional time-frequency analysis methods are based on some sort
of “a priori” mapping of a signal from the time domain into the
frequency domain. These mappings are typically defined by ‘ba-
sis functions’ which are selected in order to ensure applicability to
a wide class of signals. This poses problem for non-linear and non-
stationary signals, which have time varying statistical characteristics
and a single basis function fails as it cannot account for all variations
in the signal. This compromises the physical significance of the ana-
lyzed output. The Fourier transform and Wavelet analysis belong to
this category. The Fourier transform uses sinusoids of different fre-
quencies as the basis function and is thus limited to analysis of linear
and stationary data. The Wavelet analysis uses a set of finite support
functions. The basis function are predefined and chosen to fit the
type of data to be analyzed but even then it is not particularly useful
for non-linear data [1]. There have been several attempts to define
an adaptive basis which reflects the properties of data. One such
technique is the Principle Component Analysis (or Karhunen-Loeve
transform). It offers an adaptive basis which is defined a posteriori
from the data but the assumptions inherent in this technique about
the orthogonality of signal and interference might not be applicable
to most signals.

Empirical Mode Decomposition (EMD) has been introduced by
Huang et al. [1] and has been successfully used in many applications
in various disciplines ranging from metrology to image analysis (for
example see [2], [3] and [4]). It is a versatile data-driven signal
analysis tool which provides new insights into the analysis of non-
linear and non-stationary data. Unlike conventional data analysis
techniques, EMD imposes no prior assumptions on the data in the
form of predefined basis functions and thus imposes no restriction

on the analyzed signals. EMD operates in time-domain and adap-
tively decomposes a signal into a set of basis functions called the
‘Intrinsic Mode Functions’(IMFs); the data can be considered to be
mapped onto a space spanned by the IMFs. The Hilbert Transform
of the IMFs introduces the notion of ‘instantaneous frequency’. The
combined application of EMD and Hilbert transform is known as the
Hilbert-Huang Transform (HHT) [1].

Several important signal processing areas use complex-valued
data structures, for which EMD in its current form is not designed,
being limited to the analysis of real-valued data only. Thus, it is es-
sential to develop an extension of EMD which suits complex-valued
data. One such approach was proposed in [5], where Tanaka and
Mandic have discussed the problem of extending EMD into the com-
plex domain and they have developed an algorithm which is based on
the inherent relationship between the positive and negative frequency
components of a complex signal. The algorithm is relatively straight
forward and has a rigorous mathematical background. The algorithm
treats the positive and negative frequency component of the signal as
two separate, independent signals. The EMD of these two signals re-
sults in two sets of IMFs: one for the positive frequency component
of the signal and the other for the negative frequency part of the
signal. The positive and negative frequency components are gener-
ally mutually dependent which leads to a loss of information in the
signal. Although, this method preserves the dyadic filter bank prop-
erty of EMD [6], it cannot be extended to higher-dimensional cases.
Moreover, despite its successful operation in C and strict derivation,
it is not generic and as such not a natural extension of the original
real-valued EMD algorithm . The division of the signal into positive
and negative frequency components also creates an ambiguity at the
zero frequency.

To that cause, we propose a new way to decompose a complex
signal with EMD by operating completely in C. This is achieved
by making use of complex splines which makes it possible to carry
out all the arithmetic and algebraic operations of the algorithm in C.
This also provides a single set of IMFs, similar to the IMFs in the real
EMD, but as desired the IMFs ∈ C. The operation of the proposed
complex EMD is demonstrated on modality characterization of real
world complex-valued data.

2. EMPIRICAL MODE DECOMPOSITION AND THE
HILBERT TRANSFORM

The empirical mode decomposition (EMD) aims at representing an
arbitrary signal via a number of intrinsic mode functions (IMFs)
dk[n] and the residual r[n]. By design, an IMF is a function for
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which the number of extrema and the number of zero crossings are
either equal or they differ at most by one, together with the mean
value of two envelopes associated with the local maxima and min-
ima being zero. More precisely, for a real-valued signal x[n], the
EMD performs the mapping

x[n] =

KX
k=1

dk[n] + r[n], (1)

where {dk[n]}Kk=1 is a set of IMFs and r[n] is the residual. The first
IMF can be obtained as follows [1]:

1. let x̃[n] := x[n],

2. identify all local minima and maxima of x̃[n],

3. find an “envelope,” emin[n] (resp. emax[n]) which interpo-
lates all local minima (resp. maxima),

4. extract the “detail,” d[n] = x[n]− 1

2
(emin[n] + emax[n]),

5. let x̃[n] := d[n] and go to step 2, repeat until d[n] becomes
an IMF.

Once the first IMF is obtained, to obtain the next IMF, the above
procedure is applied to the residual r[n] = x[n]− d[n]. In the same
spirit, by applying this procedure recursively, the remaining IMFs
are calculated. The set of so obtained IMFs, in fact, represents a
unique “time-frequency” analyzer which allows for the analysis of
the instantaneous frequency, defined via the Hilbert transform [7].

For illustration, consider a continuous time real-valued signal
x(t) and apply the Hilbert transform to generate the corresponding
analytic signal (for more information see [1])

z(t) = α(t) + jβ(t) = A(t)ejφ(t), (2)

where {α(t), β(t)} is the Hilbert transform pair, A(t) is the ampli-

tude of z(t), and φ(t) is its phase given by φ(t) = arctan

„
β(t)

α(t)

«
.

The instantaneous frequency ω(t) is derived from φ(t) as [1]

ω(t) =
dφ(t)

dt
. (3)

It is this combination of the concept of instantaneous frequency and
EMD that makes the EMD framework so powerful for time-frequency
signal analysis. To illustrate this, further consider signal x(t), which

by means of EMD is described as x(t) = r(t)+
PK

k=1 dk(t), where

{dk(t)}Kk=1 is the set of IMFs representing “modes” and r(t) is a
residual of the decomposition. This way, we obtain a “spectgram”

[1], given by

„
t,
d(dk(t))

dt
, |dk(t)|

«
, which helps us comprehend

the time-frequency characteristics of a signal.

3. EMPIRICAL MODE DECOMPOSITION FOR
COMPLEX-VALUED DATA

This technique, suggested in [5], is based on preserving the stochas-
tic behaviour of EMD as a filter bank. Let x[n] ∈ C and X(ejω)
be its discrete time Fourier transform. Now if x[n] is analytic then
the real and imaginary part of x[n] are related by the Hilbert trans-
form [7] and X(ejω) = 0, ∀ω < 0. Thus we can use the real part
of the analytic signal in EMD and since EMD is complete [1], we can
apply Hilbert transform the IMFs to get analytic IMFs. This would
allow us to get around the problem of performing the EMD in com-
plex domain. But x[n] is generally not analytic so we have to convert

these signals into analytic signals. This can be achieved with a filter
which extracts the positive and negative frequencies of a signal and
then time reverse the negative frequency components to get two ana-
lytic signals. Using such a filter, we obtain the positive and negative
frequency parts of X(ejω) as X+(ejω) and X−(ejω) respectively.
The Inverse Fourier transform of these signals provides the time do-
main complex signals xc+[n] and xc−[n]. These time domain sig-
nals are analytic by construction and their imaginary parts can be
discarded to yield the two real signals x+[n] and x−[n]. x+[n] is
the part of x[n] corresponding to its positive frequency and x−[n] is
its negative frequency part. Now, EMD can be applied on these real
signals to obtain the IMFs.

x+[n] =

N+X
i=1

xi[n] + r+[n], x−[n] =

N−X
i=−1

xi[n] + r−[n], (4)

Where xi[n] and r+[n]for i > 0 are the IMFs and residuals , respec-
tively, for x+[n] and xi[n] and r−[n] for i < 0 are the IMFs and
residuals , respectively, for x−[n]. N+ and N− are the number of
IMF’s for the positive and negative frequency part respectively. The
signal x[n] can be regenerated as follows:

x[n] =

N+X
i=−N−,i�=0

xi[n] + r[n], (5)

The i− th complex IMF ci[n] is given as:

ci[n] =

j
xi[n] + jH [xi[n]], i = 1, . . . , N+,
(xi[n] + jH [xi[n]])∗, i = −N−, . . . ,−1.

(6)

Where (.)∗ is the complex conjugate operator andH [.] denotes the
Hilbert transform. Equations (6) and (7) define the complex EMD of
x[n].

Figures 2 show the IMFs calculated for a complex signal shown
in Figure 1 with this method. This signal is the real world measure-
ment of wind speed, v(t) and wind direction, φ(t), which can be rep-

resented as a single complex variable, x(t) = v(t)ejφ(t) [8]. As can
be seen in Figure 2, there are problems with this approach. Firstly,
the EMD of a complex-valued signal obtained with this method has
different number of IMFs for the positive and negative frequency
part and as a result the analysis for the positive and negative frequen-
cies would be not be aligned. This also prevents physically mean-
ingful interpretation of the instantaneous frequency so generated for
the two sets of IMFs. In addition, this method cannot be extended
to higher dimensional cases due to the inherent limitations in rep-
resenting a complex signal with its positive and negative frequency
components.

4. THE PROPOSED ROTATIONAL INVARIANT COMPLEX
EMD

A natural and generic way to extend EMD to the complex domain
would be to operate completely in C. This implies that all the basic
steps for EMD described in Section 2: identification of extrema, in-
terpolation between the extrema and other arithmetic operations will
be carried out directly in the complex domain.

The first issue that needs to be addressed when extending the
EMD to the complex domain with this method is the definition of
an extremum, and a method for determining it. Indeed, in the com-
plex domain, an extremum can be interpreted in different ways, for
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Figure 1: The Wind data Lattice. The polar plot is the representation
the wind speed (in knots) and direction (in degrees) as a single com-
plex variable [8]. The data is publicly available from the website[9].

instance a locus where the complex-valued first derivative becomes
zero, or a locus where the modulus of the complex-valued signal
reaches a local maximum value. In this paper a more practical def-
inition of an extremum, namely a locus where the angle of the first
derivative (first-order difference vector) changes its sign, is used. It
is assumed that each local maximum is followed by a local mini-
mum and vice versa. Note that the average of the envelopes of local
maxima and minima are used, and therefore these sets can be ex-
changed. The envelopes can then be estimated as (complex-valued)
spline interpolations of the local maxima, and minima, after which
the average can be computed. The complex-valued spline is obtained
by computing the spline interpolation on the real and the imaginary
part separately. The rest of the procedure is same as used for the
conventional EMD from Section 2. Figure 3 demonstrates the re-
sults of the interpolation and extrema detection algorithm. Notice
that the extrema have been correctly identified and the mean of the
envelopes correctly follows behaviour changes in the signal.

The advantage of this technique over the technique proposed in
[5] is that signal does not have to be split into two parts. It also has
the potential to be extended naturally to higher dimensional cases as
the definition of extrema, in general, does not depend on the dimen-
sion of the data and the extension of the interpolation technique with
higher-dimension splines is well understood. The problem of differ-
ent type and number of IMFs for the positive and negative frequency
component of the same signal and the ambiguity at zero frequency
does not arise due to the unified approach adopted.

5. SIMULATIONS AND DISCUSSIONS

Following the analysis in [5], this Section provides the results of
application of the proposed technique to the wind data shown in Fig-
ure 1. Since the IMFs are complex and they are not analytic, Fig-
ures 4 and 5 show respectively the magnitude and the phase of the
IMFs. Observe that as the extrema are found based on the deriva-
tive of phase of the signal, the variations in the phase are decreasing
from IMFs c1 to c9 (Figure 5). Since we are not calculating these
extrema on the basis of absolute value of phase, this decomposition
is ‘rotation invariant’. This property is important for the analysis of
the modality(gust, breeze, microburst) and future prediction of wind
data. Although, the time-scales for the magnitude of IMFs are also
increasing as we go from IMFs c1 to c9 in Figure 4 however this
can not be guaranteed since the magnitude of the data is not used as
the criterion for identification of the extrema. Despite its practical
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(b) IMFs for the negative frequency part

Figure 2: IMFs for the complex EMD of wind data [5]

usefulness, the derivative of the phase might not be able to identify
some extrema, even from a graphical point of view (Figure 3).

The proposed approach enables us to have the same number of
IMFs for the amplitude and phase, together with IMFs having physi-
cal interpretations. The polar plot of the IMFs (In Figures 6a and 6b)
illustrates the regularity of IMFs, already seen in Figure 5, but with
much more insight. This way IMFs generated using the proposed ro-
tation invariant complex EMD can reflect the level of detail at differ-
ent time-scales, also giving physical meaning to IMFs (trend, noise,
dominant directions).

6. CONCLUSION

We have introduced a new Complex Empirical Mode Decomposi-
tion (EMD) method, which is a generalization of the real-valued
EMD. This technique is more generic, unlike previous methods of
the kind since it operates completely in C. The analysis of real-
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Figure 3: The extrema and mean envelope for a complex signal using
the proposed complex EMD.
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Figure 4: Proposed Method: The plot of ||IMFs||

world complex-valued wind data shows that the proposed method
provides new insights into the time-frequency analysis of non-linear
and non-stationary signals which has not been possible with the pre-
vious methods.
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Figure 5: Proposed Method: The plot of ∠IMFs

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

IMF # 5

(a) IMF # 5

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

IMF # 6

(b) IMF # 6
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