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the signal or noise powers. This is especially useful in situations where
the SNR is not known a priori or changes unpredictably.

B. Convergence Behavior

Next, we will analyze how the NLMS filter converges when ��

suffers an instantaneous change, both in the biased and standard con-
figurations. The setup is as follows: ���� is a colored sequence ob-
tained from a first-order autoregressive model with transfer function�
�� ����� � �����, � � ���, fed with an i.i.d. Gaussian random

process, whose variance is selected so that ����� � ���. Plant co-
efficients are initially selected as in the previous subsection, and then
changed at� � 	��� and� � 
���. The three sets of coefficients have
been scaled to obtain different SNRs in the reference signal (see Fig. 5),
keeping ��� � ��� constant during the simulation. NLMS weights are
adapted with � � ���, while the output factor 	��� follows (12) and
(13), with�� � ���. Emsemble-average curves are obtained from 5000
independent realizations.

The EMSE evolution depicted in Fig. 5(a) is a good example of the
advantages that can be obtained with biased filters in scenarios where
the SNR is time-varying. As illustrated in Fig. 5(a), both the standard
and biased versions of NLMS reconverge at similar speeds after every
perturbation in��, but the biased version achieves lower EMSE during
all the simulation. This shows that for this value of �� the steady-state
EMSE reduction of the biased scheme is not obtained at the cost of a
slower convergence. In principle, the speed of convergence could be de-
graded if a smaller �� was used to reduce the gradient noise introduced
by the estimation of 	���. Note, however, that according to Fig. 4(b)
the gradient noise that appears for �� � ��� is already very small. In
the right panel of Fig. 5, 	��� evolution is plotted. Interestingly, 	���
decreases towards zero at the beginning of each re-convergence, trying
to cancel out the initial meaningless predictions of NLMS. It is only
as NLMS starts recovering track of the filter weights that 	��� heads
towards its steady-state value.

VI. CONCLUSION

Biasing the weights of adaptive filters can be an interesting way of
reducing their MSE. In this correspondence, we have illustrated this
idea with a very simple yet effective configuration, consisting in mul-
tiplying the filter output by a constant factor. Realizable schemes for
adaptively learning this multiplicative factor are proposed, providing
both theoretical and experimental evidence about the benefits of this
approach.

We are currently working on more sophisticated biased schemes
which exploit the structure of the input regressors, as well as on the
extension of these ideas to filters operating in tracking situations.
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Abstract—A learning algorithm for the training of quaternion valued
adaptive infinite impulse (IIR) filters is introduced. This is achieved by
taking into account specific properties of stochastic gradient approxima-
tion in the quaternion domain and the recursive nature of the sensitivities
within the IIR filter updates, to give the quaternion-valued stochastic gra-
dient algorithm for adaptive IIR filtering (QSG-IIR). Further, to reduce
computational complexity, a variant of the QSG-IIR is introduced, which
for small stepsizes makes better use of the available information. Stability
analysis and simulations on both synthetic and real world 4D data support
the approach.

Index Terms—Adaptive prediction, infinite impulse response (IIR) filters,
quaternion adaptive filtering, stochastic gradient, wind modeling.

I. INTRODUCTION

Linear adaptive finite impulse response (FIR) filtering in is well
established, and the least mean square (LMS) algorithm has long be-
come a standard in many practical applications. However, when mod-
eling systems with long impulse responses and signals with long-term
correlation, FIR filters may require a prohibitively large filter length. In
those cases, the infinite impulse response (IIR) architecture is a more
convenient choice, as due to the feedback, long time correlations can
be modeled using a small-scale model [1]. Such filters have rational
transfer functions, which are more general than the polynomial transfer
functions of FIR filters, and have been used in a number of applications
[1]–[3].

The recent progress in technology, robotics, and biomedicine has
highlighted the need for adaptive filtering of several classes of mul-
tidimensional signals, typically recorded from vector sensors, for in-
stance, 3D anemometers and 3D body motion sensors [4], [5]. By pro-
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cessing those data directly in the multidimensional domain where they
reside, the correlation and coupling between each dimension are nat-
urally accounted for, leading to improved accuracies. Work in this di-
rection includes the extensions of FIR and IIR adaptive filters to the
complex domain [6], and more recently, for quadrivatiate data, to
adaptive FIR filters operating in the quaternion domain such as the
Quaternion LMS (QLMS) [4]. Within the QLMS weight update, every
component of a quaternion valued weight vector is derived based on
the total output error corresponding to all the four data channels, un-
like the multichannel LMS (MLMS) for which the channelwise weight
update is based on only on the corresponding channel error [4].

It is important to note that, unlike multichannel LMS algorithms
operating in � , the algorithms in the quaternion domain are not a
straightforward extension of their real-valued or complex-valued coun-
terparts [6], [7], because: i) quaternion algebra treats the axis vectors
also as imaginary units, hence, e.g., the derivation of QLMS is funda-
mentally different from that of complex LMS or MLMS; ii) the non-
commutativity of the quaternion product requires careful consideration
of both the error and its conjugate, e.g., the cost functions ���������
and ��������� lead to different updates; iii) unlike the complex do-
main statistics [6] the pseudocovariance of a quaternion-valued proper
(Q-proper) signal does not vanish; iv) the QLMS update includes the
information related to both the covariance �� and the pseudocovariance
�� and thus its update does not degenerate exactly into that of complex
LMS, when only two dimensions are considered [4]. This illustrates
that quaternions, although seen as ordered pairs of two complex num-
bers, do not admit to straightforward extensions of the corresponding
complex-valued algorithms.

We here introduce a stochastic gradient algorithm for IIR adaptive
filtering in , as rigorous adaptive IIR filtering algorithms for quater-
nion-valued signals are still lacking. It is shown that processing 3- and
4D signals in the quaternion domain has potential advantages over
the processing in � and � [8], [9]. The derivation of the stochastic
gradient algorithm for adaptive IIR filters (QSG-IIR) is supported by
an outline analysis and illustrative simulations.

II. PROPERTIES OF QUATERNION RANDOM VECTORS

A. Quaternion Algebra

Quaternions provide a very convenient framework for statistical
signal processing of 3D and 4D signals and can be regarded as a
noncommutative extension of complex numbers [10]. A quaternion
variable � � comprises a real part ���� (denoted with subscript �)
and a vector part ���� consisting of three imaginary parts (denoted
with subscripts �, �, and �), and can be expressed as

� � �����������
� ���� ���� ��� ���� � �� � ��	� ��
� ���� (1)

The properties of the orthogonal unit vectors, 	� 
� � (which are
also imaginary numbers) describing the three vector dimensions of a
quaternion are given by

	
 �� 
� � 	 �	 � 


	
� � 	
� � 


� � �
� � 	�� (2)

The noncommutativity of the quaternion product arises because of the
vector product within the quaternion multiplication; for every ��� �� �

, quaternion multiplication is given by (3) shown at the bottom of
the page, where symbols “
” and “�” denote, respectively, the cross-
product and the dot-product. Thus, the quaternion domain forms a
noncommutative vector space, that is, ���� �� ����. The conjugate
of a quaternion �� � ���������� � ����	�����, and the norm
��� �



���, which obeys the relationship �������� � ������. Note,

that quaternion conjugation is antiinvolution, and ������
� � ����

�

� .

B. Quaternion Statistics

Recent advances in the statistics of complex variables have shown
that only the use of both the covariance matrix �� � 
�����������
and the pseudocovariance �� � 
������� ���� gives a complete de-
scription of the second-order statistical properties [11]. The covariance
is usually related to the power of a complex random variable, whereas
the pseudocovariance allows us to express the degree of correlation
between the real part ������� and the imaginary part ������� [6].
It is, therefore, natural to ask whether these two second-order statis-
tical measurements have a corresponding physical interpretation in the
quaternion domain. Note that, the power of a quaternion variable can
be determined as

��������� � �
�

���� � �
�

� ��� � �
�

� ��� � �
�

����

whereas the correlation structure is reflected in the imaginary part of
the quaternion product as

����������� � ������ �����	� �����
� ��������

To draw a parallel with the complex domain, recall that a van-
ishing pseudocovariance of a complex-valued variable implies the
circular shape (rotation invariance) of the joint probability density
function (pdf) of the real and imaginary part. Thus, for the pseu-
docovariance �� � 
���� of a complex valued proper variable
���� � ���� � 	���� to vanish, two conditions need to be satisfied,
1) ��	 � ��
 ; 2) 
���������� � 	, that is, the real and imaginary part
are of equal power and not correlated [6]. According to Theorem 2 in
[12], these conditions also have to be satisfied for a quaternion-valued
second-order circular or proper (Q-proper) signal, which leads to the
following observation.

1) Observation 1: The pseudocovariance of a Q-proper signal does
not vanish.

Proof: The first condition of Q-properness requires equal powers
for every component of a quaternion variable, that is, ��� � ������� and
thus 
���������� � �� 	 
�� � 	���.

Recently, Eriksson and Koivunen proposed the strong-uncorrelating
transform (SUT) to perform a simultaneous diagonalisation of both the
complex-valued covariance and the pseudocovariance [13]. However,
the SUT transform is not defined in , for it requires the pseudocovari-
ance to be symmetric, which is not the case for general, noncircular
quaternion-valued variables. Although in the diagonalization of the

���� � ������������������������
� ��������� 	 ����� � ������ ���������� ���������� ����� 
 ������ (3)
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pseudocovariance and the covariance are mutually exclusive, as a con-
sequence of Observation 1, an i.i.d. Q-proper signal has a negative def-
inite pseudocovariance �� � �����, whereas its corresponding pos-
itive definite covariance is given by �� � ����, where � denotes the
identity matrix, leading to the following observation.

2) Observation 2: For an i.i.d. Q-proper signal, the covariance and
the pseudocovariance are diagonal matrices, and, thus, have their re-
spective eigenvalues ���� and ���� on their main diagonals. In addi-
tion, due to Observation 1, ������ � ������ � �.

Notice that both �� and �� of a Q-proper signal are real-valued,
symmetric, and diagonal, which is convenient for the stability analysis,
as this helps to circumvent the problem of diagonalization1 of these
correlation matrices via the quaternion singular value decomposition
(whose left eigenvalues remain an open problem). We will therefore
refer to the eigenvalues of the quaternion singular value decomposi-
tion as the right eigenvalues [14]. These two observations will be used
in the stability analysis of adaptive quaternion-valued algorithms, thus
providing an upper bound, whilst ensuring mathematical tractability of
the results.

III. DERIVATION OF A RECURSIVE ALGORITHM FOR ADAPTIVE

QUATERNION VALUED IIR FILTERING

A. A Recursive IIR Adaptive Filtering Algorithm

The operation of a direct form IIR adaptive filter is characterized by
the following relation [15]:

���� �

�

���

�
����������� �

�

���

	
������
���� (4)

with 	���, � , � , 
����, ����� denoting, respectively, the input,
order of feedback, tap input length, and adaptive weights corresponding
to the delayed input and feedback. This can be written in a compact
form as

���� ��
�������� (5)

where

���� � ������
 � � � 
 �� ���
 
����
 � � � 
 
����	
	 (6)

���� � ����� 
�
 � � � 
 ������
 	���
 � � � 
 	�����		 �

(7)

The objective function2 to be minimized is the instantaneous square of
the modulus of the output error, given by

���� �



�
�
��������

1Principal Component Analysis is traditionally employed to diagonalize the
covariance, and thereby achieve interchannel decorrelation. However, this is no
longer adequate when processing noncircular signals.

2Similarly to complex-valued adaptive filters [6], there are several equivalent
formulations for the operation of quaternion-valued filters. For instance,
the cost function � � is typically formulated in terms of the error
� � and its conjugate � �. However, � � can also be expressed

in terms of three perpendicular involutions � � � � � � as
� � � � �� � � � � � � � � � �� � �. Each in-

volution, given by � � � � � where � , recovers
its corresponding element of the vector/imaginary part. The equivalence of
� � � � �� � � � � � � � � � �� results in the identity
� � � � � , however, for simplicity � � will not

be considered here. All these alternative forms have identical convergence and
properties. Similar observations apply to the alternative expressions for the
filter output � �, that is, � � � 	 � �
� �, � � � 
 � �	� �
or � � � 
 � �	� �.

�



�
���
��� � �

�

���� � �
�

���� � �
�

����	 (8)

where the error ���� � ����� ����, with ���� the desired response.
Within the steepest descent optimization, the filter weights are updated
based on

���� 
� � ����� ������� (9)

where � is the learning rate and the gradient������ can be evaluated
as

������ �
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�



�
�
���������� ����

��������

� �



�
�
���������� ����

��������

� � �
��������������������� (10)

where

������ �
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(11)

To calculate the vector term ������ in (11), we need to calculate partial
derivatives of the output with respect to the filter coefficients corre-
sponding to both the feedforward and feedback part, that is

�
 ��� �



�

������

������
�� ��� �




�

������

�
����
� (12)

The term �
 ��� can be expanded as

�
 ��� �




�

������

��
 ���
� �

������

��� ���
� �

������

��� ���
� �

������

��� ���

(13)

and the terms within the gradient (13) corresponding to the real and
three imaginary dimensions of a quaternion can be found based on the
expansion of quaternion product ���������, as shown in (14) at the
bottom of the next page.

�
������

��� ���
� ������ � �

�

���

�
�

� ���
����� ��

��� ���
(15)

�
������

��� ���
� ������ � �

�

���

�
�

� ���
����� ��

��� ���
(16)

�
������

��� ���
� ������ � �

�

���

�
�

� ���
����� ��

��� ���
� (17)

Finally, the gradient term �
 ��� is obtained as

�
 ��� � ������� �



�

�

���

�
�

� ���
����� ��

������
� (18)
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Due to the feedback within the IIR filter, there is a recursive term on the
right-hand side (RHS) of the gradient in (18), which is not possible to
calculate [15], as we have a partial derivative of the output with respect
to the value of the weight in the future. To make the calculation of this
term mathematically feasible, for a small stepsize, we use the standard
approximation that [15]

���� � ���� �� � � � � � ������� (19)

In other words, the small stepsize ensures a slow variation of
the adaptive coefficients, making the approximation (19) valid
[15]. This way, ������ ��������� in (18) can be replaced with
������ ��������� ��, to yield

	� ��� � �����
� �

�

���

��� ����� ��� ��� (20)

Recursive expressions for all the components of 			��� and ������, that
is, 	� ���, �� ��� and �� ���, can be obtained in a similar fashion
and are given

	� ��� � �����
� �

�

���

��� ����� ��� �� (21)

�� ��� � � ����
� �

�

���

	� ��� ������� (22)

�� ��� � � ����
� �

�

���

	� ��� �������� (23)

Recursions (20)–(23) depend on both the input ����
� and the output
����
�, and are termed “forced difference” equations [15]. Observe
that, unlike in the corresponding learning algorithm for complex valued
IIR filters [15], the gradient vector (sensitivities)������ does not vanish
and it also depends on ������. The updates for the filter coefficients for
quaternion valued stochastic gradient algorithm for adaptive IIR filters
termed QSG-IIR, are finally given by

���� � �� �

����� � 
 ������� ��� � 	� ������� 
 � �� 	 	 	 ��

(24)

����� �� �

����� � 
 ������� ��� � 	� ������� 
 � 
� 	 	 	 � ��

(25)

These updates are function of both the error and its conjugate, in con-
trast to the gradients within the corresponding complex-valued algo-
rithm [15].

B. Computationally Efficient Gradient Approximations

To simplify the adaptation of the QSG-IIR, a commonly used ap-
proach in adaptive IIR filtering is that, for a small value of the learning
rate, the past values of 			��� and ������ are replaced with the filtered
versions of output and the input [15], to give

�� ��� � �� ���
� 	� ��� � ��� ���
�


 � �� 	 	 	 ��

�� ��� � �� ���
� 	� ��� � ��� ���
�


 � �� 	 	 	 � �� (26)

The superscript � denotes the filtered versions of � and � within the
update of ����, whereas the superscript �� corresponds to the fil-
tered versions of � and � within the update of 	���. This way, at every
iteration, only the four updates 	� ���, �� ���, 	� ���, �� ��� are
required, to yield

	� ��� � ��� ��� �� ������ �� �

�

���

��� ����
� ��� ��

(27)

	� ��� � ��� ��� ������ �
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��� ����
� ��� �� (28)

�� ��� � �� ��� �� �� ���� �� �
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��� ��� �������

(29)

�� ��� � �� ��� � � ���� �

�

���

��� ��� �������

(30)

and the computational complexity is reduced approximately by
�������. This algorithm is referred to as the approximate QSG-IIR
(AQSG-IIR).

IV. ON THE STEPSIZE BOUNDS OF QSG-IIR ALGORITHM

The main idea behind stability analysis of adaptive filters is to diago-
nalize the correlation matrices in the update of the weight error vector,
thus directly leading to the stepsize bounds as functions of the inverse of
the largest eigenvalue of the input correlation matrix. Unlike the com-
plex domain , where we can use the strongly uncorrelating transform
[13], the covariance and the pseudocovariance in cannot be diagonal-
izsed simultaneously. To circumvent this problem, using the standard
assumption that the input ���� is an i.i.d. Q-proper random variable
[1], [3], the approximate stepsize bound can be derived as


 � 
 �
�

������� � �	����
(31)

where ������� �	���� denote the maximum right eigenvalue of �� and
��, respectively. As shown in the Appendix, this bound is based on
the largest mode of convergence and the linearization around the global

������
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 ���
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���
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� � ������
� � ������
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�

���
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Fig. 1. Dependence of the performance on the choice of parameters of MLMS, QLMS, QSG-IIR, its approximate version (AQSG-IIR), and MSG-IIR for the
nonlinear chaotic Saito’s process [5].

Fig. 2. Dependence of the performance of MLMS, QLMS, QSG-IIR, AQSG-IIR, and MSG-IIR on the choice of parameters. The experiments were conducted on
the 4D wind recordings (3D wind speed and temperature).

minimum point (see also [1, pp. 349–351 ]) and simplifies into the step-
size bounds of QLMS [4], when modeling moving average processes.
The steady state analysis assumes stationarity of the vector ���� (e.g.,
in the vicinity of the global minimum of the cost function). This as-
sumption rests on the slow adaptation of the adaptive filter such that
(19) is satisfied for a small stepsize [15].

V. SIMULATIONS

Three sets of simulations were conducted in a ��� -step ahead predic-
tion and a denoising setting; the datasets used were the chaotic 4D
Saito’s signal [5], real-world wind field, and color image (Lena). The
performance index was the standard prediction gain, defined as �� �
�� �����

�
���� , where ��

�
and ��� denote respectively the variances of

the input signal and error (estimated from iteration � � � until con-
vergence, see for instance [6], [7]). The filter order was chosen to be
� � � � � . The performances of the proposed IIR algorithms were
compared to those of the quaternion LMS (QLMS) [4], multichannel
LMS (MLMS) [7] and a multichannel IIR architecture (MSG-IIR).

1) 4D Saito’s Circuit: A 4D benchmark system considered was the
Saito’s process [5], characterized by four state variables �	
 � 
 �
 
�
and five parameters ��
 ��
 ��
 ��
 ���, which determine transitions
from a torus doubling route to the area and volume of an expanding
chaotic figure (for more details, see [5]). From Fig. 1, it is clear that the
proposed IIR algorithms outperformed the QLMS, MLMS, and MSG-
IIR, and exhibited better convergence properties (see Fig. 3) for the
same filter order.

2) Wind Forecasting: Three-dimensional wind data were recorded
using a 3D ultrasonic anemometer3. The wind speeds were taken from
the north-south, east-west, and vertical directions, together with the air
temperature. The 4D quaternion comprised the 3D wind speed as a
vector part (pure quaternion) and air temperature as the scalar part. As
illustrated in Fig. 2, the results conform with earlier observations that
the class of QSG-IIR outperformed the QLMS, MLMS, and MSG-IIR
algorithms, with enhanced convergence properties (see Fig. 3) for the
same filter order.

3) Denoising of Lena: We next assessed the AQSG-IIR and
QSG-IIR algorithms in a denoising setting. The Lena image was
decomposed into its three red-green-blue (RGB) channels to form a
3D time series, thus facilitating the quaternion representation. The
image was corrupted with ARMA(1,2) noise ����, at a signal-to-noise
	
� � � 
�. The performance was assessed by averaging 20
independent trials, where ARMA(1,2) coefficients were randomly
initialized from a Gaussian distribution. Table I shows that the ap-
proximate QSG-IIR presented in Section III-B exhibited performance
similar to QSG-IIR. The proposed algorithms outperformed QLMS
and MLMS.

VI. CONCLUSION

We have introduced a QSG-IIR of hypercomplex data. The forms of
gradient terms within QSG-IIR reflect the properties of quaternion al-

3The wind data were sampled at 32 Hz and recorded by the 3D WindMaster
Gill Instruments anemometer.
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Fig. 3. Learning curves of MLMS, QLMS, QSG-IIR, AQSG-IIR, and MSG-IIR for prediction tasks.

TABLE I
DENOISING OF COLOR LENA IMAGE FOR � �

gebra, such as the noncommutativity of the product. An approximate
version of QSG-IIR with reduced computational complexity has also
been introduced, and is followed by a stability analysis. Experiments
have been undertaken in a prediction and denoising setting, and illus-
trate the benefits of QSG-IIR.

APPENDIX

DERIVATION OF THE APPROXIMATE STEPSIZE BOUNDS OF QSG-IIR

The two update (24)–(25) be written in a compact form as

���� �� � ���� � � �
���������� � ���������� (32)

where (see the matrix equation at the bottom of the page). Obeying
the noncommutativity of the quaternion product, we can substitute

����������� � ������������ ��������������� into (32) to factor out
the error ���� on the RHS and yield

���� �� � ����

�� ������� � ������ ����� ��������������� � (33)

Since ���� � ��� 	���� � ��
 � ����������, where �� de-
notes the solution at the global minimum of the cost function and ����
is an i.i.d. Q-proper signal, we can simplify (33) as shown in (34)
at the bottom of the page. However, both �� and �� are not jointly
diagonal even for an i.i.d. Q-proper external input ����. To derive
“modes of convergence,” that is, to relate the dynamics of every ele-
ment of the weight error vector in (31) with the corresponding eigen-
values of the correlation matrices, we need to employ Observation 2.
The upper bound on the stepsize is then obtained, when the imaginary
part ��������� is considered a full quaternion, to give ��� � �� �

������ � � ���� � ������ ������ � ����� � ������

������ �

�

���

�� �����	 � � � 	

�

���

�� �����	

�

���

�� �����	 � � � 	

�

���

�� �����

������ �

�

���


� �����	 � � � 	

�

���


� �����	

�

���


� �����	 � � � 	

�

���


� ����� �

���� �� ������ � �� ��������� � � �
��������� ���� � �� � �

��������� ����

���� �� ������ � ��� ��� ���� � �� ������ � (34)
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������������������. The stepsize bound can now be related with
the inverse of the largest (right) eigenvalue of ���� � ���, as is stan-
dard in adaptive filtering, to give � � � � ���������� � �������.
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Minimax Design of IIR Digital Filters Using a Sequential
Constrained Least-Squares Method

Xiaoping Lai and Zhiping Lin

Abstract—The minimax design of infinite impulse response (IIR) dig-
ital filters is a nonconvex optimization problem, and thus has many local
minima. It is shown in this correspondence that a sequential constrained
least-squares (SCLS) method has a higher possibility of obtaining better so-
lutions than a direct minimization method when applied to the nonconvex
minimax design of IIR filters. We combine the SCLS method with a Stei-
glitz-McBride (SM) strategy, resulting in a practical design procedure. The
positive realness stability condition proposed by Dumitrescu and Niemisto
is reformulated as linear inequality constraints and then incorporated in
the design procedure. Simulation examples and comparisons with several
existing methods demonstrate the effectiveness of the procedure and good
performances of the designed filters.

Index Terms—Infinite impulse response (IIR) digital filters, minimax
design, sequential constrained least-squares, Steiglitz–McBride (SM)
strategy.

I. INTRODUCTION

A major challenge in the optimal design of infinite impulse re-
sponse (IIR) filters is the nonconvexity of the resulting optimization
problem. For constrained least-squares (CLS) and least p-power
error designs, several algorithms based on modified versions of the
Steiglitz–McBride (SM) strategy [14] were presented to convert the
nonconvex problems into a series of standard convex problems such as
quadratic programming (QP) [9], [11], [16], and second-order conic
programming (SOCP) [4] problems. A Gauss–Newton (GN) method
was also presented [6] to transform the nonconvex CLS problem into a
series of convex QP problems. The SM and GN methods followed by
a classical decent method were adapted successively in [2], resulting
in a multistage procedure that obtained better solutions than single or
two-stage methods.

Linear programming (LP) was one of early attempts for the min-
imax design problems of IIR filters. In [13], an exact LP formulation
was proposed for the minimization of the filter’s maximum squared
magnitude. In [1], an approximate LP formulation was obtained by
neglecting the denominator of frequency response (FR) approxima-
tion error (FR error, for short) and replacing circular constraints with
rectangular ones. The LP method was improved in [17] by iteratively
updating the FR error’s denominator with its previous estimate as in
the SM strategy and approximating circular constraints with octagonal
ones, resulting in an iterative LP. Iterative SOCP methods were pre-
sented in [8] and [10], where the nonconvex FR-error constraints be-
came second-order conic ones due to the first-order approximation of
the filter’s FR as in the GN method. In [3], the nonconvex minimax
problem was first relaxed to an SOCP, and an iterative procedure was
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