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Abstract- This work presents novel methodology for the 
simultaneous modelling and forecasting of three-dimensional 
(3D) wind fields. This is achieved based on a quaternion domain 
wind model, which naturally accounts for the coupling between 
the dimensions of the 3D wind field. The proposed quaternion 
valued processing also facilitates the fusion of external atmo­
spheric parameters, such as air temperature, exhibiting more 
degrees of freedom and enhanced accuracy. The quaternion 
least mean square (QLMS) algorithm and its variants are used 
for short term adaptive forecasting, and a rigorous comparative 
study with the corresponding algorithms in ]R4 is performed. 
Simulations for different wind regimes and over a range of 
prediction horizons support the approach. 

I. INTRODUCTION 

Wind farm technology is becoming increasingly important, 

and governments of many countries are committed to 

introducing the so-called "green" energy sources [1]. 
However, the intermittent nature of wind and a conservative 

manner in which wind farms (WFs) currently operate, 
hinder the practical efficiency of wind turbines (WTs). 

For instance, WTs have to be switched off during strong 

winds, and at milder winds it is not always cost effective to 
integrate WTs into the grid. In addition, Betz's momentum 

theory states that only less than 60% of the wind power can 
be converted to mechanical power given ideal airflow and 

loss less conversion [2]. To increase the efficiency of WTs, 

vector controls can be employed to give faster response 
which, in tum, results in improved stability and enhanced 

output performance [1]. 

Recently, the modelling of wind has been recognised 

as a crucial component in control technology within WFs 

[3], especially in short-term wind forecasting [4]- [7]. 

One convenient way to represent wind field is to consider 

simultaneously wind speed and direction as a complex­
valued quantity [7]- [8] as illustrated in Fig. 1. This way, 

we account naturally for the statistical dependence between 

the speed and direction and avoid the undermodelling errors 
introduced by standard dual univariate models [9]. In the 

complex domain, the wind vector v(k) can be expressed as 

v(n) = Iv(n)1 exp,O(n) = vE(n) + wN(n) (1) 

where B, Iv(n)l, vE(n), and vN(n) denote respectively the 

direction, magnitude, wind speed in the east-west direction, 

and wind speed in the north-south direction, and z = .J=T. 
In doing so, we can exploit the time-varying correlation 
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Fig. I. Wind data model and the amplitude distribution: Left: a complex­
valued representation, Right: wind lattice. 

between each dimension of the signal, and thereby improve 

the accuracy. 
This model is supported by physical evidence, as both 

wind speed and direction influence the power output P 
generated by the WT [2], according to 

1 P = 2PCAw3 (2) 

where P denotes the air density, A the area swept by the 

rotor, w the wind velocity and C the power coefficient. In 

particular, the power coefficient C depends on the blade 
pitch angle (design parameter) that ensures an optimal angle 

of attack (aerodynamic parameter) between the chord of 
the blade and the incoming free-stream wind [2]. Hence, 

the direction of the wind B affects the power coefficient, 

although in most present studies this is not taken into 
account. Wind direction is of crucial importance, when it 

comes to spatial correlation studies, concerned with the 
position of the WT in a wind park [10]. The complex domain 

modelling also allows for the use of new developments 
in complex statistics - so called augmented statistics, to 
account for the non circular distributions and nonstationarity 

of the intermittent wind signals. More details can be found 

in [8], [12]-[14]. 

Temperature T is another factor that influences the 
power model of WTs. By expressing the air density as [11] 

353.049 -0034.fd. P = e · T T (3) 

where E denotes the elevation, and by substituting (3) into 
(2), the output power of a WT 

P = 
176.525 CAw3e-0.034� 

T (4) 

is clearly a function of air temperature. This particularly 
affects offshore WTs, as nocturnal and diurnal temperatures 

can differ by an order of magnitude. 



Although the recently introduced complex-valued 
model [7], and its statistically more efficient version [8] 

outperformed standard models, they can operate only 

in the horizontal plane. On the other hand, wind is a 

three-dimensional phenomenon, and the modelling of its 

behaviour (turbulence, gusts) would benefit from the use of 
appropriate 3D models. The aim of this work is therefore to 

develop a new framework for direct three-dimensional short 

term wind forecasting. 

This is achieved based on adaptive prediction in 
the quaternion domain IHI, where the 3D wind field is 

represented by a pure quaternion q(n) as shown in Fig. 

2. In addition, following the recently introduced "data 
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Fig. 2. A three-dimensional wind vector as a pure quatemion q. 

fusion via vector spaces" framework [12]- [13] an external 

parameter, e.g. air temperature can be incorporated as 

the fourth dimension of a full quaternion to enhance the 
performance. 

Theoretical background of this problem has been 

introduced in [15]. In this work, a comprehensive study 

of real-time wind forecasting for various wind regimes is 

performed, at various degrees of averaging, and for varying 

prediction horizons. The proposed forecasting model is 

based on the recently introduced quaternion LMS (QLMS) 
[15], [16] and the results are compared against those 

obtained by its real domain counterpart - the multi-channel 
LMS (MLMS) [17]. 

II. WIND CHARACTERISTICS AND FORECASTING 

FRAMEWORK 

In our recent work, we studied direct multidimensional 

wind models, their local predictability and correlation be­

tween wind signal components [7]- [8]. These studies sug­
gested that the wind signal variables (speed, direction) should 

be considered as one entity, e.g. a complex-valued quantity 

rather than two univariate real variables. We here extend 

this work by treating wind measurements as hypercomplex 
quaternion-valued compact signals. 

A. The forecasting framework in ]R4 

Adaptive prediction can be performed either in a direct or 

recursive manner [18]. We use the recursive approach as it is 

better equipped to deal with the bias in estimation. Based on 

the history of the data (delay vector) the predictor estimates 

the signal value at M steps ahead of the current time instant 

k, by using previously estimated values at n-l, ... , n-L+1. 
A standard way to perform the modelling of four-dimensional 

(40) data is via multichannel models in ]R4. For the 3D and 

40 wind modelling we consider the real valued multi-channel 
LMS (MLMS) [17], where the qth output of the adaptive 

filter is given by 

4 
Yq(n) = � h�q(n)xp(n) q = 1, ... ,4 (5) 

p=l 

where the pth input data vector is denoted by xp(n) = 

[xp(n), ... , xp (n - L + I)JT, the adaptive filter coefficients 

are hpq(n) = [hpq(n), ... , hpq(n - L + 1)V, L is tap input 

length and (.) T the vector transpose operator. The error signal 
eq (n) used for the adaptation of the adaptive fi Iter weights 

can be expressed as 

(6) 

The adaptation of the pqth filter coefficient vector is per­
formed using the steepest descent approach, that is 

hpq(n + 1) = hpq(n) - j.lV'hpqJq(n)lhpq=hpq(n) (7) 

where j.l is the rate of adaptation (stepsize) and Jq(n) is the 

cost function defined as the total error power 

4 
J (n) = � e�(n) (8) 

q=l 

Based on (7)-(8), every weight vector hpq of the four-channel 

LMS algorithm is given by [17] 

Notice that the correlation between the channels is taken into 

account by the product of error eq (n) and the tap delay vector 
xp(n). 

III. QUATERNION-VALUED ADAPTIV E PREDICTION 

Quaternions were conceived by W. Hamilton in 1843 as 

a hypercomplex extension to complex numbers. To date, 

quatemions have found various applications in signal pro­
cessing such as in digital filters [19] [20], texture segmen­

tation [21], spectrum analysis [22] and singular value de­

composition algorithms for vector sensing [23]. A quatemion 
variable u comprises of a real/scalar part �{u}, denoted with 

the subscript a, and a vector part 8'{ u} consisting of three 



imaginary parts (denoted by subscripts b, c, d), and can be 

expressed as 

U [R{u},�{u}]=[ua,u] E IHI 
[ua, (Ub, uc, Ud)] (10) 

Ua + Ub2 + UcJ + Ud"- {ua, Ub, Uc, Ud E JR.} 

where the relationships between the imaginary parts are 

2J = "­
J"-= 2 

"-2 = J 

J2 =-"­
"-J = -2 

2"-=-J 

Notice that the non-commutativity of the quatemion product 

is implicitly implied in the first three lines of (11). The 
quatemion product can be calculated as 

U1U2 = [Ua,l, U1J[Ua,2, U2] 

U1U2 = [Ua,lUa,2-Ul'U2, Ua,lU2+Ua,2Ul+U1XU2] (12) 

where U = Ua + Ub2 + Uc2 + Ud"-= [ua, u], and symbols "." 
and "x" denote respectively the dot-product and the outer­
product. Other important operations in quatemion algebra are 

the quatemion conjugate U* = [ua, u]* = [ua, -u], and the 

quatemion norm Ilull� = uu*. The anti-involution property 
of the quatemion conjugation can be expressed as (Ul U2) * = 
u2ui. A quatemion variable is said to be pure, when its real 

part vanishes. 

A. Derivation of the Quaternion Least Mean Square (QLMS) 

Algorithm 

Based on the properties of quatemion algebra, we shall 
now introduce the QLMS algorithm for finite impulse re­

sponse (FIR) adaptive filters. The cost function :J(n) is the 
instantaneous squared error (error power) given by 

:J(n) e(n)e*(n) 
e�(n) + e�(n) + e�(n) + e�(n) (13) 

d(n)d*(n) + y(n)y*(n) - y(n)d*(n) 
-d(n)y*(n) 

where the error e(n) = d(n) - wT(n)x(n) is quatemion 
valued, with d(n), w(n), and x(n) denoting respectively the 

teaching signal, adaptive weight vector, and filter input. No­

tice that the cost function (13) is real-valued, as it represents 
a product of a quatemion-valued variable and its conjugate. 

The adaptive predictor output y ( n) is given by 

L 
y(n) = wT(n)x(n) = L wm(n)x(n - m) (14) 

m=l 
To update the mth adaptive filter coefficient wm(n), we need 
to calculate the following gradient 

V' w'" (:J(n)) V' w'" (y(n)y*(n)) - V' w'" (y(n)d*(n)) 
-V'W", (d(n)y*(n)) (15) 

where 

V'W",(y(n)y*(n)) 4y(n)x*(n - m) 
-2x*(n - m)y*(n) 

V'w",(y(n)d*(n)) 
V'w", (d(n)y*(n)) 

-2x*(n - m)d*(n) 

4d(n)x*(n - m) 

Using the rules of quatemion algebra, this gives 

4y(n)x*(n - m) - 2x*(n - m)y*(n) 

+2x*(n - m)d*(n) - 4d(n)x*(n - m) 

4(y(n) - d(n))x*(n - m) 
-2x*(n - m)(y*(n) - d*(n)) 

-2(2e(n)x*(n - m) 

-x*(n - m)e*(n)) (16) 

Finally, the update of the mth adaptive weight coefficient of 

QLMS can be expressed as [15] 

(17) 

= wm(n) + p (2e(n)x*(n - m) - x*(n - m)e*(n)) 
where the factor 2 in (16) can be absorbed by the stepsize 

p. This concludes the the derivation of the quatemion LMS 
(QLMS) algorithm, for more detail see [15]. 

IV. S IMULATION RESULTS 

To demonstrate the benefits of the direct multidimensional 

approach, two sets of experiments were conducted. The first 
dataset was recorded in a controlled/closed environment at 

Imperial College London (lCL). The second dataset was 

recorded in an open urban environment at the Institute of 
Industrial Science (lIS) at the University of Tokyo. Factors 

that may affect the statistics of wind signal are the sampling 

frequency (Fs), the degree of averaging (downsampling), and 
the environment considered (that is, closed or open space) 

[8]. Table I illustrates statistical properties of the two sets of 
wind data recorded in different conditions at ICL and lIS. 

Both data sets were four-dimensional and comprised wind 

TABLE I 

STATISTICAL PROPERTIES OF THE WIND DATA SETS. 'AVG', 'MAX', 
'MIN' AND 'STD' DENOTE THE MEAN, MAXIMUM, MINIMUM AND 

STANDARD DEVIATION VELOCITY. 

Controlled environment Open space 
(Fs = 32 Hz) (Fs = 50 Hz) 

x-axis y-axis z-axis x-axis y-axis z-axis 
Samples 2000 2000 2000 45,000 45,000 45,000 
Avg (mls) -0.06 -0.38 -0.11 -0.08 -0.45 -0.02 
Max (mls) 1.93 3.42 1.13 0.99 1.55 1.27 
Min (mls) -1.72 -2.89 -1.35 -2.46 -4.22 -1.28 
Std (mls) 0.59 1.08 0.40 0.37 0.72 0.18 

measurements recorded by 3D ultrasonic anemometers, taken 

in the north-south, east-west and vertical direction (pure 
quatemion), and the corresponding air temperature (the real 

dimension of the full quatemion). 



Two quatemion models were considered: 

• A pure quatemion model where the three orthogonal 
wind components were used as the vector part of the 

quatemion signal to form a 3D model; 

• A proper quatemion 40 model where the air temper­

ature was added as the scalar part of the model (data 

fusion via vector spaces [12]- [13]). 

Performance was assessed on multistep ahead prediction for 
the three wind speed components. The first performance 

index considered was the standard prediction gain Rp, which 

can be computed as 

Rp = 10 loglO (��) [dB] (18) 

where (T; denotes the variance of the input signal {x( n)}, 
and (T; denotes the estimated variance of the prediction error 

{ e ( n)}. For deeper insight, two more performance indices 

were considered: the error mean B and the coefficient of 
mUltiple determination r, given by [25] 

1 N B = 
N 

L Ix(n) - x(n)1 
n=l 

(19) 

(20) 

where N is the number of samples to be predicted, x(n) 

TABLE II 

PERFORMANCE COMPARISON OF THE PREDICTION ALGORITHMS IN ]R4 
AND lliI FOR THE 3D AND 40 WIND MODEL IN A ONE STEP AHEAD 

PREDICTION SETTING. 

Algorithms 
B 
r2 
Rp 

4.5 

Iii' 
L5 
Q) 
U 
2 3 
E 
OJ 
� 25 

U � 2 

� 1.5 
'0 
I/) � 1 

3D Model 
MLMS 
0.016 
0.697 
5.573 

QLMS 
0.0126 
0.813 
7.66 

High 

2 15 
Time (samples) 

40 Model 
MLMS QLMS 
0.013 O.o I I  
0.803 0.999 
7.452 8.544 

Low 

the actual signal value, x( n) is the predicted value, and x Fig. 3. Magnitude of the 3D wind signal. The wind dynamics regimes are 

the mean of the data. The error mean B indicates the bias identified as 'low', 'medium', and 'high'. 

associated with the error power, whereas r2 provides a more 
insightful assessment of the predictor, based on 

2 ° 
{ 0> r2 

r = � < r2 < 1 

if x( n) is a worse forecast than x 
if x(n) = x 
if x( n) is a better forecast than x 
if x(n) = x(n) \In 

(21) 

A. Simulations on wind data recorded in a controlled envi­

ronment 

This set of simulations was performed on wind data 
recorded at a sampling frequency of 32 Hz in a controlled 

environment at ICL. The performance indices, shown in 

Table II confirm that the additional information from air tem­
perature within the 40 model results in improved accuracies. 

Although the dynamics of air temperature is quite different 

from the joint nonlinear dynamics of three orthogonal wind 
speeds, the quatemionic model naturally allows for the fusion 

of such heterogeneous data. 
In all the scenarios, the predictors based on quatemion statis­

tics significantly enhanced the performance, as compared to 

the conventional real-valued filter in ]R4 both in terms of the 
bias, coefficient of multiple determination, and the prediction 

gain. 

B. Simulations on wind data recorded in an open space 

environment 

This data set was recorded using a 3D ultrasonic 
anemometer at a sampling frequency of 50Hz in the court­

yard of lIS at the University of Tokyo. To reduce the effects 

of high frequency noise, the data was preprocessed by a 
moving average filter, with its window size WT varying 

according to 

WT = {I, 2, 10, 20, 60, 300, 600} 

Three wind regimes were identified and labelled as 'low', 

'medium', and 'high', as shown in Fig. 3. The 3D scatter 

plot of the wind speeds in the medium wind regime is 
shown in Fig. 4, and 10,000 samples from each region were 

taken to train the adaptive predictors. In the first experiment, 

we investigated the relationship between the prediction 

gain Rp and the prediction horizon. Fig. 5 shows that the 

prediction task became more challenging with an increase 
in the prediction horizon. It is also evident that the QLMS 

algorithm in lHl provided better predictions compared to the 

MLMS algorithm in ]R4. The best prediction performance 
was obtained for the region with high dynamics; this 

confirms the benefits of using quatemion statistics, as it 
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Fig. 4. The 3D scatter plot of wind field (medium regime). 
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Fig. 5. Prediction gain of QLMS (thick lines) and MLMS (thin lines) 
algorithms as a function of the prediction horizon for the 3D wind model. 

naturally models the coupling between the data components. 

Figs. 6 and 7 illustrate the effect of window size of 
the moving average filter on the prediction gain, that is, 

the "smoother" the wind data, the better the prediction. 
Fig. 6 illustrates the simulation results for the 3D model, 

whereas Fig. 7 shows the improved performances, when the 

air temperature was considered as the real dimension of the 
quatemion in the prediction task based on the 40 model. In 

all the cases, QLMS outperformed MLMS. 
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Fig. 6. Prediction gain of the QLMS (thick lines) and MLMS (thin lines) 
algorithms as a function of the window size of the moving average filter on 
the 3D wind model. 

50 ···.··Iow regan 
··.··medium regan 

45 
..... high region 

�40 
(l) 
� 

10 20 60 300 
Moving average window size (samples) 

� .. , .. 

600 

Fig. 7. Prediction gain of QLMS (thick lines) and MLMS (thin lines) 
algorithms on the 4D wind model, i.e. for the heterogeneous data fusion of 
the 3D wind field with air temperature. 



A snapshot of the estimates of QLMS and MLMS of the 

four-dimensional quatemion comprising the three compo­
nents of the wind speed and the air temperature is shown 

in Fig. 8. The quatemion-valued QLMS algorithm exhibited 
the ability to track accurately the dynamics of both the wind 

speeds and the air temperature. On the other hand, the MLMS 

algorithm could track the air temperature reasonably well, 
but could only follow the general trend of the highly non­

stationary large dynamics of wind speeds. This demonstrates 

that the QLMS algorithm is a natural choice for the fusion of 
heterogeneous data, even if the dynamics of data components 

are radically different, as in the case of the fast changing 

wind speed and the slow changing air temperature. 
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Fig, 8. Predicted estimates of QLMS and MLMS algorithms on the 4D 
wind field model. 

V. CONCLUDING REMARKS 

This paper has introduced a novel methodology for short 

term prediction of the wind signal in the quatemion domain. 
Recent advances in quatemion adaptive filtering have allowed 

for the fusion of heterogeneous data (3D wind field and air 
temperature), which led to improved prediction accuracies. 

It has been shown that the quatemion product naturally takes 

into account the inter-channel cross-correlation through the 
outer product. This explains the better performance of the 

QLMS algorithm compared to the MLMS algorithm, making 

the former algorithm a preferred choice for short term wind 
prediction. Simulations on real-world 3D and 4D wind data 

illustrate the benefits of the proposed direct multidimensional 

approach. 
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