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Hypercomplex Widely Linear Estimation Through
the Lens of Underpinning Geometry
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Abstract—We provide a rigorous account of the equivalence be-
tween the complex-valued widely linear estimation method and the
quaternion involution widely linear estimation method with their
vector-valued real linear estimation counterparts. This is achieved
by an account of degrees of freedom and by providing matrix map-
pings between a complex variable and an isomorphic bivariate real
vector, and a quaternion variable versus a quadri-variate real vec-
tor. Furthermore, we show that the parameters in the complex-
valued linear estimation method, the complex-valued widely linear
estimation method, the quaternion linear estimation method, the
quaternion semi-widely linear estimation method, and the quater-
nion involution widely linear estimation method include distinct ge-
ometric structures imposed on complex numbers and quaternions,
respectively, whereas the real-valued linear estimation methods do
not exhibit any structure. This key difference explains, both in the-
oretical and practical terms, the advantage of estimation in division
algebras (complex, quaternion) over their multivariate real vector
counterparts. In addition, we discuss the computational complexi-
ties of the estimators of the hypercomplex widely linear estimation
methods.

Index Terms—Widely linear estimation, augmented statistics,
complex number, quaternion.

I. INTRODUCTION

IN RECENT years, there has been an increasing interest in
widely linear (WL) estimation methods in the complex or

quaternion domains [1], with successful applications in areas
such as communication [2], [3], adaptive filters [4], and indepen-
dent component analysis [5], [6]. The underpinning idea behind
the WL estimation methods is to cater for full second-order non-
circular statistics in data, which arises through power imbalance
or correlation in data channels, through the use of the signal vari-
ables and their counterparts [7], [8]. The resulting WL estimation
methods are then fully equipped to deal with both second-order
circular (proper) and second-order noncircular (improper) sig-
nals [9], [10].

Manuscript received August 30, 2018; revised March 26, 2019; accepted May
9, 2019. Date of publication June 11, 2019; date of current version July 3, 2019.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Kostas D. Berberidis. This work was supported by
JSPS KAKENHI Grant Number JP16K00347. (Corresponding author: Tohru
Nitta.)

T. Nitta is with the Human Informatics Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568, Japan
(e-mail: tohru-nitta@aist.go.jp).

M. Kobayashi is with the Mathematical Science Center, Yamanashi Univer-
sity, Yamanashi 400-8510, Japan (e-mail: k-masaki@yamanashi.ac.jp).

D. P. Mandic is with the Department of Electrical and Electronic Engineer-
ing, Imperial College London, London SW7 2AZ, U.K. (e-mail: d.mandic@
imperial.ac.uk).

Digital Object Identifier 10.1109/TSP.2019.2922151

To this end, Picinbono and Chevalier proved that the es-
timation error obtained using complex-valued WL estimation
is smaller than that obtained using the usual “strictly linear”
complex-valued linear estimation method [7]. Nitta proved that
the estimation error obtained using the quaternion semi-WL es-
timation method is smaller than that obtained using the usual
quaternion strictly linear estimation method [11], [12]. Further-
more, Xia et al. proved the superiority of the quaternion in-
volution WL estimation method over the quaternion semi-WL
estimation method with respect to estimation error [13]. Further,
Nitta formulated a Clifford-valued WL estimation framework,
which is a generalization of the complex-valued and quaternion-
valued WL models [11]. However, to date the WL estimation
method with more than four dimensions (quaternions) has not
been analyzed, a subject of this work.

The equivalence between a WL complex adaptive filter and
a dual channel adaptive filter was addressed in [14], in the con-
text of adaptive filtering, and falls within the general frame-
work of this work. Also, in order to reduce the computational
complexity, the complex dual channel (CDC) estimation has
been proposed which is equivalent to widely linear estima-
tion (Eqs. (12) and (13) in [15]). Furthermore, the CDC esti-
mation has been extended to the quaternion domain [16]. Mi-
zoguchi et al. presented a systematic algebraic translation of
the Cayley-Dickson hypercomplex-valued linear systems into a
real vector-valued linear model, and pointed out that the complex
widely linear model can be treated as the framework (Remark 2
in [17]).

First, we show that the complex-valued WL estimation
method is equivalent to a two-dimensional real-valued linear
estimation method if we regard a complex number as an ar-
rangement of two real numbers. We further demonstrate that the
complex-valued WL estimation method can represent complex-
valued data naturally, while it can reduce estimation error as
small as the one of the real-valued linear estimation method.
This is a key advantage of the complex-valued WL estima-
tion method. Furthermore, we show that the parameters in the
complex-valued linear estimation method and the complex-
valued WL estimation method both include a geometric structure
on complex numbers, whereas the real-valued linear estimation
method does not impose any structure. Next, we show that the
quaternion involution WL estimation method is equivalent to
a four-dimensional real-valued linear estimation method if we
regard a quaternion as an arrangement of four real numbers.
We demonstrate that the quaternion involution WL estimation
method can represent quaternion data naturally, while it can
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reduce estimation error as small as the one of the real-valued
linear estimation method. Furthermore, we show that the pa-
rameters in the quaternion linear estimation method, the quater-
nion semi-WL estimation method and the quaternion involution
WL estimation method all include distinct geometric structures
imposed on quaternions whereas the real-valued linear estima-
tion method does not have any structure. In addition, we discuss
the computational complexities of the estimators of the hyper-
complex WL estimation methods. As a result, it is learned that
the introduction of the idea of the widely linearity into estima-
tion methods increases the computational complexities of the
estimators. This is considered to be one of the disadvantages.
However, it seems that this problem can be easily solved by
using appropriate parallel computing techniques.

The rest of this paper is organized as follows. Section II
analyzes the complex-valued and quaternion WL estimation
methods. Section III discusses the research results obtained
in the previous section. Finally, Section IV concludes this
paper.

II. ANALYSIS OF WIDELY LINEAR ESTIMATION METHODS

In this section, we analyze the several existing WL estimation
methods.

A. Complex-Valued Estimation Methods

For completeness, the estimation methods in the complex do-
main are first addressed.

1) Complex-Valued Linear Mean Square Estimation: We
first analyze a framework called the complex-valued linear mean
square estimation. A true value y ∈ C is estimated from an ob-
served valuex ∈ CN where y is a complex-valued random vari-
able and x is a complex-valued random vector. Assume an esti-
mated value ŷL, expressed as

ŷL = hHx (1)

where h ∈ CN , and H represents complex conjugate trans-
position. The objective is to find a complex-valued parameter
h ∈ CN that minimizes mean square error E|y − ŷL|2 where

|z| def=
√

x2 + y2 for a complex number z = x+ iy ∈ C (mean
square error is abbreviated to MSE hereafter).

We shall denote by zR, zI the real part and the imagi-
nary part of a complex number z ∈ C, respectively. Here, for
anyh = (h1, . . . , hN )T ∈ CN andx = (x1, . . . , xN )T ∈ CN ,
Equation (1) can be written as

ŷL = hHx =
N∑

k=1

h∗
kxk

=
N∑

k=1

{
(hR

k x
R
k + hI

kx
I
k) + i(hR

k x
I
k − hI

kx
R
k )

}
(2)

where the operator (·)∗ denotes the complex conjugate, i.e., z∗ =
x− iy for a complex number z = x+ iy ∈ C, and T represents
the real or complex transposition. Then, it follows from Eq. (2)
that

Fig. 1. Geometric interpretation of the operation of an estimator ŷL within
the complex-valued linear mean square estimation framework (Eq. (4)).
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|hk|Hk
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k
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where for any 1 ≤ k ≤ N , |hk| ∈ R+ def
= {u ∈ R|u > 0} and

Hk
def
=

[
cos(−αk) − sin(−αk)

sin(−αk) cos(−αk)

]

∈ SO2(R) (5)

where αk = tan−1(hI
k/h

R
k ). Here, R+ is the multiplicative

group andSO2(R) is the two-dimensional rotation group. Thus,
we obtain the following proposition.

Proposition 1: An estimator ŷL is obtained by applying the
elements of the group R+ × SO2(R) ({|hk|Hk}Nk=1 in Eq. (4))
to each element of an observed value x in the complex-valued
linear mean square estimation (Fig. 1).

2) Complex-Valued Widely Linear Mean Square Estimation:
Next, we analyze a framework called the complex-valued widely
linear mean square estimation. A true value y ∈ C is estimated
from an observed value x ∈ CN where y is a complex-valued
random variable and x a complex-valued random vector. As-
sume an estimated value, ŷWL, expressed as

ŷWL = hHx+ gHx∗ (6)

where g,h ∈ CN . The objective is to find the complex-valued
parameter vectors g,h ∈ CN that minimize the MSE E|y −
ŷWL|2. It has been proved in [7] that the estimation error ob-
tained using the complex-valued WL mean square estimation
is smaller than that obtained using the complex-valued lin-
ear mean square estimation analyzed in Section II-A1, that is,
E|y − ŷL|2 ≥ E|y − ŷWL|2, where the equality holds only in
exceptional cases. The physical interpretation of this frame-
work of estimation is to add another degree of freedom through
a complex conjugate term gHx∗ as an explanatory variable
(Equation (6)).

Here, by replacing [xR
k xI

k]
T with K[xR

k xI
k]

T in Eq. (3), we
obtain

[
Re[gHx∗]

Im[gHx∗]

]

=

N∑

k=1

|gk|Gk

[
xR
k

xI
k

]

(7)

for any g = (g1, . . . , gN )T ∈ CN and x = (x1, . . . , xN )T ∈
CN where the operators Re[z] and Im[z] denote respectively
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Fig. 2. Geometric interpretation of the operation of an estimator ŷWL within
the complex-valued WL mean square estimation framework (see Eq. (7)) .

the real part and the imaginary part of a complex number z ∈ C,
and for any 1 ≤ k ≤ N , |gk| ∈ R+ (the multiplicative group),

Gk
def
= RkK ∈ O2(R), /∈ SO2(R), (8)

Rk
def
=

[
cos(−βk) − sin(−βk)
sin(−βk) cos(−βk)

]
∈ SO2(R), (9)

K
def
=

[
1 0
0 −1

]
∈ O2(R) (10)

where βk = tan−1(gIk/g
R
k ). Here, K is a reflection over the real

axis in R2 and O2(R) is the two-dimensional orthogonal group.
So, from Eqs. (4), (6) and (7), we have

[
ŷRWL

ŷIWL

]

=

N∑

k=1

{
|hk|Hk + |gk|Gk

}[
xR
k

xI
k

]

. (11)

This leads to the following proposition.
Proposition 2: An estimator ŷWL (Eq. (6)) is obtained

through linear combinations of an element of the group R+ ×
SO2(R) (|hk|Hk in Eq. (11)) and an element of the group
R+ × (O2(R) \ SO2(R) (|gk|Gk in Eq. (11)) which are applied
to each element of an observed value x in the complex-valued
WL mean square estimation (Fig. 2).

Furthermore, it follows from Eqs. (3) and (7) that
[
ŷRWL

ŷIWL

]

=

N∑

k=1

[
hR
k + gRk hI

k − gIk

−hI
k − gIk hR

k − gRk

][
xR
k

xI
k

]

. (12)

Here, for any p, q ∈ R, let a
def
= 1/2(p+ q) and c

def
= 1/2(p−

q). Then, a+ c = p and a− c = q. So, for any p, q ∈ R, there
exist some a, c ∈ R such that p = a+ c and q = a− c. Hence
hR
k + gRk and hR

k − gRk are any real numbers, and the same is
said about hI

k − gIk and −hI
k − gIk in Eq. (12). In other words,

no interrelation exists among hR
k + gRk , hR

k − gRk , hI
k − gIk and

−hI
k − gIk in Eq. (12), that is,

Wk
def
=

[
hR
k + gRk hI

k − gIk

−hI
k − gIk hR

k − gRk

]

(13)

in Eq. (12) is just a general two-dimensional square matrix
over real numbers. In other words, any two-dimensional square
matrix can be uniquely decomposed into the sum of two two-
dimensional square matrices as follows:

[
a b
c d

]
=

1

2

[
a+ d b− c

−(b− c) a+ d

]
+

1

2

[
a− d b+ c
b+ c −(a− d)

]
,

(14)

which was proved in Eqs. (36)–(40) of [18] where it was shown
that a rotor Hopfield neural network can be uniquely decom-
posed into a complex-valued Hopfield neural network and a
symmetric complex-valued Hopfield neural network using Eq.
(14). Thus, we obtain the following proposition.

Proposition 3: If the observed value x, the true value y and
the estimated value ŷWL are regarded as real, that is, x ∈ R2N ,
y ∈ R2 and ŷWL ∈ R2, then the complex-valued WL mean
square estimation is equivalent to two-dimensional real-valued
linear MSE.

B. Quaternion Estimation Methods

Next, we analyze the estimation methods in the quaternion
domain.

1) Quaternions: Before analyzing the quaternion estimation
methods, we shall first briefly review the algebra of quaternions.
A quaternion is defined over R4 and comprises three imaginary
units: i, j, k, such that

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (15)

Every quaternion, q, can be written explicitly as

q = a+ bi + cj + dk ∈ H, a, b, c, d ∈ R (16)

where H denotes the set of quaternions. Observe that the com-
mutativity does not hold, that is, pq �= qp for any p, q ∈ H. A
quaternion conjugate is defined as

q∗ = a− bi − cj − dk, (17)

and the norm by

|q| = √
qq∗. (18)

The quaternion involution is defined as

qi = −iqi = a+ bi − cj − dk, (19)

qj = −jqj = a− bi + cj − dk, (20)

qk = −kqk = a− bi − cj + dk. (21)

Note that the quaternion involution (Eqs. (19)–(21) is a special
case of the nonstandard involution, which was first given in [19]
(Definition 2.4.5) and further developed and discussed in [20],
[21]. For a quaternion q = a+ bi + cj + dk ∈ H, its quaternion
conjugates are

qi∗ = a− bi + cj + dk, (22)

qj∗ = a+ bi − cj + dk, (23)

qk∗ = a+ bi + cj − dk. (24)
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From now on, we shall denote by qR, qI , qJ , qK the real part
a and the three imaginary parts b, c, d of a quaternion q = a+
bi + cj + dk ∈ H, respectively.

2) Quaternion Linear Mean Square Estimation: We first an-
alyze a framework called the quaternion linear mean square
estimation. A true value y ∈ H is estimated from an observed
value x ∈ HN where y is a quaternion random variable and x
is a quaternion random vector. Assume that an estimated value
ŷL expressed in a strictly linear form as

ŷL = hHx (25)

where h ∈ HN , and H represents quaternion conjugate trans-
position. The objective is to find a quaternion-valued parameter
h ∈ HN that minimizes the MSE E|y − ŷL|2.

Proposition 4: An estimator ŷL (Eq. (25)) is obtained
through the elements of the group R+ × SO4(R) which are ap-
plied to each element of an observed value x in the quaternion
linear mean square estimation, where R+ is the multiplicative
group and SO4(R) is the four-dimensional rotation group.

Proof: For any h = (h1, . . . , hN )T ∈ HN and x = (x1,
. . . , xN )T ∈ HN , Equation (25) can be written as

ŷL =

N∑

k=1

h∗
kxk

=

N∑

k=1

{
(hR

k x
R
k + hI

kx
I
k + hJ

kx
J
k + hK

k xK
k )

+ i(hR
k x

I
k − hI

kx
R
k − hJ

kx
K
k + hK

k xJ
k )

+ j(hR
k x

J
k + hI

kx
K
k − hJ

kx
R
k − hK

k xI
k)

+ k(hR
k x

K
k − hI

kx
J
k + hJ

kx
I
k − hK

k xR
k )

}
. (26)

Then, it follows from Eq. (26) that
⎡

⎢⎢⎢
⎣

ŷRL
ŷIL
ŷJL
ŷKL

⎤

⎥⎥⎥
⎦

=

N∑

k=1

|hk|Hk

⎡

⎢⎢⎢
⎣

xR
k

xI
k

xJ
k

xK
k

⎤

⎥⎥⎥
⎦

(27)

where |hk| ∈ R+ and

Hk
def
=

1

|hk|

⎡

⎢⎢⎢
⎢
⎣

hR
k hI

k hJ
k hK

k

−hI
k hR

k hK
k −hJ

k

−hJ
k −hK

k hR
k hI

k

−hK
k hJ

k −hI
k hR

k

⎤

⎥⎥⎥
⎥
⎦
∈ SO4(R) (28)

for any 1 ≤ k ≤ N . Thus, we have found that an estimator ŷL
(Eq. (25)) is obtained by applying the elements of the group
R+ × SO4(R) ({|hk|Hk}Nk=1 in Eq. (27)) to each element of
an observed value x in the quaternion linear MSE. �

Here, we define a measure called the degree of freedom of
parameters of quaternion estimation methods for comparing the
three quaternion estimation methods: the quaternion linear mean
square estimation, the quaternion semi-WL mean square estima-
tion, and the quaternion involution WL mean square estimation.

Definition 1: By the degree of freedom of parameters, we
refer to the number of parameters required when the quaternion-
valued estimator is expressed by four-dimensional real-valued
vectors.

Proposition 5: The degree of freedom of parameters of the
quaternion linear mean square estimation is 4N where N is the
dimension of the observed value x ∈ HN .

Proof: It follows from Eq. (28) that the matrixHk ∈ SO4(R)
is determined by the four parameters hR

k , h
I
k, h

J
k , h

K
k . Therefore,

the degree of freedom of parameters is 4N . �
3) Quaternion Semi-Widely Linear Mean Square Estimation:

Next, we analyze a framework called the quaternion semi-widely
linear mean square estimation [8], [11], [12]. A true value y ∈
H is estimated from an observed value x ∈ HN where y is a
quaternion random variable and x a quaternion random vector.
Assume an estimated value, ŷSWL, expressed as

ŷSWL = hHx+ gHx∗ (29)

where g,h ∈ HN . The objective is to find a quaternion-valued
parameter g,h ∈ HN that minimizes the MSE E|y − ŷSWL|2.

Proposition 6: A linear estimator ŷSWL (Eq. (29)) is ob-
tained through linear combinations of an element of the group
R+ × SO4(R) and an element of the group R+ × (O4(R) \
SO4(R))which are applied to each element of an observed value
x in the quaternion semi-WL mean square estimation where R+

is the multiplicative group,SO4(R) is the four-dimensional rota-
tion group, andO4(R) is the four-dimensional orthogonal group.

Proof: For any g = (g1, . . . , gN )T ∈ HN and x = (x1,
. . . , xN)

T ∈HN , the second term of Eq. (29) can be written as

gHx∗ =
N∑

k=1

g∗kx
∗
k

=

N∑

k=1

{
(gRk x

R
k − gIkx

I
k − gJkx

J
k − gKk xK

k )

+ i(−gRk x
I
k − gIkx

R
k + gJkx

K
k − gKk xJ

k )

+ j(−gRk x
J
k − gIkx

K
k − gJkx

R
k + gKk xI

k)

+ k(−gRk x
K
k + gIkx

J
k − gJkx

I
k − gKk xR

k )

}
. (30)

Then, it follows from Eqs. (27) and (30) that
⎡

⎢⎢
⎢⎢
⎣

ŷRSWL

ŷISWL

ŷJSWL

ŷKSWL

⎤

⎥⎥
⎥⎥
⎦

=
N∑

k=1

{
|hk|Hk + |gk|Gk

}

⎡

⎢⎢
⎢⎢
⎣

xR
k

xI
k

xJ
k

xK
k

⎤

⎥⎥
⎥⎥
⎦

(31)

where |gk| ∈ R+ and

Gk
def
=

1

|gk|

⎡

⎢
⎢
⎣

gRk −gIk −gJk −gKk
−gIk −gRk −gKk gJk
−gJk gKk −gRk −gIk
−gKk −gJk gIk −gRk

⎤

⎥
⎥
⎦

= RkK
(r) ∈ O4(R) \ SO4(R), (32)

Rk
def
= GkK

(r) ∈ SO4(R), (33)

K(r) def
=

⎡

⎢⎢
⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎥
⎦ ∈ O4(R) (34)
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for any 1 ≤ k ≤ N . Here, K(r) is a reflection over the real
axis in R4. We have thus found that an estimator, ŷSWL in Eq.
(29), is obtained through linear combinations of an element of
the group R+ × SO4(R) (|hk|Hk in Eq. (31)) and an element
of the group R+ × (O4(R) \ SO4(R)) (|gk|Gk in Eq. (31))
which are applied to each element of an observed value x in
the quaternion semi-WL mean square estimation. �

For rigour, we next investigate the degree of freedom of
parameters of quaternion semi-WL mean square estimation
method (see Definition 1).

Proposition 7: The degree of freedom of parameters of the
quaternion semi-WL mean square estimation is 8N where N is
the dimension of the observed value x ∈ HN .

Proof: The statement of the proposition is obvious because
2N quaternions are used. Actually, Eq. (31) can be rewritten as
follows.
⎡

⎢⎢
⎢
⎣

ŷRSWL

ŷISWL

ŷJSWL

ŷKSWL

⎤

⎥⎥
⎥
⎦
=

N∑

k=1

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

αk βk γk δk
−βk αk δk −γk
−γk −δk αk βk

−δk γk −βk αk

⎤

⎥⎥
⎦

+

⎡

⎢⎢
⎣

εk −ζk −ηk −θk
−ζk −εk −θk ηk
−ηk θk −εk −ζk
−θk −ηk ζk −εk

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

⎡

⎢⎢
⎢
⎣

xR
k

xI
k

xJ
k

xK
k

⎤

⎥⎥
⎥
⎦

=

N∑

k=1

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

αk + εk βk − ζk γk − ηk δk − θk
−βk − ζk αk − εk δk − θk −γk + ηk
−γk − ηk −δk + θk αk − εk βk − ζk
−δk − θk γk − ηk −βk + ζk αk − εk

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

⎡

⎢⎢
⎢
⎣

xR
k

xI
k

xJ
k

xK
k

⎤

⎥⎥
⎥
⎦

=

N∑

k=1

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

Ak −Fk −Hk −Ck

Ek Bk −Ck Hk

Gk Ck Bk −Fk

Dk −Hk Fk Bk

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

⎡

⎢⎢
⎢
⎣

xR
k

xI
k

xJ
k

xK
k

⎤

⎥⎥
⎥
⎦

(35)

where the elements of the matrices are simplified for the sake of
simplicity as αk = hR

k , βk = hI
k, γk = hJ

k , δk = hK
k , εk = gRk ,

ζk=gIk, ηk=gJk , θk=gKk , and where Ak=αk+εk, Bk=αk−
εk, Ck = −δk +θk, Dk=−δk−θk, Ek=−βk−ζk, Fk=−βk

+ζk, Gk=−γk−ηk, Hk=−γk+ηk. Note here thatAk, Bk, Ck,
Dk, Ek, Fk, Gk, Hk are independent parameters each other be-
cause s+ t and s− t are generally arbitrary real numbers for any
s, t∈R. Therefore, the degree of freedom of parameters is 8N .�

4) Quaternion Involution Widely Linear Mean Square Es-
timation: Finally, we analyze the framework called the quater-
nion involution widely linear mean square estimation [22], [23].
A true value y ∈ H is estimated from an observed valuex ∈ HN

where y is a quaternion random variable and x is a quaternion
random vector. Assume an estimated value, ŷIWL, expressed as

ŷIWL = hHx+ gHxi + uHxj + vHxk (36)

where g,h,u,v ∈ HN (see Eqs. (19)–(21) for xi,xj,xk). The
objective is to find a quaternion-valued parameter g,h,u,v ∈
HN that minimizes the MSE E|y − ŷIWL|2.

Proposition 8: An estimator ŷIWL (Eq. (36)) is obtained
through linear combinations of four different types of elements

of the group R+ × SO4(R) which are applied to each element
of an observed value x in the quaternion involution WL mean
square estimation where R+ is the multiplicative group, and
SO4(R) is the four-dimensional rotation group.

Proof: For any g = (g1, . . . , gN )T ,u = (u1, . . . , uN )T ,v
= (v1, . . . , vN )T ∈ HN and x = (x1, . . . , xN )T ∈ HN , the
second, third and fourth terms of Eq. (36) can be respectively
written as

gHxi =

N∑

k=1

g∗kx
i
k

=

N∑

k=1

{
(gRk x

R
k + gIkx

I
k − gJkx

J
k − gKk xK

k )

+ i(gRk x
I
k − gIkx

R
k + gJkx

K
k − gKk xJ

k )

− j(gRk x
J
k + gIkx

K
k + gJkx

R
k + gKk xI

k)

+ k(−gRk x
K
k + gIkx

J
k + gJkx

I
k − gKk xR

k )

}
, (37)

uHxj =
N∑

k=1

u∗
kx

j
k

=

N∑

k=1

{
(uR

k x
R
k − uI

kx
I
k + uJ

kx
J
k − uK

k xK
k )

+ i(−uR
k x

I
k − uI

kx
R
k + uJ

kx
K
k + uK

k xJ
k )

+ j(uR
k x

J
k − uI

kx
K
k − uJ

kx
R
k + uK

k xI
k)

− k(uR
k x

K
k + uI

kx
J
k + uJ

kx
I
k + uK

k xR
k )

}
, (38)

vHxk =
N∑

k=1

v∗kx
k
k

=
N∑

k=1

{
(vRk x

R
k − vIkx

I
k − vJkx

J
k + vKk xK

k )

− i(vRk x
I
k + vIkx

R
k + vJkx

K
k + vKk xJ

k )

+ j(−vRk x
J
k + vIkx

K
k − vJkx

R
k + vKk xI

k)

+ k(vRk x
K
k + vIkx

J
k − vJkx

I
k − vKk xR

k )

}
. (39)

Then, it follows from Eqs. (27), (37), (38) and (39) that

⎡

⎢⎢⎢
⎣

ŷRIWL

ŷIIWL

ŷJIWL

ŷKIWL

⎤

⎥⎥⎥
⎦

=

N∑

k=1

{
|hk|Hk + |gk|G(i)

k + |uk|G(j)
k

+ |vk|G(k)
k

}

⎡

⎢⎢⎢
⎣

xR
k

xI
k

xJ
k

xK
k

⎤

⎥⎥⎥
⎦

(40)
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where |hk|, |gk|, |uk|, |vk| ∈ R+ and,

G
(i)
k

def
=

1

|gk|

⎡

⎢
⎢⎢⎢
⎣

gRk gIk −gJk −gKk

−gIk gRk −gKk gJk

−gJk −gKk −gRk −gIk

−gKk gJk gIk −gRk

⎤

⎥
⎥⎥⎥
⎦
= R

(i)
k K(i),

G
(j)
k

def
=

1

|uk|

⎡

⎢⎢⎢⎢
⎣

uR
k −uI

k uJ
k −uK

k

−uI
k −uR

k uK
k uJ

k

−uJ
k uK

k uR
k −uI

k

−uK
k −uJ

k −uI
k −uR

k

⎤

⎥⎥⎥⎥
⎦
= R

(j)
k K(j),

G
(k)
k

def
=

1

|vk|

⎡

⎢⎢⎢⎢
⎣

vRk −vIk −vJk vKk

−vIk −vRk −vKk −vJk

−vJk vKk −vRk vIk

−vKk −vJk vIk vRk

⎤

⎥⎥⎥⎥
⎦
= R

(k)
k K(k),

R
(i)
k

def
= G

(i)
k K(i), R

(j)
k

def
= G

(j)
k K(j), R

(k)
k

def
= G

(k)
k K(k),

K(i) def
=

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎥
⎦ ,

K(j) def
=

⎡

⎢⎢
⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎥
⎦ ,

K(k) def
=

⎡

⎢
⎢
⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥
⎥
⎦ ∈ SO4(R) (41)

for any 1 ≤ k ≤ N . Here, K(i), K(j), K(k) are the reflections
over the planes spanned by {1, i}, {1, j}, {1, k} in R4, respec-
tively. We have thus found that an estimator, ŷIWL in Eq. (36),
is obtained through linear combinations of the four elements of
the group R+ × SO4(R) (|hk|Hk, |gk|G(i)

k , |uk|G(j)
k , |vk|G(k)

k

in Eq. (40)) which are applied to each element of an ob-
served value x in the quaternion involution WL mean square
estimation. �

We next clarify the relationship of the quaternion involution
WL mean square estimation method with a four-dimensional
real-valued linear mean square estimation method, and the de-
gree of freedom of parameters of the quaternion involution WL
mean square estimation method (see Definition 1).

The following lemma is a four-dimensional generalization of
the unique decomposition of a two-dimensional square matrix
proved in Eqs. (36)–(40) of [18].

Lemma 1: Any four-dimensional square matrix
W = (wij)(1≤i,j≤4) can be decomposed into the sum of

four-dimensional square matrices uniquely as follows:
⎡

⎢⎢
⎣

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

a1 −a2 −a3 −a4
a2 a1 −a4 a3
a3 a4 a1 −a2
a4 −a3 a2 a1

⎤

⎥⎥
⎦+

⎡

⎢⎢
⎣

b1 b2 −b3 −b4
−b2 b1 −b4 b3
−b3 −b4 −b1 −b2
−b4 b3 b2 −b1

⎤

⎥⎥
⎦

+

⎡

⎢⎢
⎣

c1 −c2 c3 −c4
−c2 −c1 c4 c3
−c3 c4 c1 −c2
−c4 −c3 −c2 −c1

⎤

⎥⎥
⎦+

⎡

⎢⎢
⎣

d1 −d2 −d3 d4
−d2 −d1 −d4 −d3
−d3 d4 −d1 d2
−d4 −d3 d2 d1

⎤

⎥⎥
⎦ (42)

where ak, bk, ck, dk ∈ R (1 ≤ k ≤ 4).
Proof: By solving Eq. (42), ak, bk, ck, dk (1 ≤ k ≤ 4) are

expressed using wij (1 ≤ i, j ≤ 4) as follows

a1 =
1

4
(w11 + w22 + w33 + w44), (43)

a2 = −1

4
(w12 − w21 + w34 − w43), (44)

a3 = −1

4
(w13 − w24 − w31 + w42), (45)

a4 = −1

4
(w14 + w23 − w32 − w41), (46)

b1 =
1

4
(w11 + w22 − w33 − w44), (47)

b2 =
1

4
(w12 − w21 − w34 + w43), (48)

b3 = −1

4
(w13 − w24 + w31 − w42), (49)

b4 = −1

4
(w14 + w23 + w32 + w41), (50)

c1 =
1

4
(w11 − w22 + w33 − w44), (51)

c2 = −1

4
(w12 + w21 + w34 + w43), (52)

c3 =
1

4
(w13 + w24 − w31 − w42), (53)

c4 = −1

4
(w14 − w23 − w32 + w41), (54)

d1 =
1

4
(w11 − w22 − w33 + w44), (55)

d2 = −1

4
(w12 + w21 − w34 − w43), (56)

d3 = −1

4
(w13 + w24 + w31 + w42), (57)

d4 =
1

4
(w14 − w23 + w32 − w41). (58)

This completes the proof. �
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Proposition 9: (i) If the observed value x ∈ HN , the true
value y ∈ H and the estimated value ŷIWL ∈ H are regarded as
real, that is, x ∈ R4N , y ∈ R4 and ŷIWL ∈ R4, then the quater-
nion involution WL mean square estimation is equivalent to a
four-dimensional real-valued linear mean square estimation. (ii)
The degree of freedom of parameters of the quaternion involu-
tion WL mean square estimation is 16N where N is the dimen-
sion of the observed value x ∈ HN .

Proof: It follows from Lemma 1 that the N matrices in the
right-hand side of Eq. (40) can be regarded as just N four-
dimensional square matrices over real numbers, and their el-
ements are all mutually independent. Therefore, the degree of
freedom of parameters is 16N . This completes the proof. �

III. DISCUSSION

In this section, we discuss the research opportunities based
on the WL estimation methods described in Section II.

First, we compare the complex-valued linear mean square es-
timation with the complex-valued WL mean square estimation.
From Eq. (3), the complex-valued linear mean square estimation
can be rewritten as follows

[
ŷRL
ŷIL

]

=
N∑

k=1

[
ak bk

−bk ak

] [
xR
k

xI
k

]

(59)

where ak, bk ∈ R (1 ≤ k ≤ N). The complex-valued WL mean
square estimation can be rewritten, as follows from Eq. (12), as

[
ŷRWL

ŷIWL

]

=

N∑

k=1

[
ck dk
ek fk

] [
xR
k

xI
k

]

(60)

where ck, dk, ek, fk ∈ R (1 ≤ k ≤ N).
Remark 1: The output ŷRWL is estimated using 2N parame-

ters {ck, dk}Nk=1, and the ŷIWL is estimated using 2N parameters
{ek, fk}Nk=1 from observed values {xR

k , x
I
k}Nk=1, respectively.

Accordingly, ŷRWL and ŷIWL are determined independently. So,
the complex-valued WL mean square estimation has sufficient
degrees of freedom.

Remark 2: In the complex-valued linear mean square estima-
tion (Eq. (59)), both ŷRL and ŷIL are estimated respectively using
2N parameters {ak, bk}Nk=1 from observed values {xR

k , x
I
k}Nk=1.

Therefore, a strong restriction is posed on ŷRL and ŷIL through
the parameters {ak, bk}Nk=1. Consequently, for minimizing es-
timation error, complex-valued WL mean square estimation is
intuitively advantageous over the complex-valued linear mean
square estimation in terms of the restriction of parameters. This
is another aspect of Picinbono’s mathematical result [7], taken
from another perspective.

In the complex-valued WL mean square estimation, complex-
valued data can be represented naturally, while estimation error
can be reduced as small as the one of the real-valued linear mean
square estimation; this is an advantage of the complex-valued
WL mean square estimation.

Remark 3: As seen in Proposition 2, parameters in complex-
valued WL mean square estimation impose the geometric struc-
ture on complex numbers (rotation and reflection). If this fea-
ture is utilized as intended, then this is another advantage of

TABLE I
COMPARISON OF THE REAL-VALUED LINEAR MEAN SQUARE ESTIMATION

(MSE) METHOD AND THE TWO COMPLEX-VALUED MEAN SQUARE

ESTIMATION METHODS. ε2 ≤ ε1 HOLDS TRUE [7]

the complex-valued WL mean square estimation (see the last
paragraphs in this section).

Table I summaries the complex-valued linear mean square
estimation, the complex-valued WL mean square estimation,
and the real-valued mean square estimation methods.

In addition, we discuss the computational complexities of the
estimation methods. Various types of algorithms can be consid-
ered that minimizes the mean square error E|y − ŷ|2, and the
computational complexities of estimation methods depend on
the algorithms used. Thus, it is difficult to compare the com-
putational complexities of estimation methods from a general
point of view. Then, we here adopt the computational complex-
ity of estimator itself as an evaluation criterion because it does
not depend on the algorithm used. A computational complexity
consists of time and space complexities. Here, time complexity
means the sum of four operations for real numbers, and space
complexity the sum of parameters where a complex-valued pa-
rameter is counted as two because it consists of a real part and an
imaginary part. Table II shows that the computational complex-
ity of the estimator of the complex-valued WL method is twice
that of the complex-valued linear method, and is four times that
of the real-valued linear method.

Next, we provide a comprehensive insight into the three
quaternion linear mean square estimation methods: the quater-
nion linear mean square estimation, the quaternion semi-WL
mean square estimation, and the quaternion involution WL mean
square estimation. It follows from Eqs. (27), (35) and the proof
of Proposition 9 that the vector representation of an estimated
value ŷ has the following form:

⎡

⎢⎢
⎣

ŷR

ŷI

ŷJ

ŷK

⎤

⎥⎥
⎦ =

N∑

k=1

⎡

⎢
⎢⎢⎢⎢
⎣

a
(k)
11 a

(k)
12 a

(k)
13 a

(k)
14

a
(k)
21 a

(k)
22 a

(k)
23 a

(k)
24

a
(k)
31 a

(k)
32 a

(k)
33 a

(k)
34

a
(k)
41 a

(k)
42 a

(k)
43 a

(k)
44

⎤

⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

xR
k

xI
k

xJ
k

xK
k

⎤

⎥⎥⎥
⎦

(61)

in each of the three quaternion estimation methods where a(k)lm ∈
R (1 ≤ l,m ≤ 4). Here, a different constraint is imposed on the
16 elements {a(k)lm } in the matrix in Eq. (61) for each of the three
quaternion estimations, which causes the differences among the
degrees of freedom of parameters of the three quaternion es-
timations (Table III; Propositions 5, 7 and 9). It is intuitively
obvious that an estimation method with a large freedom of pa-
rameters is more advantageous for the purpose of minimizing
estimation error. Actually, it has been proved in [13] that the in-
equalityα ≤ β ≤ γ holds true whereα, β, γ are respectively the
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TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF ESTIMATORS OF THE

REAL-VALUED LINEAR MEAN SQUARE ESTIMATION (MSE) METHOD AND THE

TWO COMPLEX-VALUED MEAN SQUARE ESTIMATION METHODS. N IS THE

DIMENSION OF THE OBSERVED VALUE

TABLE III
COMPARISON OF FREEDOM OF PARAMETERS OF THE THREE QUATERNION

MEAN SQUARE ESTIMATION (MSE) METHODS. N IS THE DIMENSION OF THE

OBSERVED VALUE

TABLE IV
COMPARISON OF COMPUTATIONAL COMPLEXITIES OF ESTIMATORS OF THE

THREE QUATERNION MEAN SQUARE ESTIMATION (MSE) METHODS. N IS THE

DIMENSION OF THE OBSERVED VALUE

estimation errors of the quaternion involution WL mean square
estimation, the quaternion semi-WL mean square estimation and
the quaternion linear mean square estimation.

Remark 4: As we have seen in Proposition 9, the quater-
nion involution WL mean square estimation is equivalent to a
four-dimensional real-valued linear mean square estimation. As
a matter of fact, the number of parameters of the quaternion
involution WL mean square estimation is the same as that of a
four-dimensional real-valued linear mean square estimation (see
Table III).

From a theoretical point of view, Proposition 9 (i) immedi-
ately means that the quaternion involution WL mean square es-
timation can reduce estimation error as small as the one of the
real-valued linear estimation method. However, from a practical
point of view, it depends on algorithms used.

We here discuss the computational complexities of the esti-
mators of the three quaternion estimation methods described in
this paper where a quaternion-valued parameter is counted as
four because it consists of a real part and the three imaginary
parts. Table IV shows that the computational complexity of the
estimator of the quaternion involution WL method is twice that

of the quaternion Semi-WL method, and is four times that of the
quaternion linear method.

Remark 5: The computational complexities of the estimators
of the complex-valued linear method, and the complex-valued
WL method are twice, four times that of the real-valued linear
method, respectively (Table II). The computational complexities
of the estimators of the quaternion Semi-WL and the quaternion
involution WL methods are twice, four times that of the quater-
nion linear method, respectively (Table IV).

As described above, the introduction of the idea of the widely
linearity into estimation methods increases the computational
complexities of the estimators. This is considered to be one of
the disadvantages. However, this problem will be easily solved
by using appropriate parallel computing techniques.

Remark 6: As seen in Proposition 8, the parameters of the
quaternion involution WL mean square estimation impose a geo-
metric structure on the group R+ × SO4(R) (rotation and three
reflections over planes), whereas the real-valued linear mean
square estimation does not have any structure. This is a key dis-
tinguishing point between the estimation in the division algebra
of quaternions and vector algebra of R4.

In the estimation methods using quaternions described above,
quaternion data can be represented and processed naturally. This
is an advantage of the quaternion estimation methods. On the
other hand, the parameters in the three quaternion estimation
methods described above include the geometric structure on the
similarity transformation, rotation and reflections (Propositions
4, 6 and 8). If this feature is utilized as intended, then it is another
advantage of the quaternion mean square estimation methods.
We will give an example below.

Finally, we suggest a possibility of applications of the WL
estimation methods described in Section II to neural networks
using their geometric structures.

It was shown in [24], [25] that a complex-valued neural net-
work whose weights and thresholds are all complex numbers,
has the ability to learn the transformation of geometric figures,
e.g. rotation, similarity transformation and parallel displacement
of straight lines, circles, etc., which originates from complex
number operations, especially the multiplication of complex
numbers: zw where z, w are complex numbers. The ability to
learn transformations has been applied to complement the opti-
cal flow (2D velocity vector field on an image) [26] and to the
generation of fractal images [27]. Also, Isokawa et al. presented
the ability of a quaternion-valued neural network to generalize
affine transformation in three-dimensional space such as trans-
lation, dilatation and rotation [28]. The ability to learn trans-
formation originates from quaternion operations, especially the
multiplication of quaternions: zw where z, w are quaternions.
Furthermore, it was shown in [29] that the hyperbolic neural net-
work has an ability to learn hyperbolic rotation as its inherent
property, which originates from the multiplication of hyperbolic
numbers: zw where z, w are hyperbolic numbers. As described
above, extending neural networks to higher dimensions creates
such new functions according to algebras used and expand their
application fields as a result.

An attempt to introduce the idea of widely linearity into
complex-valued neural networks has already been performed
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in [30] where additional extended input neurons are created for
complex conjugate of input signals. Such complex-valued neu-
ral network models combined with the idea of widely linearity
might have the ability to learn 2D geometric transformation that
originates from the widely linearity introduced, especially the
multiplication of a complex number and a conjugate of a com-
plex number: zw∗ where z, w are complex numbers. The same
goes for quaternion neural networks defined in the quaternion
domain. Complex-valued neural networks using Eq. (6) such as
[30] might have the ability to learn 2D geometric transforma-
tion including the reflection over the real axis in R2 (see Eq.
(8) and Fig. 2). Quaternion neural networks using Eq. (29), Eq.
(36) might have the ability to learn 4D geometric transformation
including the reflection over the real axis in R4 (see Eq. (32)),
the reflections over the planes spanned by {1, i}, {1, j}, {1, k}
in R4 (see Eq. (41)), respectively.

IV. CONCLUSIONS

We have analyzed the hypercomplex WL estimation methods
with the aim to examine their associated degrees of freedom
against the corresponding estimation errors and underlying
geometric structures. It has been shown that the complex-
valued WL estimation method and the quaternion involution
WL estimation method are equivalent to the two-dimensional
or four-dimensional real-valued linear estimation method,
respectively, if we regard a complex number as an arrangement
of two real numbers and treat a quaternion as an arrangement of
four real numbers. The complex-valued WL estimation method
and the quaternion involution WL estimation method have been
shown to possess the ability to represent complex-valued data
and quaternion-valued data naturally, while they can reduce esti-
mation errors to be as small as the one of the real-valued linear es-
timation method. Moreover, we have shown that the parameters
in the complex-valued linear estimation method, the complex-
valued WL estimation method, the quaternion linear estimation
method, the quaternion semi-WL estimation method and the
quaternion involution WL estimation method impose on distinct
geometric structures on the corresponding complex numbers and
quaternions, whereas the real-valued linear estimation method
does not exhibit any structure. This is a key distinguishing
different point among the estimation in division algebras of C
and H, compared to estimation in the vector algebras of R2 and
R4. Although the introduction of the idea of the widely linearity
into estimation methods increases the computational complex-
ities of the estimators, it seems that this problem can be easily
solved by using appropriate parallel computing techniques.

In our future studies, we will proceed with discovery of in-
herent properties of geometric structures of the hypercomplex-
valued WL estimation method, and will consider various formu-
lations of the WL methods based on the Clifford algebra [31]
and the Caley-Dickson number system including octonions [32],
[33], that could utilize the second-order statistics and their anal-
yses. A quaternion involution estimation model using another
nonstandard quaternion involution given in [21] could also be
considered.
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