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ABSTRACT
Blind extraction of quaternion-valued latent sources is ad-

dressed based on their local temporal properties. The extrac-

tion criterion is based on the minimum mean square widely

linear prediction error, thus allowing for the extraction of both

proper and improper quaternion sources. The use of the widely

linear adaptive predictor is justified by the relationship be-

tween the mean square prediction error and the crosscorrela-

tion and cross-pseudocorrelations of the source signals. Sim-

ulations on benchmark improper quaternion sources together

with a real-world example of EEG artifact removal illustrate

the usefulness of the proposed methodology.

Index Terms— Quaternion blind source extraction, im-

proper quaternion signals, quaternion noncircularity, quater-

nion widely linear model (QWL), widely linear quaternion

LMS (WL-QLMS), augmented quaternion statistics.

1. INTRODUCTION
Blind Source Separation (BSS) in the real domain is well

understood, and a number of solutions have been proposed

for applications in communications, radar and brain imaging.

Traditional extensions of BSS methodologies to the complex

domain C assume source signals with circular (rotation invari-

ant) distributions, resulting in straightforward extensions of

the corresponding algorithms in R. This way, the distributions

are considered independent of the signal phase, however, this

assumption is too stringent for most real-world complex sig-

nals, leading to under-modelling for noncircular sources.

Recent results in augmented complex statistics have removed

any assumption regarding the signal distribution, and instead

provide general and accurate models by considering the in-

formation in both the covariance E{zzH} and the pseudo-

covariance E{zzT } matrices of z ∈ CN [1]. A signal is

termed second-order circular (proper) if the pseudo-covariance

vanishes, and is otherwise called second-order noncircular

(improper). This has led to the widely linear (WL) stochas-

tic model [1], where the mean square estimate of a complex-

valued signal is obtained from the weighted sum of the linear

estimator and its conjugate counterpart [2].

Extensions of the widely linear model and augmented statis-

tics to the four dimensional quaternion domain H have re-

cently received considerable attention due to their enhanced

accuracy in modelling rotation and the coupling between sig-

nal components. In [3], the concept of proper quaternion ran-

dom variables (also known as Q-proper) was discussed as in-

variance of the probability distribution to rotations by angle
π
2 , and was generalised to any arbitrary angle in [4]. A uni-

fying framework has recently been proposed in [5] which de-

fines a set of four bases from which to construct augmented

quaternion statistics, with a similar approach given in [6].

These bases can be seen as the quaternion analogue to the

complex bases {z, z∗} in augmented complex statistics, and

allow for the exploitation of the complete second-order infor-

mation present in quaternion signals. The quaternion widely

linear model uses those bases to allow for the optimal mini-

mum mean square error modelling of both Q-proper and Q-

improper quaternion signals [5, 6, 7].

Existing blind source separation methodologies for the quater-

nion domain include a semi-blind block-based algorithm in [8],

based on the calculation of rotation angle of whitened quater-

nion data, and the maximum likelihood approach in [9] where

the choice of nonlinearities for the score function was dis-

cussed. On the other hand, quaternion-valued blind source ex-

traction (BSE) algorithms, designed so that only a few sources

of interest from large-scale mixtures are recovered, are still in

their infancy but have huge potential due to their ability to

extract vector sources. Their introduction would offer both a

reduced computational cost and will relax the need for fur-

ther post-processing for the selection of the desired sources.

This is especially important in real-world applications, such

as EEG conditioning for brain computer interfacing (BCI),

where we may only be interested in removing artifacts from

an observed mixture coming from as many as 64 recording

channels.

To this end, we introduce a class of BSE algorithms based

on the local temporal structure of quaternion source signals.

A quaternion widely linear predictor is used to extract both

Q-proper and Q-improper sources, based on the smallest nor-

malised prediction error, making such BSE independent of

source powers. This is a generalisation of the complex widely

linear prediction based BSE algorithm in [10], and is sup-

ported by simulations on both Q-proper and Q-improper sig-

nals, coming from synthetic and real-world scenarios.
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2. QUATERNION WIDELY LINEAR MODEL

Consider the quaternion signal y(k) = ya(k) + ıyb(k) +
jyc(k) + κyd(k), where ya(k), yb(k), yc(k) and yd(k) are

real-valued scalars, and ı, j and κ are orthogonal unit vectors,

where ı2 = j2 = κ2 = −1. Its optimal linear mean square

estimate in terms of the observation x(k) ∈ HN is given by

the widely linear model [5]. To show this, we can express the

mean square error (MSE) estimator for a quaternion-valued

signal1 y ∈ H in terms of the MSE estimators of its respec-

tive components, that is

ŷα = E{yα|xa, xb, xc, xd}, α = {a, b, c} (1)

such that ŷ = ŷa + ıŷb + jŷc + κŷd. By employing the per-

pendicular involutions (self-inverse mappings) [11]

yβ = −βyβ, β = {ı, j, κ},

the MSE estimator in (1) can be written as2

ŷ = E{y|x, xı, xj, xκ}+ ıE{yı|x, xı, xj, xκ}
+ jE{yj|x, xı, xj, xκ}+ κE{yκ|x, qı, xj, xκ},

This results in the so called widely linear estimator

y(k) = hH(k)x(k) + gH(k)xı(k)

+ uH(k)xj(k) + vH(k)xκ(k) (2)

where h,g,u and v are coefficient vectors and the symbol

(·)H denotes the Hermitian transpose operator. Thus, the

complete second-order information in the observation x(k)
is contained in the augmented covariance matrix

Ca
x = E{xaxaH}

=

⎡
⎢⎢⎣

Cxx Cxı Cxj Cxκ

CH
xı Cxıxı Cxıxj Cxıxκ

CH
xj Cxjxı Cxjxj Cxjxκ

CH
xκ Cxκxı Cxκxj Cxκxκ

⎤
⎥⎥⎦ ∈ H4N×4N (3)

where xa = [xT , xıT , xjT , xκT ]T is the augmented input

vector. The matrices Cxı , Cxj , Cxκ are called respectively the

ı-, j- and κ-covariance matrices (or the pseudo-covariance

matrices Cxβ = E{xxβH}), while Cxx = E{xxH} is the

standard covariance matrix. It is important to note that a Q-

proper random vector, x(k) is not correlated with its involu-

tions; in this case the pseudo-covariance matrices vanish, and

the augmented covariance matrix in (3) becomes real-valued

diagonal. A detailed account of the quaternion augmented

statistics and WL model can be found in [5, 6, 7].

1The index k is omitted for brevity.
2Since ya = 1

4
(y + yı + yj + yκ) , yb = 1

4
(y + yı − yj − yκ),

yc = 1
4
(y − yı + yj − yκ), and yd = 1

4
(y − yı − yj + yκ) [5].

3. TEMPORAL BSE OF QUATERNION SIGNALS

Consider the observation vector x ∈ HN , a linear mixture of

the latent sources s = [s1, . . . , sN ]T ∈ HNs , given by

x(k) = As(k) (4)

where A ∈ HN×Ns is the matrix of mixing coefficients.

The sources are considered independent, with no assump-

tions made regarding their Q-properness. The mixing ma-

trix is assumed full rank and invertible, and is for simplic-

ity considered to be square. Ideally, the recovered source

y(k) = wHx(k), where w ∈ HN is a demixing vector, such

that bH = wHA has a single non-zero element bn, corre-

sponding to the nth source. If x(k) is whitened, then bn is of

unit magnitude and an arbitrary rotation angle.

The proposed algorithm calculates the demixing vector w(k)
by discriminating between the sources based on their degree

of widely linear predictability, measured by the normalised

mean square prediction error (MSPE); the extraction archi-

tecture is shown in Figure 1. The error e(k) at the output of

the widely linear predictor is given by

e(k) = y(k)− yWL(k) (5)

where yWL(k) is the widely linear predictor output, given

in (2). The MSPE E{|e(k)|2} is normalised so that the rela-

tive temporal structure, and hence predictability, of the sources

is unaffected by differences in the magnitude of the observed

mixtures (scaling ambiguity), and the cost function is given

by

J (w,h,g,u,v) =
E{|e(k)|2}
E{|y(k)|2} . (6)

Minimising this cost function with respect to the predictor co-

efficients results in differences between the prediction errors

for various sources, and serves as a basis for the proposed

BSE. After some simplification, the MSPE can be expressed

as

E{|e(k)|2} = ξ0

− 2

M∑
m=1

�
{
ξmhm(k) + ξı|mgm(k) + ξj|mum(k) + ξκ|mvm(k)

}

+ 2
M∑

m,�=1

�
{
h∗
m(k)ξı|�−mg�(k) + h∗

m(k)ξj|�−mu�(k)

+ h∗
m(k)ξκ|�−mv�(k) + g∗m(k)ξıκ|�−mu�(k)

+ g∗m(k)ξıj|�−mv�(k) + u∗
m(k)ξjı|�−mv�(k)

}

+
M∑

m,�=1

�
{
h∗
m(k)ξ�−mh�(k) + g∗m(k)ξı�−mg�(k)

+ u∗
m(k)ξj�−mu�(k) + v∗m(k)ξκ�−mv�(k)

}
(7)
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where ξα|�−m � wHACsα(� − m)AαHwα and ξ�−m �
wHACss(� − m)AHw and �{·} denotes the real or scalar

part of a quaternion variable. The real-valued MSPE is re-

lated to the cross-correlation and cross-pseudo-correlation of

the source components; as the sources are assumed orthog-

onal, these matrices are diagonal. For Q-proper sources, the

pseudo-covariances and thus the terms ξα|�−m vanish, simpli-

fying the expression for the MSPE in (7).

A gradient based weight update based on the widely linear

predictor is derived using the conjugate gradient within HR

calculus [12], yielding

∇w∗J =
1

σ2
y(k)

(
x̆1(k)e

∗(k)− 1

2
e(k)x̆2(k)

− σ2
e(k)

σ2
y(k)

(
x(k)y∗(k)− 1

2
y(k)x∗(k)

))
(8)

with

x̆1(k) = x(k)−
M∑

m=1

h∗
m(k)x(k −m)

x̆2(k) = x∗(k)−
M∑

m=1

(
x∗(k −m)hm(k)− xı∗(k −m)gm(k)

− xj∗(k −m)um(k)− xκ∗(k −m)vm(k)
)
. (9)

The demixing vector w is then normalised to avoid spurious

solutions. The moving average estimates σ2
y and σ2

e of the

variance of y(k) and e(k) are given by

σ2
e(k) = γeσ

2
e(k − 1) + (1− γe)|e(k)|2

σ2
y(k) = γyσ

2
y(k − 1) + (1− γy)|y(k)|2 (10)

where γe and γy are the respective forgetting factors3.

Finally, the gradient for the update of the widely linear pre-

dictor coefficients in Figure 1 is given by

∇w̆a∗ =
1

σ2
y(k)

(
− ya(k)e∗(k) +

1

2
e(k)ya∗(k)

)
(11)

where the vectors w̆a = [hT ,gT ,uT ,vT ]T , y(k) = [y(k −
1), . . . , y(k−L)]T , ya(k) = [yT (k),yıT (k),yjT (k),yκT (k)]T

and L is the predictor filter length. The algorithm in (11) is

therefore a normalised variant of the WL-QLMS algorithm [7].

Note that in the derivation of the updates, non-commutativity

of the quaternion multiplication should be taken into account.

As desired, in the extraction of Q-proper sources, the ele-

ments of w̆a become h �= 0,g = u = v = 0.

4. SIMULATIONS
To illustrate the performance of the proposed BSE algorithm

two experimental settings were considered: synthetic bench-

mark data and real-world EEG data. In the first experiment,

two Q-improper benchmark sources of length Ns = 1000

3If x(k) is whitened, the source estimate power σ2
y(k) = 1.

+Predictor

+−Widely Linear

e(k)

yWL(k)

x(k)

z−1

w
y(k)

Fig. 1. The prediction-based extraction architecture

were mixed using a random quaternion-valued square mixing

matrix. Following [9], source s1 was chosen as a pure phase-

modulated two-point cyclic polytope with improperness mea-

sure4 rs1 = 1, and source s2 was an AR(4) signal generated

using noncircular quaternion Gaussian noise, where rs2 =
0.4387. The sources were recovered using the proposed ex-

traction algorithms in (8) and (11); the step-size was empir-

ically chosen as μw = 0.9, predictor length L = 10, step-

sizes for the WL predictor coefficient updates μw̆a = 0.01,

and forgetting factors in (10) as γe = γy = 0.975. For these

parameters, the MSPE of s1 and s2 were respectively 5.7931

and 1.1137. The performances were assessed using the Per-

formance Index (PI) given by

PI = 10 log10

(
1

N

( N∑
i=1

|bi|2
max{|b1|2, . . . , |bN |2} − 1

))

where bH = wHA = [b1, . . . , bN ]H ; the PI indicates the

proximity of b to a vector with a single non-zero element. As

desired, based on (11) the source s2 with the smallest MSPE

was first extracted, taking around 100 samples to converge to

the PI of -43.24 dB, as shown in Figure 2. When the same

sources were extracted using the standard linear predictor the

algorithm diverged, since due to the Q-improperness of the

sources the standard linear model was inadequate.

In the next experiment, the line noise and electroencephalo-

gram (EOG) artifacts were extracted from an EEG mixture,

recorded from 12 electrodes positioned according to the 10-

20 system at AF8, AF4, AF7, AF3, C3, C4, PO7, PO3, PO4,

PO8 and the left and right mastoids. In addition, 4 electrodes

were placed around both eye sockets to directly record the ref-

erence EOG signals5. The frontal, central and occipital elec-

trodes were combined into three 4-tuple quaternion-valued

EEG signals. The widely linear predictor had L = 10 co-

efficients, step-sizes μw = 0.9 and μw̆a = 9 × 10−3, for-

getting factors γe = γy = 0.975. Deflation was utilised

to remove consecutive artifacts from the mixture; the real

and imaginary components of the first and second extracted

4The Q-improperness index rs =

∣
∣E{ssı∗}

∣
∣+

∣
∣E{ssj∗}

∣
∣+

∣
∣E{ssκ∗}

∣
∣

3E{ss∗}
where rs ∈ [0, 1] and the value rs = 0 indicates a Q-proper source, while

for a highly Q-improper source rs = 1.
5The EOG measurements were not known to the BSE process, they only

served as a reference for performance assessment.
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Fig. 2. Learning curves for the quaternion BSE.
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Fig. 3. Power spectra of the reference EOG artifact (top), ex-

tracted line noise (middle) and extracted EOG (bottom) using

the widely linear predictor.

quaternion-valued signal contained respectively the line noise

and EOG artifacts. The power spectra of the EOG artifact, ex-

tracted line noise and extracted EOG signal are shown in Fig-

ure 3, with the boxed segments highlighting the extracted un-

desired components. The first extracted signal was the 50Hz

line noise, whereas the second extracted signal contains the

EOG artifacts corresponding to the 1-8Hz activity. Figure 4

presents the corresponding results for the strictly linear QLMS

predictor; the bottom panel shows a 30 dB worse performance

for the suppression of the power line noise.

5. CONCLUSIONS
A blind source extraction algorithm capable of extracting both
Q-proper and Q-improper quaternion-valued signals based on
their temporal profile has been introduced. This has been
achieved by minimising the normalised mean square predic-
tion error at the output of a quaternion widely linear predictor.
The performance of the algorithm has been demonstrated on
the extraction of quaternion synthetic sources, and in EEG
artifact extraction, conforming with the analysis.
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Fig. 4. Power spectra of the reference EOG artifact (top), ex-

tracted line noise (middle) and extracted EOG (bottom) using

the strictly linear predictor.
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