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Abstract— The quaternion widely linear (WL) estimator has been
recently introduced for optimal second-order modeling of the generality
of quaternion data, both second-order circular (proper) and second-order
noncircular (improper). Experimental evidence exists of its performance
advantage over the conventional strictly linear (SL) as well as the
semi-WL (SWL) estimators for improper data. However, rigorous theoret-
ical and practical performance bounds are still missing in the literature,
yet this is crucial for the development of quaternion valued learning
systems for 3-D and 4-D data. To this end, based on the orthogonality
principle, we introduce a rigorous closed-form solution to quantify the
degree of performance benefits, in terms of the mean square error,
obtained when using the WL models. The cases when the optimal WL
estimation can simplify into the SWL or the SL estimation are also
discussed.

Index Terms— Augmented quaternion statistics, mean
square error (MSE), quaternion widely linear (WL) model,
semi-WL (SWL) model.

I. INTRODUCTION

Standard techniques employed in multichannel statistical
signal processing are typically not well equipped to fully exploit the
coupled nature of the available information within the data channels.
For example, univariate channel-wise processing is often inadequate
and real-valued vectors are not a division algebra and suffer from
the well-known mathematical deficiencies, e.g. the gimbal lock.
Multivariate data typically come from 3-D and 4-D vector sensors,
for example, from 3-D inertial sensors in body sensor networks, 3-D
anemometers in wind energy, and three-axial seismometers in oil
exploration [1], [2]. For this type of data, signal processing in the
quaternion domain H has shown advantages over real vectors in
R

3 and R
4, mostly owing to its division algebra and the accurate

modeling of rotation and orientation. Quaternions account naturally
for mutual information between the data channels, and offer a
compact representation, free of mathematical deficiencies. In the
context of learning systems, quaternions have been employed
in Kalman filtering [3], [4], spectrum estimation [5], Fourier
analysis [6], Taylor series expansion [7], least mean square
estimation [8], and neural networks [9], [10].

As quaternions can be represented as a pair of complex numbers,
it is natural to ask whether some recent breakthroughs in statistical
signal processing of complex variable can be generalized to
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quaternions. One such breakthrough in complex-valued signal
processing has been due to the widely linear (WL) model and
augmented complex statistics [11]–[15]. This model, together with the
corresponding augmented complex statistics, has been successfully
used to design enhanced algorithms in communications and adaptive
filters [14], [15]. A number of studies have shown that WL modeling
offers theoretical and practical advantages over the standard strictly
linear (SL) model, and is applicable to the generality of complex-
valued random signals, both proper and improper.

The concept of H properness was introduced in [16] as the
invariance of the probability density function (pdf) of a quaternion-
valued variable q under some specific rotations around the angle
of π/2, and this restriction was later relaxed to an arbitrary axis
and angle of rotation ϕ. A variable q is said to be H proper, if
pdf(q) = pdf(evϕq) for any pure unit quaternion v (whose real part
vanishes) and any angle ϕ [17]. The Cayley–Dickson representation,
whereby a quaternion variable is represented as a pair of complex
variables, offers an insight into the use of complex-valued statistics
for quaternion variables, leading to a less strict C-properness condi-
tion. These statistical concepts have been explicitly or implicitly used
in polarized seismic wave analysis [18], directionality detection in
random fields for color image classification [19], and in degree reduc-
tion of Gaussian graphical models for covariance estimation [20],
among others. These discoveries were followed by the quaternion WL
model, together with the augmented quaternion statistics [21]–[23],
to account for the generality of quaternion signals, both proper and
improper. Such models have been shown to outperform the tradi-
tional SL quaternion processing, which relies only on the standard
covariance matrix [3], [5], [6], [8], in diverse fields of learning
systems including multivariate statistical analysis methods [7], [22],
adaptive filtering [9], [10], [24], and independent component
analysis [23], [25]. However, a rigorous quantitative analysis of
statistical advantages of WL over SL processing in H is still missing,
partly because different types of properness may occur based on the
combinations of the four dimensions in H.

To this end, we generalize our preliminary work in [26] and [27],
which presented a closed-form solution to quantify the degree of
performance benefits obtained when using the quasi-semi-WL (SWL)
model over the SL model, in terms of the mean square error (MSE).
For rigor, we here adopt a more general representation for quaternion
imaginary units instead of the traditional canonical basis, and in
this way, different properness conditions can be uniquely defined,
regardless of the positions of imaginary units. Our analysis covers the
general case of WL, SWL, and SL models. The so-derived theoretical
and practical performance bounds are supported by case studies on
the optimality of all the considered estimators in the context of
learning systems.

II. QUATERNION ESTIMATORS

We shall now briefly review the basic concepts in quaternion
algebra, used in the design of quaternion estimators.

A quaternion variable q ∈ H is a skew field over R, and comprises
four real components (qr , qη , qη′ , and qη′′ ) and three imaginary units
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(η, η′, and η′′), to give1 [21]

q = qr + ηqη + η′qη′ + η′′qη′′ (1)

where the imaginary units obey

ηη′ = η′′, η′η′′ = η, η′′η = η′
η2 = η′2 = η′′2 = ηη′η′′ = −1.

Quaternion multiplication is not commutative, that is, for q1 and
q2 ∈ H, in general q1q2 �= q2q1. The conjugate of a quaternion q is
q∗ = qr − ηqη − η′qη′ − η′′qη′′ , and the conjugate of a quaternion
product obeys (q1q2)∗ = q∗

2 q∗
1 . Another concept of particular interest

to this brief is quaternion perpendicular involutions, defined as [28]

qη = −ηqη = qr + ηqη − η′qη′ − η′′qη′′ (2)

for which the following properties hold:
(qη)η = q, (qη)∗ = (q∗)η, (q1q2)η =qη

1 qη
2

(q1+q2)η = qη
1 +qη

2 , (qη)η
′ = (qη′

)η = qη′′
.

Now, consider a real-valued MSE estimator that estimates a scalar
random variable y, based on a random vector regressor x, in the form

ŷ = E[y|x]
where E[·] is the statistical expectation operator. For jointly Gaussian,
zero mean, x and y, the optimal solution is a linear estimator
ŷ = E[y|x] = wT x, where w is the coefficient vector and
(·)T denotes the vector transpose operator.

The MSE estimation problem in the complex domain traditionally
employs the so-called SL model, inherited from the real domain,
which yields a linear estimator in the form

ŷSL = E[y|x] = wH x (3)

where (·)H denotes the Hermitian transpose operator. However, this
SL estimator is not the optimal solution for the generality of complex-
valued Gaussian data, where the regression is linear both in x and x∗,
leading to the WL estimator, given by [12]

ŷWL = E[y|x] = hH x + gH x∗ (4)

which comprises both the SL part hH x and the conjugate part gH x∗,
where h and g are the coefficient vectors associated with x and
x∗, respectively. In the case of the jointly second-order circular or
proper Gaussian processes, i.e., E[yx] = 0 and E[xxT ] = 0, the
WL estimator in (4) reduces to the SL estimator in (3), both giving
identical MSE estimation performance, whereas in the other cases,
the WL estimator offers significant performance advantages over the
SL one, as justified in both theory and practice [12]–[15]. Although
in this brief, we limit ourselves to Gaussian random variables, it
is worth mentioning that the concept of circularity extends beyond
second-order statistics, and there also exists a performance advantage
offered by the WL model over the SL one for jointly noncircular
non-Gaussian processes, for more detail, we refer to [29].

In a similar way, the MSE estimation problem in the quaternion
domain H conventionally employs the SL estimation model, inherited
from the complex domain, given by [3], [8]

ŷSL = wH x. (5)

However, unlike the complex case, the most general regression
for quaternion-valued Gaussian data is linear in both x and all its

1A most frequent choice of the imaginary axes is the canonical basis
{ı , j , κ}, however, for compactness of our analysis of quaternion estimators,
we adopt the more general representation {η, η′, η′′}, where η can be any
element from the imaginary unit set {ı, j, κ}, η′ is the one next to η cyclically
in the imaginary unit set, and η′′ is the one to the left.

three involutions, referred to as quaternion WL model and given by
[21], [22]

ŷWL = wH x + wH
η xη + wH

η′ xη′ + wH
η′′xη′′ = wa H xa (6)

or equivalently, its conjugate

ŷ∗
WL = xH w + xηH wη + xη′ H wη′ + xη′′ H wη′′ = xa H wa (7)

where wa = [wT , wT
η , wT

η′ , wT
η′′ ]T is termed the augmented coeffi-

cient vector and xa = [xT , xηT , xη′T , xη′′T ]T is the augmented input
vector.

Current statistical signal processing in H by and large employs

the SL model, drawing upon the covariance matrix R = E[xxH ].
However, based on (6), the modeling of both the second-order circular
(proper) and noncircular (improper) signals is only possible using the
augmented covariance matrix, given by [22]

Ra = E[xaxa H ] =

⎡
⎢⎢⎣

R P S T
PH Rη Tη Sη

SH TηH Rη′
Pη′

TH SηH Pη′ H Rη′′

⎤
⎥⎥⎦ (8)

which compromises the covariance matrix R = E[xxH ], the three
pseudocovariance matrices P = E[xxηH ], S = E[xxη′ H ], and
T = E[xxη′′ H ] as well as their involutions and Hermitian transposes.

We can also adopt the semiaugmented form to describe the
WL estimation process in (6), given by [21]

ŷWL = wbH xb + wcH xc (9)

where xb = [xT , xηT ]T and xc = xbη′ = [xη′T , xη′′T ]T

are the two semiaugmented input vectors, for which the asso-
ciated semiaugmented weight vectors are, respectively, given by
wbH = [wH , wH

η ] and wcH = [wH
η′ , wH

η′′ ]. Also, the quaternion
conjugate of the estimator in (9) can be expressed as

ŷ∗
WL = xbH wb + xcH wc (10)

to yield the augmented covariance matrix Ra in (8) in the semiaug-
mented form

Ra =
[

B C
CH Bη′′

]
(11)

where

E[xbxbH ] =
[

R P
PH Rη

]
= B (12)

E[xbxcH ] =
[

S T
Tη Sη

]
= C (13)

E[xcxcH ] =
[

Rη′
Pη′

Pη′ H Rη′′

]
= Bη′

. (14)

Quaternion proper (H proper) signals, have probability distribu-
tions that are rotation invariant with respect to all the six possible
pairs of axes (combinations of η, η′, and η′′), and thus proper signals
exhibit equal powers in all the quaternion components, so that in turn
all the pseudocovariance matrices P, S, and T vanish.

Remark 1: For H-proper signals, the augmented covariance
matrix Ra in (8) is completely described by the standard covariance
matrix R and its involutions, so that the SL estimation model in (5),
based only on the covariance matrix R, is second-order optimal for
proper signals.

Another class of properness in H is the so-called C
η properness,

whereby the quaternion random signal x is correlated with xη, but not
with the remaining two perpendicular involutions xη′

and xη′′
, and

hence the pseudocovariance matrices relating x and the remaining
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two perpendicular involutions, S and T in (8), vanish. This implies
that the matrix C = 0 in (11), and that the augmented covariance
matrix Ra simplifies into [21]

Ra =
[

B 0
0 Bη′

]
. (15)

For the jointly C
η-proper processes y and x, the second-order optimal

estimator in (9) then reduces to the so-called SWL estimator, given
by [21]

ŷSWL = wH x + wH
η xη = wbH xb. (16)

The conjugate of the SWL estimator in (16) is

ŷ∗
SWL = xH w + xηH wη = xbH wb. (17)

Note that, inspired by the complex domain, a quasi-SWL model was
proposed in [26], to simultaneously operate on both the quaternion
regressor x and its conjugate x∗. We here further generalize this
approach, since unlike the complex case, there exist three kinds of
quaternion SWL processing, as shown in (16).

III. MSE ANALYSIS OF QUATERNION ESTIMATORS

MSE-based estimation in the quaternion domain H aims to find the
optimal weight vectors so as to yield the minimum MSE E[|y − ŷ|2],
where ŷ can be obtained using any estimation model described above.
The superior performance of the WL estimation processing over the
SWL and SL estimation for second-order noncircular quaternion data
has been illustrated experimentally [8], [22], [24], [25], however, the
extent of the performance advantage offered by the WL processing for
quaternion improper data has not yet been established theoretically.
In this section, we use the orthogonality principle as a basis to
introduce a closed-form solution for the optimal weight vectors for
all the possible quaternion estimation models. We then provide the
expressions for their respective minimum MSEs when operating on
the generality of quaternion data (both proper and improper). This is
followed by a performance comparison study, which quantifies the
degree of performance benefits offered by the various WL processing
schemes.

A. MSE Analysis of Widely Linear Estimator

Our aim is to find the optimal weight vectors w, wη, wη′ , and wη′′
in (6) to yield the minimum MSE E[|y − ŷWL|2]. For this purpose,
the first point to note is that the set of scalar quaternion variables q(ω)

in the form q(ω) = aH x(ω) + bH xη(ω) + cH xη′
(ω) + dH xη′′

(ω),
where a, b, c, and d belong to H

N constitutes a linear space. Upon
introducing the scalar product 〈q1, q2〉 = E[q1q∗

2 ], this space then
becomes a Hilbert subspace of the 1-D quaternion valued Hilbert
space [26]. The WL estimate, ŷWL, is the projection of y onto this
subspace, and obeys the orthogonality principle

(y − ŷWL) ⊥ x, (y − ŷWL) ⊥ xη (18)

(y − ŷWL) ⊥ xη′
, (y − ŷWL) ⊥ xη′′

(19)

where the symbol ⊥ indicates that all the components of x and
its involutions are orthogonal to (y − ŷWL) (their scalar product is
zero). These orthogonality conditions can be written in terms of the
expectations as

E[xy∗] = E
[
xŷ∗

WL
]
, E[xη y∗] = E

[
xη ŷ∗

WL
]

(20)

E[xη′
y∗] = E

[
xη′

ŷ∗
WL

]
, E[xη′′

y∗] = E
[
xη′′

ŷ∗
WL

]
. (21)

Substituting (7) into (20) and (21), we obtain
⎡
⎢⎣

R P S T
PH Rη Tη Sη

SH TηH Rη′
Pη′

TH SηH Pη′ H Rη′′

⎤
⎥⎦

⎡
⎢⎣

w
wη
wη′
wη′′

⎤
⎥⎦ =

⎡
⎢⎣

r
rη

rη′
rη′′

⎤
⎥⎦ (22)

where the cross-correlation vectors r = E[xy∗], rη = E[xη y∗],
rη′ = E[xη′

y∗], and rη′′ = E[xη′′
y∗]. Observe that the square

matrix on the left-hand side of (22) is the augmented covariance
matrix Ra in (8).

To simplify the analysis, we adopt the semiaugmented form to
represent the WL model, giving an equivalent to (22) in the form

[
B C

CH Bη′

][
wb

wc

]
=

[
rb

rc

]
(23)

where rb = [rT , rT
η ]T and rc = [rT

η′ , rT
η′′ ]T . Assuming that Ra is

invertible, from (23), we have
[

wb

wc

]
=

[
A1 A2
A3 A4

] [
rb

rc

]
(24)

so that [
B C

CH Bη′
] [

A1 A2
A3 A4

]
=

[
I 0
0 I

]
(25)

where I is the identity matrix. Solving for A1, A2, A3, and A4 (see
Appendix A for a detailed derivation), we have

A1 = (B − CB−η′
CH )−1, A2 = −(B − CB−η′

CH )−1CB−η′

A3 = −(Bη′ − CH B−1C)−1CH B−1, A4 = (Bη′ − CH B−1C)−1

so that from (24), we arrive that

wb = A1rb + A2rc = (B − CB−η′
CH )−1(rb − CB−η′

rc) (26)

wc = A3rb + A4rc = (Bη′ − CH B−1C)−1(rc − CH B−1rb) (27)

and upon using (9) and (10), the minimum MSE of the WL estimator,
denoted as e2

WL, can be expressed as

e2
WL = E[|y − ŷWL|2]

= E[|y|2] + E
[
ŷWL ŷ∗

WL
] − E

[
y ŷ∗

WL
] − E[ ŷWLy∗]

= E[|y|2] + E[(wbH xb + wcH xc)(xbH wb + xcH wc)]
−E[y(xbH wb + xcH wc)] − E[(wbH xb + wcH xc)y∗]

= E[|y|2] + wbH Bwb + wcH Bη′
wc + wcH CH wb

+wbH Cwc − rbH wb − rcH wc − wbH rb − wcH rc. (28)

Finally, from (23), we have Bwb = rb − Cwc and Bη′
wc =

rc − CH wb, so that upon substituting into (28), the MSE of the
quaternion WL model, e2

WL, can be expressed in a compact form as

e2
WL = E[|y|2] − (rbH wb + rcH wc). (29)

B. MSE Analysis of Semiwidely Linear (SWL) Estimator

Within SWL estimation, the estimate ŷSWL, is the projection
of y onto a linear Hilbert subspace consisting of x and one
of its involutions xη (16). The estimate ŷSWL, which yields the
minimum MSE, is then governed by the following orthogonality
conditions:

(y − ŷSWL) ⊥ x, (y − ŷSWL) ⊥ xη (30)

which can also be expressed in the semiaugmented form as

(y − ŷSWL) ⊥ xb (31)
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so that

E[xb y∗] = E
[
xb ŷ∗

SWL
] = rb. (32)

Substituting (17) into (32) yields Bwb = rb, so that

wb = B−1rb. (33)

Finally, using (17), and (33), the minimum MSE based on the SWL
processing, denoted by e2

SWL, becomes

e2
SWL = E

[|y − ŷSWL|2]

= E[|y|2] + E
[
ŷSWL ŷ∗

SWL
] − E

[
y ŷ∗

SWL
] − E

[
ŷSWLy∗]

= E[|y|2] + wbH Bwb − rbH wb − wbH rb

= E[|y|2] − rbH wb = E[|y|2] − rbH B−1rb. (34)

C. MSE Analysis of Strictly Linear Estimator

Out of all the models considered, the quaternion SL estimation
model (5) is most restricted, whereby the estimate ŷSL represents
a projection of y onto a linear Hilbert subspace defined by only x.
In other words, ŷSL obtained using the optimal weight vector w yields
the minimum MSE according to the single orthogonality condition

(y − ŷSL) ⊥ x. (35)

Similar to (32), we can now write

E[xy∗] = E
[
xŷ∗

SL
] = r. (36)

Since the conjugate of the SL estimate in (36) is

ŷ∗
SL = xH w (37)

then from (36), we have Rw = r and by assuming the invertibility
of the standard covariance matrix R, the optimal weights assume the
form

w = R−1r. (38)

Finally, using (37) and (38), the minimum MSE based on the
SL estimator, denoted by e2

SL, for which the optimal weight
coefficients are given in (38), can be obtained as

e2
SL = E[|y − ŷSL|2]

= E[|y|2] + E
[
ŷSL ŷ∗

SL
] − E

[
y ŷ∗

SL
] − E

[
ŷSLy∗]

= E[|y|2] + wH Rw − rH w − wH r

= E[|y|2] − rH R−1r. (39)

D. Comparison Between WL and SWL Estimation

From (29) and (34), the performance advantage of the
WL estimation over SWL estimation can be characterized by the
difference of the respective error powers, given by

	e2
WL = e2

SWL − e2
WL

= rbH wb + rcH wc − rbH B−1rb. (40)

To make this expression more physically meaningful, from (23),
we have Bwb + Cwc = rb, which yields

wb = B−1(rb − Cwc). (41)

Substituting (41) into (40), and using (27), we obtain the factorized
form of (40), given by

	e2
WL = (rc − CH B−1rb)H wc

= (rc − CH B−1rb)H (Bη′ − CH B−1C)−1(rc − CH B−1rb).

(42)

Remark 2: The term 	e2
WL is always nonnegative, because the

matrix Bη′ − CH B−1C is positive semidefinite (see Appendix B for
the detailed proof).

Remark 3: The MSE of the SWL estimation is always larger or at
most equal to that of the WL estimation. The equality between the
MSEs of the SWL and WL estimators, that is 	e2

WL = 0, holds only
when

rc − CH B−1rb = 0 (43)

which implies that wc = 0 in (27), that is, the quaternion WL
estimation (9) reduces to the SWL estimation in (16).

We shall now consider several special cases of properness in some
of the quaternion dimensions.

1) Jointly C
η-Proper Case: Consider a special jointly

C
η-proper case between both the estimandum y and the regressor

xa = [xbT , xcT ]T within the quaternion WL processing (9), whereby

C = E[xbxcH ] = 0, rc = E[xc y∗] = 0. (44)

It is clear that this jointly C
η-proper assumption is sufficient for (43)

to hold, and hence both the quaternion WL and the SWL estimation
yield identical performance, with 	e2

WL = 0.
2) C

η-Proper Regressor: When the C
η-properness is only valid

for the regressor xa , characterized by C = 0, and no assumption
is imposed on the estimandum y, the expressions for the optimal
semiaugmented weight vectors wb and wc in (26) and (27) can be,
respectively, simplified into

wb = B−1rb, wc = B−η′
rc. (45)

Note that the term wb = B−1rb remains the same to that
in (33), obtained using the SWL estimation. This stems from the
C

η-properness assumption on the regressor xa = [xbT , xcT ]T , which
implies that xb and xc are uncorrelated. Therefore, the Hilbert
subspaces generated by xb and xc are orthogonal, since xc does not
affect the term coming from xb only. Note that there still exists a
performance advantage when using the WL estimation instead of the
SWL processing, since 	e2

WL = rcH B−η′
rc is strictly positive.

E. Comparison Between SWL and SL Estimation

Now that we have rigorously established the advantage of the
WL over various forms of SWL estimators, we shall next establish
the theoretical performance advantage of SWL over SL estimation.
From (34) and (39), the performance advantage of the SWL estimator
over the SL one is characterized by

	e2
SWL = e2

SL − e2
SWL = rbH wb − rH R−1r. (46)

For the quantitative analysis of 	e2
SWL, we next express (33) in a

component-wise form, to give insight into the term rbH wb. Expand-
ing the expression (33) gives

[
R P

PH Rη

] [
w

wη

]
=

[
r

rη

]
(47)

and consequently the solution for wb = [wT , wT
η ]T becomes

[
w

wη

]
=

[
Ã1 Ã2
Ã3 Ã4

] [
r

rη

]
. (48)

Now, similar to the analysis in (23)–(26), we have

Ã1 = (R − PR−ηPH )−1, Ã2 = −(R − PR−ηPH )−1PR−η

Ã3 = −(Rη − PH R−1P)−1PH R−1, Ã4 = (Rη − PH R−1P)−1
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TABLE I
THEORETICAL AND SIMULATED MSE MEASURES OF DIFFERENT

QUATERNION ESTIMATORS, AS WELL AS

THEIR PERFORMANCE DIFFERENCES

so that

w = Ã1r + Ã2rη = (R − PR−ηPH )−1(r − PR−ηrη) (49)

wη = Ã3r + Ã4rη = (Rη − PH R−1P)−1(rη − PH R−1r). (50)

Therefore, the term rbH wb can now be expanded as

rbH wb = rH w + rH
η wη

= rH R−1(r − Pwη) + rH
η wη

= (rη − PR−1r)H wη + rH R−1r. (51)

Finally, upon substituting (50) and (51) into (46), we obtain the
expression for the difference in MSE between the SWL and
SL estimation in the form

	e2
SWL

= (rη − PR−1r)H (Rη − PH R−1P)−1(rη − PH R−1r). (52)

Remark 4: The term 	e2
SWL in (52) is always nonnegative due to

the positive semidefinite nature of Rη −PH R−1P (see Appendix B
for the detailed proof). The equality 	e2

SWL = 0 holds only when

rη − PH R−1r = 0 (53)

which implies wη = 0 in (50). In other words, for wη = 0, the
quaternion SWL model in (16) reduces to the SL model in (5).

We shall now compare the SWL and SL estimators for several
special cases of quaternion properness.

1) Jointly R
η-Proper Case: Consider the so-called joint R

η proper-

ness of both the estimandum y and the regressor xb = [xT , xηT ]T

within the quaternion SWL processing (16), whereby

P = E[xxηH ] = 0, rη = [xη y∗] = 0 (54)

with no specific assumptions imposed on C and rc . This jointly
R

η-proper assumption is therefore sufficient for (53) to hold, and
hence 	e2

SWL = 0.
2) R

η-Proper Regressor: In this case, the R
η-proper assumption

is valid only for the regressor xb, characterized by P = 0, with
no specific assumption imposed on the estimandum y. Then, the
expressions for the optimal weight vectors w and wη within SWL
estimation in (49) and (50) can be greatly simplified into

w = R−1r, wη = R−ηrη. (55)

Note that, w = R−1r remains the same as that in (38), obtained using
SL estimation. This is a direct consequence of the R

η-properness

assumption on the regressor xb = [xT , xηT ]T , which implies that
x and xη are uncorrelated. Therefore, the Hilbert subspaces generated
by x and xη are orthogonal, and xη does not change the term coming
from x only. Even in this case, there still exists a performance
advantage of the SWL estimation over the SL estimation, since the
MSE difference, 	e2

SWL = rH
η R−ηrη, is strictly positive.

F. Numerical Evaluation

We conducted an illustrative numerical experiment to evaluate
our theoretical findings. The experiment was performed in a non-
linear system identification setting, where the system coefficient
vector w to be estimated was a uniformly distributed quaternion
vector random variable with length L = 2, while the system
input vector x was generated using the quaternion-valued normal
distribution, and was H-proper, i.e., all the three pseudocovariance
matrices P, S, and T, as well as the semiaugmented pseudocovariance
matrix C, vanished. The desired system output was real valued,
y = 4
[wH x]. Although the input vector x in this case was H proper,
all the cross-correlation vectors r, rη, rb, and rc did exist, therefore,
both the conditions in (43) and (53) did not hold, indicating that
the WL estimator was accordingly expected to offer performance
advantage over the SWL and SL ones. The suitability of the WL
estimator for this task was also straightforward to justify, since
y = 4
[wH x] = wH x + wηH xη + wη′ H xη′ + wη′′ H xη′′

. The
theoretical and simulated MSE performances of all the quaternion
estimators as well as their performance differences are given in
Table I. The results were obtained by averaging 100 000 independent
simulation trials and the close match between both the theoret-
ical and experimental MSE measures for all estimators can be
observed.

IV. CONCLUSION

Quaternion-valued learning systems are rapidly emerging; however,
the extent to which the WL estimation outperforms various SWL
and SL estimators has not been rigorously established. To fill this
void in the literature, we have provided a closed-form solution
to quantify the degree of the performance advantage, in terms
of the MSE, offered by the second-order optimal WL estimation
model over the SWL and conventional SL estimation. This has
been achieved for the generality of quaternion-valued data (both
proper and improper), and by employing the orthogonality conditions
between the Hilbert spaces where the estimate and the regressor
reside.

APPENDIX A
DETAILED PROOF OF (26)

From (25), we have

BA1 + CA3 = I (56)

CH A1 + Bη′
A3 = 0 (57)

and

BA2 + CA4 = 0 (58)

CH A2 + Bη′
A4 = I. (59)

From the invertibility of B in (56), we obtain

A1 = B−1(I − CA3) (60)

and upon substituting (60) into (57), we have

(Bη′ − CH B−1C)A3 = −CH B−1I (61)

while the assumption of invertibility of Bη′ − CH B−1C gives

A3 = −(Bη′ − CH B−1C)−1CH B−1. (62)

Similarly, by assuming that B−η′
is invertible, from (57),

we obtain

A3 = −B−η′
CH A1 (63)
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while a substitution of (63) into (56) gives

(B − CB−η′
CH )A1 = I. (64)

From the invertibility of B − CB−η′
CH , we arrive at

A1 = (B − CB−η′
CH )−1. (65)

In a similar way, from (58) and (59), we obtain

A2 = −(B − CB−η′
CH )−1CB−η′

, A4 = (Bη′ − CH B−1C)−1.

APPENDIX B
PROOF OF POSITIVE SEMIDEFINITENESS OF

Bη′ − CH B−1C AND Rη−PH R−1P

Consider linear estimation of y in terms of x in such a way that
ŷ = Mx, where y and x are two zero mean random vectors, and
M is the weight matrix. The optimal weight matrix that yields the
minimum MSE is governed by the orthogonality principle, so that
E[(y − ŷ)xH ] = 0. By defining �x x = E[xxH ], �xy = E[xyH ],
�yx = E[yxH ], and �yy = E[yyH ] and assuming that �−1

x x exists,
the solution is M = �yx�−1

x x . Define e = y − ŷ as the estimation
error vector, for which the covariance matrix can be written as

�ee = E[eeH ] = E[(y − ŷ)(y − ŷ)H ]. (66)

By substituting ŷ = Mx into (66), �ee can be expanded as
�ee = �yy − �yx�−1

x x �xy , which is positive semidefinite since for
any u �= 0, uH �eeu = E[|eH u|2] ≥ 0.

Suppose now y = xη. This gives �yy = E[xηxηH ] = Rη,
�yx = E[xηxH ] = PH , �−1

x x = E[xxH ]−1 = R−1, and
�xy = E[xxηH ] = P, and hence �ee = Rη −PH R−1P is positive
semidefinite.

Suppose now x = xb and y = xbη′
. This gives

�yy = E[xbη′
xbη′ H ] = Bη′

, �yx = E[xbη′
xbH ]= E[xcxbH ] = CH ,

�−1
x x = E[xbxbH ]−1 = B−1, and �xy = E[xbxbη′ H ] =

E[xbxcH ] = C, and hence �ee = Bη′ − CH B−1C is positive
semidefinite.
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