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Abstract— Quaternion-valued echo state networks (QESNs) are
introduced to cater for 3-D and 4-D processes, such as those
observed in the context of renewable energy (3-D wind modeling)
and human centered computing (3-D inertial body sensors).
The introduction of QESNs is made possible by the recent
emergence of quaternion nonlinear activation functions with local
analytic properties, required by nonlinear gradient descent train-
ing algorithms. To make QENSs second-order optimal for the
generality of quaternion signals (both circular and noncircular),
we employ augmented quaternion statistics to introduce widely
linear QESNs. To that end, the standard widely linear model
is modified so as to suit the properties of dynamical reservoir,
typically realized by recurrent neural networks. This allows
for a full exploitation of second-order information in the data,
contained both in the covariance and pseudocovariances, and a
rigorous account of second-order noncircularity (improperness),
and the corresponding power mismatch and coupling between the
data components. Simulations in the prediction setting on both
benchmark circular and noncircular signals and on noncircular
real-world 3-D body motion data support the analysis.

Index Terms— Augmented quaternion statistics, echo state
networks (ESNs), second-order noncircularity, widely linear
model.

I. INTRODUCTION

RECURRENT neural networks (RNNs) are widely used
for processing nonlinear and nonstationary signals, due

to their ability to represent highly nonlinear dynamical
systems, attractor dynamics, and long impulse responses
[1], [2]. With the emergence of multidimensional sensors,
several important RNN architectures have been extended to
the complex domain C, also catering for real-world bivariate
signals. Examples include coherent neural networks for senso-
rimotor systems [3], widely linear complex RNNs for signal
prediction [4], sonar signal prediction and image enhancement
by multivalued neurons [5], grayscale image processing by
complex-valued multistate neural associative memory [6], and
geometric figure transformation via complex-valued multilayer
networks [7].

Recent progress in sensing technology has made possible
the recording from data sources, which are 3-D and 4-D,
such as measurements from inertial body sensors and ultra-
sonic anemometers. These measurements can be represented
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as vectors in R
3 and R

4, however, vector algebra is not a
division algebra and suffers from mathematical deficiencies
when modeling orientation and rotation (gimbal lock). On the
other hand, the quaternion domain H offers a convenient and
unified means to process 3-D and 4-D signals. Quaternions
have found application in computer graphics [8], molecu-
lar modeling [9], color image processing [10], 3-D polar-
ized signal representation for vector-sensor array processing
[11], [12], and modeling of 3-D wind signals with associated
atmospheric parameters in renewable energy applications [13].

In the context of learning systems, quaternion approaches
include both Kalman filtering [14], [15] and stochastic gra-
dient algorithms [16]. However, in the context of nonlinear
learning systems, quaternion-valued processing is still emerg-
ing, mainly due to the lack of analytic nonlinear functions
in the quaternion domain H. Namely, the very stringent
Cauchy–Riemann–Fueter (CRF) conditions admit only linear
functions and constants as globally analytic quaternion-valued
functions [17]. This is a serious obstacle that prevents the stan-
dard nonlinear activation functions (tanh, logistic) from being
the nonlinearities in nonlinear quaternion-valued estimation.

To partially overcome this issue, early approaches use a
split quaternion function that treats each quaternion component
separately (as a real channel) passed through a real smooth
nonlinearity [18]–[20]. Although this may yield enhanced per-
formance over vector-based algorithms, the noncommutativity
aspect of the quaternion algebra is overlooked, thus prohibiting
rigorous treatment of the cross-information and not exploiting
full potential of quaternions. Recognizing that gradient-based
learning, such as nonlinear gradient descent (NGD), and real-
time recurrent learning (RTRL) [2], [21], [22], require gradient
evaluation at a point, makes it possible to adopt a local
alternative to the global CRF conditions, that is, the local
analyticity condition (LAC) [23]. The work in [24] uses LAC
to establish a class of neural networks in H, which are a
generic extensions of those in R and C, allowing us to
use standard activation functions, such as tanh. The learning
algorithms introduced in this way include quaternion NGD
(QNGD) for nonlinear FIR filters [24] and quaternion RTRL
(QRTRL) for fully connected neural networks [25]. Another
obvious obstacle, which hinders the development of quater-
nion RNNs is the high computational complexity associated
with their training, as quaternion addition requires four real-
valued additions whereas quaternion multiplication requires
16 real-valued multiplications and 12 real-valued additions.

To address these issues, in this paper, we generalize echo
state networks (ESNs) [26]–[28] to enable the processing
of hypercomplex 3-D and 4-D signals. The principle behind
ESNs is to separate the RNN architecture into two constituent
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components: a recurrent dynamical reservoir in the hidden
layer, and a readout neuron within the memoryless nonlinearity
in the output layer, where the recurrent dynamical reservoir is
built upon a randomly generated group of hidden neurons with
a specified degree of recurrent connections, which satisfies
the so-called echo state property to maintain stability [26].
This way, the high computational complexity of RNNs is
significantly reduced due to the sparse connections among
the hidden neurons. In addition, the training requirements are
reduced to only the weights connecting the hidden layer and
the readout neuron. To further equip the proposed quaternion
ESNs (QESNs) with enhanced modeling capability for noncir-
cular quaternion signals (rotation-dependent distribution), we
employ recent developments in augmented quaternion statis-
tics to incorporate the widely linear model [16], [29], [30] into
QESNs, making them second-order optimal for the generality
of quaternion signals (both circular and noncircular). The so
introduced widely linear model for state space estimation is
not limited to ESNs, but is also applicable to general RNN
architectures. Simulations in the prediction setting on both
benchmark circular and noncircular signals and on noncircular
real world 3-D body motion data support the analysis.

The main contributions of this paper are therefore as
follows.

1) By virtue of the sparsely connected dynamical reservoir,
the training task is reduced to the weights linking the
hidden layer and the readout neuron, so that the proposed
QESNs significantly reduce the high computational com-
plexity typically encountered by RNNs in H.

2) The use of a fully quaternion nonlinearity in H instead
of split quaternion functions within the derivation of
the proposed QESNs training algorithms to preserve the
cross-information within the data components.

3) The incorporation of widely linear model into QESN
structures, so as to make them second-order optimal for
the generality of quaternion signals; this design is also
applicable to general RNNs in H.

The rest of this paper is organized as follows. An overview
of basic operations of quaternion algebra is provided in
Section II. Section III reviews the augmented quaternion
statistics and widely linear model in H. The suitability of
quaternion transcendental nonlinear functions as activation
functions in H is addressed in Section IV. In Section V,
the QESNs and its augmented (AQESNs) variant for the
generality of quaternion signals (both second-order circular
and noncircular) are derived, and simulation results are given
in Section VI. Finally, Section VII concludes this paper.

II. QUATERNION ALGEBRA

The quaternion domain is a noncommutative extension of
the complex-domain and provides a natural framework for
processing 3-D and 4-D signals. A quaternion variable q ∈ H

can be expressed as

q = qr + ıqı + jqj + κqκ = Sq + V q

and comprises a real part (scalar), denoted by Sq=�(q)=qr ,
and a vector part V q (also known as a pure quaternion �(q)),

consisting of three imaginary components, V q = �(q) =
ıqı + jqj + κqκ . The imaginary units ı , j , and κ obey the
following rules:

ıj = κ, jκ = i, κı = j,

ı2 = j2 = κ2 = ıjκ = −1.

Note that the quaternion multiplication is not commutative,
that is, ıj �= j ı = −κ . The product of quaternions, q1 and
q2 ∈ H, is given by

q1q2 = (Sq1 + V q1)(Sq2 + V q2)

= Sq1Sq2−V q1 · V q2+Sq1V q2+Sq2V q1+V q1×V q2

where the symbol · denotes the dot-product and × the cross-
product. It is the cross-product above that makes the quater-
nion multiplication noncommutative. The norm is given by

‖q‖ = √
qq∗ =

√
q2

r + q2
ı + q2

j + q2
κ

while the quaternion conjugate, denoted by q∗, is given by

q∗ = Sq − V q = qr − ıqı − jqj − κqκ .

Another class of quaternion self-inverse mappings are the
quaternion perpendicular involutions, defined as [10]

qı = −ıqı = qr + ıqı − jqj − κqκ

qj = −jqj = qr − ıqı + jqj − κqκ

qκ = −κqκ = qr − ıqı − jqj + κqκ (1)

which have the following properties (for any η ∈ {ı, j, κ}):
(qη)η = q, (qη)∗ = (q∗)η,

(q1q2)
η = qη

1 qη
2 , (q1 + q2)

η = qη
1 + qη

2 .

Involutions can be observed as a counterpart of the complex
conjugate, as they allow for the components of a quaternion
variable q to be expressed in terms of the actual variable q
and its partial conjugate, qı , qj and qκ , that is

qr = 1

4
(q + qı + qj + qκ), qı = 1

4ı
(q + qı − qj − qκ),

qj = 1

4j
(q−qı+qj−qκ), qκ = 1

4κ
(q−qı−qj+qκ). (2)

In this way, the relationship between the involutions and the
quaternion variable q and its conjugate is specified by

q∗ = 1

2
(qı + qj + qκ − q) (3)

and

q = 1

2
(qı∗ + qj∗ + qκ∗ − q∗). (4)

The quaternion product, norm, conjugate, and involutions will
be employed to design quaternion widely linear QESNs and
the associated learning algorithms.

III. AUGMENTED QUATERNION STATISTICS AND

QUATERNION WIDELY LINEAR MODEL

This section gives the background necessary for a full
exploitation of second-order information of quaternion signals
via the quaternion widely linear model, necessary for the
design of the proposed QESNs and AQESNs.



XIA et al.: QUATERNION-VALUED ECHO STATE NETWORKS 665

A. Augmented Quaternion Statistics

Unlike the real domain where complete second-order statis-
tics of a random vector q(k) are described by the covariance
matrix R = E[qqT], in the complex and quaternion domains,
the covariance matrix is sufficient to describe only second-
order circular (proper) signals, which have equal power in data
components. For general second-order noncircular (improper)
quaternion signals, where powers in the data components may
be different, for optimal second-order modeling, we also need
to employ complementary covariance matrices (pseudocovari-
ances). These complementary covariance matrices are termed
the ı -covariance P, j -covariance S and κ-covariance T, and
are given by [16], [29]–[32]

P = E[qqıH], S = E[qqjH], T = E[qqκT].
Remark 1: Complete second-order characteristics of a

quaternion random vector q are then described by the aug-
mented covariance matrix Ra of an augmented vector qa =
[qT, qıT, qjT, qκH]T, given by

Ra = E[qaqaH] =

⎡

⎢
⎢
⎣

R P S T
Pı Rı Tı Sı

Sj Tj Rj Pj

Tκ Sκ Pκ Rκ

⎤

⎥
⎥
⎦ . (5)

Notice that for proper signals, the pseudocovariance matrices
P, S, and T vanish; a signal that obeys this structure has a
probability distribution that is rotation invariant with respect
to all the six possible pairs of axes [16], [29]–[32]. However,
in most of the real-world applications, probability density
functions are rotation dependent, and hence require the use
of the augmented quaternion statistics.

B. Quaternion Widely Linear Model

To exploit the complete second-order statistics of
quaternion-valued signals in linear mean square error (MSE)
estimation, we first consider a quaternion-valued MSE
estimator given by

ŷ = E[y|q]
where ŷ is the estimated process, q the observed variable, and
E[·] the statistical expectation operator. For zero-mean jointly
normal q and y, the strictly linear estimation solution, similar
to those in R and C, is given by

ŷ = wTq

where w and q are, respectively, the coefficient and regressor
vector. Observe, however, that for all the components {yr , yı ,
yj , yκ}, we have

ŷη = E[yη|qr , qı , qj , qκ ], η ∈ {r, ı, j, κ}
so that using the involutions in (1), we can express each
element of a quaternion variable as in (2). This gives, for
instance, for the real component of a quaternion variable
qr = (q+ qı + qj + qκ)/4, leading to the general expression
for all the components

ŷη = E[yη|q, qı , qj , qκ ], and ŷ = E[y|q, qı , qj , qκ ].

In other words, to capture the full second-order information
available, we should use the original quaternion and its invo-
lutions, allowing us to arrive at the widely linear model [16],
[29], [30]

y = waTqa = aTq+ bTqı + cTqj + dTqκ (6)

where wa = [aT, bT, cT, dT]T is the augmented weight vector.

IV. NONLINEAR ACTIVATION FUNCTIONS IN H

One of the difficulties in the design of hypercomplex RNNs
lies in the lack of analytic nonlinear activation functions, as
the CRF conditions for analyticity in H are very stringent [17].
For instance, a CRF differentiable quaternion function f (q)
should satisfy

∂ f

∂qr
+ ı

∂ f

∂qı
+ j

∂ f

∂qj
+ κ

∂ f

∂qκ
= 0 ⇔ ∂ f

∂q∗
= 0. (7)

Only linear quaternion functions and constants fulfill these
conditions, yet nonlinear adaptive filtering in H requires dif-
ferentiable nonlinear functions. To circumvent the analyticity
problem, recent work in [24] adopted the LAC [23], based on
a complex-valued representation of a quaternion, to give

∂ f

∂qr
= −ζ

∂ f

∂α
(8)

where ζ and α are, respectively, given by

ζ = ıqı + jqj + κqκ

α
, α =

√
q2

ı + q2
j + q2

κ . (9)

In this way, an imaginary unit ζ comprises the vector part
of quaternions. Although the LAC only guarantees first-order
differentiability at the current operating point, this is a perfect
match for quaternion-valued gradient algorithms, which only
require gradient evaluation at a point.

Proposition 1: The quaternion exponential eq =
eqr+ıqı+jqj+κqκ satisfies the LAC in (8).

Proof: eq can be expanded using the Euler formula as

eq = eqr (cos(α)+ ζ sin(α))

= eqr

(
cos(α) + ıqısin(α)

α
+ jqj sin(α)

α
+ κqκsin(α)

α

)

where ζ and α are defined in (9), to give

∂eq

∂qr
= eq = −ζ

eq

α
. (10)

Remark 2: Notice that the quaternion exponential e−q =
e−(qr + ıqı + jqj + κqκ ) also satisfies the LAC in (8). This is
straightforward to show using the same approach as in
Proposition 1.

Remark 3: Quaternion transcendental nonlinear func-
tions, constructed on the basis of quaternion exponentials
eq and e−q , are a generic extension of those in R and C,
and also satisfy the LAC.

For a detailed proof of Remark 3, we refer to [24].
In this paper, we employ a fully quaternion tanh(q) function

to design the QESNs, defined as

tanh(q) = eq − e−q

eq + e−q
= e2q − 1

e2q + 1
(11)
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Fig. 1. Architecture of an ESN.

for which first derivative is given by

∂ tanh(q)

∂q
= sech2(q), sech(q) = 2

eq + e−q
.

V. QUATERNION ESNS

The existence of fully quaternion nonlinear activation func-
tions enables the design of RNNs in H [24], [25]. In this
section, the QESNs and its AQESNs (widely linear) variant
are introduced.

A. Standard QESNs

Fig. 1 shows the architecture of an ESN, which is a
recurrent discrete-time neural network with K external inputs,
N internal neurons (also known as dynamical reservoir), and
L readout neurons. The N × K weight matrix Wip, the
N × N weight matrix Win, respectively, contain the connec-
tions between the input units and the internal units, models the
connections between the internal units themselves, whereas
the feedback connections between the internal neurons and
the readout neurons are stored in the N × L feedback weight
matrix Wb. The vector x(k) represents the N × 1 internal
state vector, u(k) the K × 1 input vector, and y(k − 1) is
the L × 1 output vector, all at time instant k. The overall
network state, denoted by s(k) is a concatenation of the input
u(k), internal state x(k) and the delayed output y(k), and is
defined as

s(k) = [u(k), . . . , u(k − K + 1), x1(k), . . . , xN (k),

y(k − 1), . . . , y(k − L)]T (12)

while the internal unit dynamics are updated according to

x(k) = �
(
Wipu(k)+Winx(k − 1)+Wby(k − 1)

)
(13)

where �(·) here is a quaternion-valued nonlinear activation
of the neurons within the reservoir. The existence of echo
state property is critical to ensure adequate operation of the
dynamical reservoir of ESNs. This can be achieved by a
two-step operation on Win: 1) randomly choose an internal
weight matrix Win, which is typically drawn from a uniform
distribution over a symmetric interval and 2) scale Win as
Win ← Win/|λmax|, where |λmax| is the largest absolute
eigenvalue of Win (spectral radius). The input and feed-
back connections stored in Wip and Wb can be initialized

arbitrarily [26], [28]; recent advances in echo state property
analysis can be found in [33]–[35]. The output of a nonlinear
output mapping of ESNs is given by [27], [35]–[37]

y(k) = �
(
wT(k)s(k)

)
(14)

where w(k) is the weight vector corresponding to the output
layer, and is updated through minimization of a suitable cost
functions. The cost function chosen here is the instantaneous
squared error, defined as

E(k) = 1

2
|e(k)|2 = 1

2
e(k)e∗(k) (15)

where e(k) is the instantaneous output error e(k) = d(k)−y(k)
and d(k) is the desired (teaching) signal. Note that E(k) is a
real-valued function dependent on both quaternion-valued e(k)
and e∗(k); the HR calculus shows that for such functions,
the maximum change of gradient lies in the direction of the
conjugate gradient, which conforms with the corresponding
solutions in R and C [38]. Hence, the minimization of E(k)
through gradient descent is given by

w(k + 1) = w(k)− μ∇w∗E(k) (16)

where μ is the step-size, a small positive constant. Using the
chain rule, the gradient ∇w∗E(k) can be derived as1

∇w∗E(k) = 1

2

∂|e(k)|2
∂w∗(k)

= 1

2

(
e(k)

∂e∗(k)

∂w∗(k)
+ ∂e(k)

∂w∗(k)
e∗(k)

)

(17)

where

e(k) = d(k)− y(k) = d(k)−�
(
wT(k)s(k)

)
, (18)

and its conjugate e∗(k), given by2

e∗(k) = d∗(k)−�∗
(
wT(k)s(k)

)

= d∗(k)−�
(
(wT(k)s(k))∗

)

= d∗(k)−�
(
sH(k)w∗(k)

)
.

The first gradient in (17) can be evaluated as

∂e∗(k)

∂w∗(k)
= ∂

(
d∗(k)−�(sH(k)w∗(k))

)

∂w∗(k)

= −∂�
(
sH(k)w∗(k)

)

∂w∗(k)

= −�′
(
sH(k)w∗(k)

)∂
(
sH(k)w∗(k)

)

∂w∗(k)

= −�′∗
(
wT(k)s(k)

)
s∗(k) (19)

where the last step is performed using the HR-derivative
introduced in (41) in the Appendix. On the other hand

∂e(k)

∂w∗(k)
= ∂

(
d(k)−�(wT(k)s(k))

)

∂w∗(k)

= −∂�(wT(k)s(k))

∂w∗(k)

= −�′(wT(k)s(k))
∂
(
wT(k)s(k)

)

∂w∗(k)
.

1Note that due to the noncommutativity of quaternion product, that is,
q1q2 �= q2q1, the partial derivatives cannot be swapped with e(k) and e∗(k).

2This derivation uses the fact that �∗(q) = �(q∗) and (q1q2)∗ = q∗2 q∗1 .
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Using the HR∗-derivative given in the Appendix, we obtain

∂
(
wT(k)s(k)

)

∂w∗(k)
= −1

2
s(k)

and hence

∂e(k)

∂w∗(k)
= 1

2
�′

(
wT(k)s(k)

)
s(k).

Finally, we arrive at the update of the weight vector w(k) in
the output layer, given by3

w(k + 1) = w(k)− μ∇w∗E(k) = w(k)

+μ
(

e(k)�′∗
(
wT(k)s(k)

)
s∗(k)

− 1

2
�′

(
wT(k)s(k)

)
s(k)e∗(k)

)
. (20)

For a linear readout neuron, where �(q) = q and �′(q) = 1,
the update becomes

w(k + 1) = w(k)+ μ
(
e(k)s∗(k)− 1

2
s(k)e∗(k)

)
. (21)

B. Augmented QESNs

To make QENSs optimal for the generality of quaternion
signals (both second-order circular and noncircular), we use
recent developments in augmented quaternion statistics, as
described in Section III, to incorporate the widely linear model
into the QESNs architecture, which gives the augmented
version of QESNs (AQESNs). This means that the network
state should be augmented so that

sa(k) = [
u(k), uı (k), uj (k), uκ(k), xa(k), y(k)

]T
. (22)

This augmented network state design is not limited to the
architecture of QESNs but is also applicable for quaternion-
valued extensions of other types of RNNs. Since the input
weights of QESNs contained in the matrix Wip are randomly
chosen prior to training, we can use three other matrices Wip1,
Wip2 and Wip3 to initialize the weights associated with the
input involutions uı (k), uj (k), uκ(k). In this sense, the internal
state dynamics within the AQESNs are updated as

xa(k) = �
(
Wipu(k)+Wip1uı (k)+Wip2uj (k)

+Wip3uκ(k)+Winx(k − 1)+Wby(k − 1)
)
.

(23)

Due to the specific properties of the ESN output layer, the
output y(k) is now governed by an asymmetric version of the
quaternion widely linear model in (6) to yield

net(k) = aT(k)v(k)+ bT(k)uı (k)+ cT(k)uj (k)+ dT(k)uκ(k)

y(k) = �
(
net(k)

)
(24)

where v(k) = [u(k), . . . , u(k − K + 1), xa
1 (k), . . . xa

N (k),
y(k−1), . . . , y(k−L)]T is a subset of the augmented network
state sa(k) and has the same dimension (K + N + L) as
the state vector s(k) within standard ESNs, however, the
internal state dynamics are updated using (23). The weight

3The factor 1/2 in the cost function (15) is absorbed into the step-size μ.

updates of the output weight vectors {a(k), b(k), c(k), d(k)}
are made gradient adaptive according to

a(k + 1) = a(k)− μ∇a∗E(k)

b(k + 1) = b(k)− μ∇b∗E(k)

c(k + 1) = c(k)− μ∇c∗E(k)

d(k + 1) = d(k)− μ∇d∗E(k). (25)

The gradient ∇a∗E(k) in (25) is equivalent to its counterpart
∇s∗E(k) in (16) and has the same dimension, hence

a(k+1)= a(k)+μ
(
e(k)�′∗(net(k))v∗(k)− 1

2
�′(net(k))v(k)

)
.

(26)

The error gradient ∇b∗E(k) for the weight vector b(k) corre-
sponding to the ı -involution uı (k) of the input u is given by

∇b∗E(k) = 1

2

(
e(k)

∂e∗(k)

∂b∗(k)
+ ∂e(k)

∂b∗(k)
e∗(k)

)
(27)

where

∂e∗(k)

∂b∗(k)
= −∂�

(
net∗(k)

)

∂b∗(k)
= −�′∗

(
net(k)

)∂net∗(k)

∂b∗(k)

= −�′∗
(
net(k)

)
uı∗(k) (28)

and

∂e(k)

∂b∗(k)
= −∂�

(
net(k)

)

∂b∗(k)
= −�′

(
net(k)

)∂net(k)

∂b∗(k)

= 1

2
�′

(
net(k)

)
uı (k). (29)

Substituting the partial derivatives in (28) and (29) into the
error gradient ∇b∗E(k) given in (27) yields

b(k + 1) = b(k)+ μ

(
e(k)�′∗(net(k))uı∗(k)

− 1

2
�′(net(k))uı (k)e∗(k)

)
.

Proceeding in a similar manner, the weight updates for c(k)
and d(k) are found to be

c(k + 1) = c(k)+ μ

(
e(k)�′∗(net(k))uj∗(k)

− 1

2
�′(net(k))uj (k)e∗(k)

)

and

d(k + 1) = d(k)+ μ

(
e(k)�′∗(net(k))uκ∗(k)

− 1

2
�′(net(k))uκ(k)e∗(k)

)
.

For convenience, the final weight update of the gradient decent
algorithm used to train the output layer of the AQESNs can
be written in an augmented form using (22) as

wa(k + 1) = wa(k)+ μ

(
e(k)�′∗(net(k))sa∗(k),

− 1

2
�′(net(k))sa(k)e∗(k)

)
(30)
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where wa(k) =
[
aT(k), bT(k), cT(k), dT(k)

]T is the augmented
weight vector and net(k) = waT(k)sa(k).

For a linear readout neuron, where �(x) = x and
�′(x) = 1, the update becomes

wa(k + 1) = wa(k)+ μ
(
e(k)sa∗(k)− 1

2
sa(k)e∗(k)

)
. (31)

For real-time applications of the proposed QESNs and
AQESNs, it is also desirable to use batch mode training where
quaternion-valued linear or ridge regression [39] is used to
determine the weights w and wa directly over a batch of
training data in the MSE sense, which are further applied on
the test data. For more detail, we refer to [40].

C. Convergence Analysis of QESNs and AQESNs

To ensure satisfactory performances of QESNs and
AQESNs, we employ the convergence criterion, given by [2]

E[|ē(k)|2] < E[|ẽ(k)|2] (32)

where ē(k) and ẽ(k) are, respectively, the a posteriori and the
a priori output error, defined as

ē(k) = d(k)−�
(
wT(k + 1)s(k)

)

ẽ(k) = d(k)−�
(
wT(k)s(k)

)
. (33)

Proposition 2: In the context of QESNs trained by QNGD,
the convergence condition in (32) is satisfied for

0 < E
[
5μ|�′(wT(k)s(k))|2‖s(k)‖22

]
< 1. (34)

Proof: The error terms ē(k) and ẽ(k) in (33) can be related
by the first-order Taylor series expansion (TSE) as4 [41]

|ē(k)|2 = |ẽ(k)|2 + ∂|ẽ(k)|2
∂wT(k)


w(k)+ ∂|ẽ(k)|2
∂wıT(k)


wı (k)

+ ∂|ẽ(k)|2
∂wjT(k)


wj (k)+ ∂|ẽ(k)|2
∂wκT(k)


wκ(k)

= |ẽ(k)|2 + 4�
(

∂|ẽ(k)|2
∂wT(k)


w(k)

)
. (35)

To simplify the derivation of (35), notice that �(q1q2) =
�((q1q2)

∗) = �(q∗2 q∗1 ) for any pair {q1, q2} ∈ H to give

|ē(k)|2 = |ẽ(k)|2 + 4�
(


wH(k)
∂|ẽ(k)|2
∂w∗(k)

)
(36)

where the partial derivative ∂|ẽ(k)|2/∂w∗(k) is effectively the
gradient of the cost function with respect to w∗(k), given

4In the quaternion domain H, the first-order TSE of a function
f (q) = f (q, qı , qı , qκ ) is d f (q) = (∂ f (q)/∂q)dq + (∂ f (q)/∂qı )dqı +
(∂ f (q)/∂qj )dqj + (∂ f (q)/∂qκ )dqκ = 4�((∂ f/∂q)dq), where �(·) is the
real part operator [38].

in (17). The term 
wH(k) can be expressed using (20) as


wH(k) = (w(k + 1)− w(k))H

= μ

(
ẽ(k)�′∗

(
wT(k)s(k)

)
s∗(k)

− 1

2
�′

(
wT(k)s(k)

)
s(k)ẽ∗(k)

)H

= μ

(
sT(k)�′

(
wT(k)s(k)

)
ẽ∗(k)

− 1

2
ẽ(k)sH(k)�′∗

(
wT(k)s(k)

)
)

. (37)

Substitute (17) and (37) into the TSE in (36) to give

|ē(k)|2 = |ẽ(k)|2 − 4μ�
(

(
sT(k)�′

(
wT(k)s(k)

)
ẽ∗(k)

−1

2
ẽ(k)sH(k)�′∗

(
wT(k)s(k)

))

·(ẽ(k)�′∗
(
wT(k)s(k)

)
s∗(k)

−1

2
�′

(
wT(k)s(k)

)
s(k)ẽ∗(k)

)
)

= |ẽ(k)|2(1− 5μ|�′(wT(k)s(k)
)|2‖s(k)‖22|

)

+ 4μ�(
sT(k)�′

(
wT(k)s(k)

)
ẽ∗(k)

×�′
(
wT(k)s(k)

)
s(k)ẽ∗(k)

)
.

Given that the term �(·) is negligible, upon applying the
statistical expectation operator on both sides, we have

E
[|ē(k)|2] = E

[|ẽ(k)|2(1− 5μ|�′(wT(k)s(k))|2‖s(k)‖22|
)]

.

The usual statistical independence assumption between ẽ(k)
and s(k) gives

E
[|ē(k)|2] = E

[|ẽ(k)|2]E
[
1− 5μ|�′(wT(k)s(k))|2‖s(k)‖22

]
.

Therefore, the convergence condition in (32) is satisfied for

0 < E
[
5μ|�′(wT(k)s(k))|2‖s(k)‖22

]
< 1.

Remark 4: The range of the step-size μ for which QESNs
converge is given by

0 < μ <
1

E
[
5|�′(wT(k)s(k))|2‖s(k)‖22

] . (38)

Remark 5: The bound on μ, which ensures the convergence
of AQESNs, is given by

0 < μ <
1

E
[
5|�′(waT(k)sa(k))|2‖sa(k)‖22

] . (39)

Remark 6: For QESNs and AQESNs with a linear readout
neuron, the convergence bound can be obtained by replacing
the term �′(·) in (38) and (39) with unity.

D. Computational Complexity of QESNs and AQESNs

We next compare the computational complexities of the
proposed QESNs and their augmented versions against that
of standard real ESNs [36]. At each time instant k, QESNs
use (13) to update the internal state dynamics x(k) and (14),
(18), and (20) to train the output layer weights w(k), while
the AQESNs use (23), (24), and (30) to implement the update
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TABLE I

COMPUTATIONAL COMPLEXITIES OF THE ALGORITHMS CONSIDERED

Fig. 2. Geometric view of circularity. For illustration purpose, only the ı-, j -, and κ-components of quaternion signals are plotted in the form of a scatter
diagram. Observe that only the AR(4) signal driven by circular Gaussian noise in (a) is second-order circular. The AR(4) process driven by noncircular noise,
the 3-D Lorenz signal and the real world 3-D Tai Chi body motion signals in (b)–(d) exhibit noncircular distributions.

procedure. The computational complexities of all the consid-
ered algorithms are summarized in Table I, where η denotes
the degree of connectivity of the internal neurons, calculated
as the percentage of the nonzero elements over the size of the
internal connection matrix Win. The complexity of real ESNs
was measured in terms of real-valued multiplications and
additions, while for the QESNs and AQESNs we counted their
quaternion equivalents. The additional computation required
by the proposed AQESNs over standard QESNs results from
the incorporation of the widely linear model (input augmenta-
tion), that is [u(k), uı (k), uj (k), uκ(k)] instead of u(k) itself,
into the input layer of QESNs, as illustrated in (22). However,
their computational complexities are still comparable, as the
internal layer takes the bulk of calculations, that is, ηN N in
both multiplications and additions. This is more pronounced
for large scale QESNs, where N � K and N � L.

E. Advantages of AQESNs Over Existing RNNs in H

The proposed AQESNs exhibit the following novelties and
advantages over the existing quaternion-valued schemes.

1) The quaternion multilayer perceptron [42] and the split
quaternion nonlinear adaptive filtering algorithms [20]
use a split quaternion function that treats each quater-
nion component separately (as a real data channel)
passed through a real smooth nonlinearity. Hence, the
noncommutativity aspect of the quaternion algebra is
neglected, and such schemes do not exploit the full
potential of the processing in the quaternion domain. The
proposed AQESNs employ full quaternion nonlinearity
in H instead of split quaternion function ∈ R, and
preserve the cross-information within the data compo-
nents.

2) Compared with the quaternion Hopfield neural networks
[19], [43] and fully connected RNNs (FCRNNs) [25]
using the fully quaternion nonlinearity, the proposed
AQESNs employ a randomly and sparsely connected

dynamical reservoir, require training only for the weights
connecting the hidden layer and the readout neurons,
hence significantly reducing computational complexity;
this advantage is more pronounced in designing large-
scale quaternion RNNs.

3) Compared with the quaternion nonlinear adaptive filters
[24] based on a simple feedforward FIR structure, the
proposed AQESNs employ the widely linear model in
the context of general quaternion RNNs with three layers
and feedback, and thus have the ability to better capture
the available noncircular statistics.

VI. SIMULATIONS

We performed simulations in the one step ahead prediction
setting, for both benchmark synthetic proper and improper
3-D and 4-D signals and for real-world improper 3-D body
motion data. For a fair performance assessment, the length of
the training sequence was set to 4000 for all the considered
signals. Two input neurons and two output neurons were used
and we followed the rule of thumb that the number of internal
neurons N within the dynamical reservoir should be about one
tenth of the data length [27], [40]. To illustrate the robustness
of the proposed QESNs, different dynamical reservoir sizes
in the order of 100 were investigated in the simulations. The
randomly selected input, internal, and feedback weights Wip,
Win and Wb were generated from a uniform distribution in
the range [−1, 1], and the spectral radius ρ(Win) was scaled
to ρ = 0.8. The internal weight connections contained in Win
were sparse, with the interconnectivity ratio η = 5%. The
step-size μ of the gradient descent algorithms used to train the
output layers of QESNs and AQESNs was set at μ = 0.01.
The quantitative performance measure was the prediction
gain Rp, defined as

Rp = 10log10

σ̂ 2
q

σ̂ 2
e

(40)
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TABLE II

COMPARISON OF PREDICTION GAINS Rp OF STANDARD QESNS AND AQESNS WITH 200 NEURONS IN THE DYNAMICAL RESERVOIR FOR THE

VARIOUS CLASSES OF SIGNALS CONSIDERED. THE RESULTS WERE OBTAINED BY AVERAGING 100 INDEPENDENT SIMULATION TRIALS

TABLE III

PERCENTAGE OF AQESNS OUTPERFORMING STANDARD QESNS FOR

NONCIRCULAR SIGNALS OVER 100 INDEPENDENT INITIALIZATIONS,

N = 200 NEURONS WERE EMPLOYED IN THE DYNAMICAL RESERVOIR

where σ̂ 2
q and σ̂ 2

e denote the estimated variances of the input
and the prediction error. The test signals employed were:

1) a stable circular linear autoregressive AR(4) process,
given by [4]

q(k) = 1.79q(k − 1)− 1.85q(k − 2)+ 1.27q(k − 3)

−0.41q(k − 4)+ n(k)

driven by circular quaternion white Gaussian noise

n(k) = nr (k)+ ını (k)+ jnj (k)+ κnκ(k)

where nr (k), nı (k), nj (k) and nκ(k) are independent
realizations of real-valued WGN ∼ N (0, 1);

2) the same AR(4) process driven by quaternion noncir-
cular noise, where nr = N (0, 1), nı = −0.6nr +
N (0, 1), nj = 0.8nı + N (0, 1), nκ = 0.8nr − 0.4nı +
N (0, 1) [24];

3) the noncircular chaotic Lorenz signal, governed by cou-
pled partial differential equations [44]

∂x

∂ t
= α(y − x),

∂y

∂ t
= x(ρ − z)−y,

∂z

∂ t
= xy−βz

where α = 10, ρ = 28, and β = 8/3;
4) a real-world 3-D noncircular and nonstationary body

motion signal. 3-D motion data were recorded using the
XSense MTx 3DOF orientation tracker, placed on the
left and the right arms of an athlete performing Tai Chi
movements. The movement of the left arm was used as
a pure quaternion input.

Fig. 2 shows the 3-D scatter plots of the quaternion-valued
signals considered, providing a geometric view of noncircu-
larity. Observe that only the AR(4) process in Fig. 2(a) had a
rotation invariant distribution (circular), while the other signals
considered were noncircular.

Table II compares the averaged prediction gains Rp [dB] for
standard QESNs and AQESNs with both linear and nonlinear
readout neurons. For circular AR(4) signals, the performances
of standard QESNs and AQESNs were comparable, since for
second-order circular data the widely linear model simplifies
into the strictly linear one, as the weights associated to the
involutions of the input vector, that is {b, c, d} in (24), vanish.
For the noncircular signals considered, there was a significant

Fig. 3. Performance of QESNs and AQESNs on a one step ahead prediction
of single-trial noncircular Lorenz signal and 3-D Tai Chi body motion data.
Absolute values of the actual and predicted signals are plotted. (a) 3-D Lorenz
signal. (b) 3-D Tai Chi body motion signal.

improvement in the prediction gain when the AQESNs were
employed. In all cases, the advantage of employing nonlinear
readout neurons within ESNs was justified. The enhanced
performance of AQESNs over standard QESNs for noncircular
signals is quantified in Table III. Fig. 3(a) and (b) shows
the overall prediction performance over the three dimensions
of the noncircular 3-D Lorenz and Tai Chi data for QESNs
with 200 internal neurons and nonlinear readout neurons.
In both cases, the AQESNs tracked the actual signal more
accurately than the standard QESNs. Due to the random
natures of {Win, Wip, Wb}, the AQESNs cannot guarantee
improved performance over its standard version for every
trial, due to the network initialization issues. However, on the
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Fig. 4. Performance comparison of standard and AQESNs with 500 neurons
in the dynamical reservoir, and different degrees of connectivity. One-step
ahead prediction was performed for the noncircular 3-D chaotic Lorenz and
3-D Tai Chi body motion signals. The results were obtained by averaging
100 independent initializations. (a) 3-D Lorenz signal. (b) 3-D Tai Chi body
motion signal.

average, as shown in Table III, the AQESNs outperformed the
corresponding standard ones in over 98% of the trials.

In the design of ESNs, a key system requirement is a rich
variety of dynamics of different internal units. In practice,
this is achieved by generating the internal weight matrix Win
with sparse connections so that the reservoir contains many
loosely coupled subsystems [26], [40]. However, an optimal
degree of connectivity may vary for signals with different
dynamics. Fig. 4(a) and (b) shows the performances of
standard and AQESNs with nonlinear readout neurons and
500 neurons in the dynamical reservoir over the degrees of
connectivity {1%, 5%, 10%, 15%, 20%}. For the noncircular
chaotic 3-D Lorenz signal, a small degree of connectivity at
1% gave the best performance for both QESNs and AQESNs,
while a 20% degree of connectivity favored both algorithms
for noncircular 3-D Tai Chi body motion data. The widely
linear QESNs accounted for general noncircular signals and
showed performance advantage over standard QESNs in all
cases.

Fig. 5. Performance comparison of standard and AQESNs with the degree
of connectivity η = 5%, and different dynamical reservoir sizes. One-step
ahead prediction was performed for the noncircular 3-D chaotic Lorenz and
3-D Tai Chi body motion signals. The results were obtained by averaging
100 independent initializations. (a) Noncircular AR(4) signal. (b) 3-D Lorenz
signal. (c) 3-D Tai Chi body motion signal.

To further illustrate the advantage of using augmented
quaternion statistics within QESNs, we compared the per-
formances of both augmented and standard QESNs against
the size of dynamical reservoir, an important parameter that
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influences the performance of ESNs, as it reflects their uni-
versal approximation ability. Generally speaking, an ESN
with a larger reservoir can learn the signal dynamics with
higher accuracy [28]. This is confirmed in Fig. 5(a)–(c), where
the performances of QESNs and AQESNs were investigated
against the reservoir size. In all cases, the AQESNs outper-
formed their standard counterparts.

VII. CONCLUSION

Fully QESNs have been proposed for the processing of
hypercomplex (3-D and 4-D) signals. This has been achieved
by making use of recently introduced locally analytical
quaternion-valued activation functions, allowing for gradient
decent-based training of QESNs. To make QESNs optimal
for the generality of quaternion-valued signals (both second-
order circular and noncircular), the widely linear model has
been incorporated into QESNs to introduce AQESNs. The
advantage of the proposed AQESNs over standard QESNs has
been illustrated by simulations over a range of noncircular
synthetic signals and for real-world noncircular 3-D body
motion recordings.

APPENDIX

HR-CALCULUS AND QUATERNION

GRADIENT OPERATIONS

The HR-calculus enables the differentiation of both ana-
lytic and nonanalytic functions of quaternion variables [38].
It makes possible to circumvent the stringent CRF conditions,
which are satisfied only by linear functions and constants [17].
The HR and HR

∗-derivatives within the HR-calculus are
given, respectively, by [38]

∂ f (q, qı , qj , qκ)

∂q
= 1

4

(
∂ f

∂qr
− ı

∂ f

∂qı
− j

∂ f

∂qj
− κ

∂ f

∂qκ

)

(41)

and

∂ f (q∗, qı∗, qj∗, qκ∗)
∂q∗

= 1

4

(
∂ f

∂qr
+ı

∂ f

∂qı
+j

∂ f

∂qj
+κ

∂ f

∂qκ

)
.

(42)

For example, to use the HR-derivative in (41) on an analytic
function f (q) = q , we first need to express it in terms of the
involutions {q, qı , qj , qκ} using (3), and then differentiate it
with respect to q , giving ∂ f (q)/∂q = 1. This is equivalent to
the standard CRF derivative, which gives f ′(q) = 1. However,
in quaternion-valued statistical signal processing, a common
optimization objective is to minimize a positive real-valued
cost function of quaternion variables, typically f (q, q∗) =
qq∗. Such cost function is dependent on both q and its con-
jugate q∗ and is nonanalytic in the CRF sense. However, the
HR-calculus circumvents this problem through (41) and (42).
For example, consider ∂ f (q, q∗)/∂q∗ = ∂(qq∗)/∂q∗ =
∂q/∂q∗·q∗+q ·∂q∗/∂q∗. The HR∗-derivative gives ∂q/∂q∗ =
−1/2 and the HR-derivative ∂q∗/∂q∗ = ∂q/∂q = 1, and hence
∂ f (q, q∗)/∂q∗ = ∂(qq∗)/∂q∗ = ∂q/∂q∗ · q∗ + q · ∂q∗/∂q∗ =
−q∗/2 + q . Note that the main difference between the HR

calculus and the corresponding CR calculus [4], [45], [46]

in the complex domain lies in the derivative ∂z/∂z∗ = 0 for
z = zr + ı zı ∈ C, whereas ∂q/∂q∗ = −1/2 for q ∈ H; this
is due to the fact that in the quaternion domain H, q and its
conjugate q∗ are related in the way defined in (3) and (4),
whereas in C such relationship does not exist.
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